# Disulphidothionitrate Nitrosyl Complexes of Ruthenium(II)

KRISHNA K. PANDEY\*, DILEEP T. NEHETE and MORTEZA MASSOUDIPOUR Department of Chemistry, Devi Ahilya University, Indore - 452001, India (Received August 5, 1986; revised November 21, 1986)

## Abstract

The complexes  $Ru(NO)X_3L_2$  (X = Cl or Br; L = PPh<sub>3</sub> or AsPh<sub>3</sub>) react with heptasulfurimide (S<sub>7</sub>NH) in dimethylformamide to afford disulphidothionitrate (S<sub>3</sub>N<sup>-</sup>) complexes  $Ru(NO)(S_3N)X_2L$ . The reactions of  $Ru(NO)X_3 \cdot 2H_2O$  (X = Cl, I) with S<sub>7</sub>NH in methanol produce six coordinated {RuNO}<sup>6</sup> complexes  $Ru(NO)(S_3N)_2X$ . The complexes are characterised by elemental analyses, magnetic measurements, infrared and electronic spectral studies.

### Introduction

Considerable attention has been given to the chemistry of synthetic transition metal complexes complexed by unstable small inorganic sulfur-nitrogen ligands such as thionitrosyl, thiazate and thionitro [1, 2]. A few transition metal complexes of the disulphidothionitrate  $(S_3N^-)$  ligand have previously been prepared from  $S_4N_4$  [3-9] or [(Ph<sub>3</sub>-P)<sub>2</sub>N<sup>+</sup>] [S<sub>3</sub>N<sup>-</sup>] [10-12]. We have recently reported a new synthetic route, for disulphidothionitrato complexes by reaction of  $S_7NH$  with metal complexes [13], which has been utilized for the synthesis of  $S_3N^-$  complexes [14-16]. Chivers and coworkers

called the  $S_3N^-$  ion a thio analogue of peroxynitrite [12]; we named it disulphidothionitrate [13]. Herein we wish to report the synthesis of the first complexes of ruthenium(II) with the  $S_3N^-$  ligand by the reaction of ruthenium nitrosyl complexes with  $S_7NH$ .

## Experimental

All the reagents used were of analytical or chemical pure grade. The solvents were dried by standard methods. Every reaction was carried out under pure dry nitrogen atmosphere. The ruthenium nitrosyl complexes  $Ru(NO)X_3L_2$  and  $Ru(NO)X_3 \cdot 2H_2O$  were prepared by literature methods [17, 18]. S<sub>7</sub>NH was prepared from sulfurmonochloride and ammonia in DMF by the literature method [19]. The purified S<sub>7</sub>NH had a melting point of 113 °C and was used for the reactions. Melting points were taken in capillaries and are uncorrected.

Carbon, hydrogen and nitrogen in the complexes were analysed by the microanalytical laboratory of this department. The analysis for chloride, bromide, iodide and sulfur was carried out by standard methods [20]. For the phosphorus and arsenic estimation, the samples were decomposed with sodium peroxide, sugar and sodium nitrate in the ratio 20:1:3 and estimations were performed by standard methods [21]. The results of these analyses appear in Table I. The IR spectra were recorded

TABLE I. Elemental Analyses of the Complexes (numbers in parenthesis are calculated values)

| Compound                                                    | с       | Н      | Ν       | х       | S       | P/As    |
|-------------------------------------------------------------|---------|--------|---------|---------|---------|---------|
| Ru(NO)(S <sub>3</sub> N)Cl <sub>2</sub> (PPh <sub>3</sub> ) | 37.5    | 2.8    | 4.9     | 12.2    | 16.9    | 5.6     |
|                                                             | (37.63) | (2.61) | (4.87)  | (12.36) | (16.72) | (5.4)   |
| $Ru(NO)(S_3N)Br_2(PPh_3)$                                   | 32.7    | 2.4    | 4.4     | 24.3    | 14.6    | 4.8     |
|                                                             | (32.57) | (2.26) | (4.22)  | (24.13) | (14.47) | (4.67)  |
| $Ru(NO)(S_3N)Cl_2(AsPh_3)$                                  | 35.0    | 2.5    | 4.6     | 11.5    | 15.4    | 12.2    |
|                                                             | (34.95) | (2.42) | (4.53)  | (11.48) | (15.53) | (12.13) |
| $Ru(NO)(S_3N)Br_2(AsPh_3)$                                  | 30.4    | 2.3    | 4.1     | 22.8    | 13.6    | 10.6    |
|                                                             | (30.55) | (2.12) | (3.96)  | (22.63) | (13.57) | (10.60) |
| $Ru(NO)(S_3N)_2Cl$                                          |         |        | 10.8    | 9.4     | 49.8    |         |
|                                                             |         |        | (10.86) | (9.18)  | (49.67) |         |
| Ru(NO)(S <sub>3</sub> N) <sub>2</sub> 1                     |         |        | 8.9     | 26.8    | 40.4    |         |
|                                                             |         |        | (8.78)  | (26.56) | (40.16) |         |

0020-1693/87/\$3.50

#### © Elsevier Sequoia/Printed in Switzerland

<sup>\*</sup>Author to whom correspondence should be addressed.

with a Perkin-Elmer model 580 spectrophotometer in the range 4000–250 cm<sup>-1</sup>. The electronic spectra of the samples were recorded in dichloromethane solution on a Varian 634S spectrophotometer. Magnetic measurements were made with a Gouy balance at room temperature. All the complexes were found to be diamagnetic.

## Reactions of $S_7NH$ with $Ru(NO)X_3L_2$ (X = Cl or Br; L = PPh<sub>3</sub> or AsPh<sub>3</sub>)

The experiments were performed similarly and the reaction of  $Ru(NO)Cl_3(PPh_3)_2$  with  $S_7NH$  is described as a representative example.

To a stirred orange solution of  $Ru(NO)Cl_3(PPh_3)_2$ (0.2 g) in DMF (10 ml) was added a blue solution of S<sub>7</sub>NH (0.065 g) in DMF (10 ml). The reaction mixture was stirred for 6 h. The solvent was evaporated to 5 ml under reduced pressure. On addition of methanol-water (3:1) (100 ml), a brown complex separated out which was centrifuged, washed with methanol and diethylether and dried under vacuum. It was dissolved in dichloromethane (10 ml) and filtered. On addition of n-hexane (50 ml), a brown complex Ru(NO)(S<sub>3</sub>N)Cl<sub>2</sub>(PPh<sub>3</sub>) separated out, was centrifuged, washed with n-hexane and dried under vacuum (yield 58 mg, 38%). Triphenylphosphine sulphide was isolated from the washings.

The other similar coloured complexes were isolated in yield of 40%,  $[Ru(NO)(S_3N)Br_2(PPh_3)]$ ; 35%  $[Ru(NO)(S_3N)Cl_2(AsPh_3)]$ ; 32%,  $[Ru(NO)(S_3N)Br_2(AsPh_3)]$ .

### Reactions of $S_7 NH$ with $Ru(NO)X_3 \cdot 2H_2 O(X = Cl, I)$

To a stirred solution of  $Ru(NO)X_32H_2O$  (0.2 g) in methanol (30 ml) was added a blue solution of  $S_7NH$  (0.160 g) in DMF (15 ml). The reaction mixture was stirred for 5 h. The solvent was evaporated to 5 ml under reduced pressure. On addition of methanol-water (3:1) (100 ml), a brown product precipitated which was centrifuged, washed with cold methanol and ether and dried under vacuum. During the recrystallization from dichloromethane and nhexane, the brown product changed to a black solid, which analysed for  $Ru(NO)(S_3N)_2X$  (X = Cl or I). In five successive experiments the yield of the black compounds has been found to be 10-15%.

#### **Results and Discussion**

 $S_7NH$  reacts with  $Ru(NO)X_3L_2$  (X = Cl or Br; L = PPh<sub>3</sub> or AsPh<sub>3</sub>) to give disulphidothionitrato complexes [Ru(NO)(S<sub>3</sub>N)X<sub>2</sub>L]. The heptasulfurimide dissolves in DMF to give a blue solution and the blue species has been characterized as the NS<sub>4</sub><sup>-</sup> anion [22] (eqn. (1))

$$S_7 NH \xrightarrow{DMF} S_4 N^- + 0.75 S_8 + H^+$$
 (1)

The  $S_4N^-$  anion reacts with triphenylphosphine to give the  $S_3N^-$  anion and SPPh<sub>3</sub> [12] (eqn. (2))

$$S_4N^- + PPh_3 \longrightarrow S_3N^- + SPPh_3$$
(2)

The reactions of  $Ru(NO)X_3L_2$  with  $S_7NH$  may therefore be represented by (eqn. (3))

$$Ru(NO)X_{3}L_{2} + S_{7}NH \xrightarrow{DMF} Ru(NO)(S_{3}N)X_{2}L + 3/8S_{8} + SL + H^{+} + CI^{-}$$
(3)

Similarly the reactions of  $S_7NH$  with  $Ru(NO)X_3$ .  $2H_2O$  (X = Cl or I) give disulphidothionitrato complexes  $Ru(NO)(S_3N)_2X$  in low yield (eqn. (4)).

$$Ru(NO)X_3 + 2S_7NH \longrightarrow Ru(NO)(S_3N)_2X + \dots$$
 (4)

The complexes  $Ru(NO)(S_3N)X_2L$  (X = Cl or Br; L = PPh<sub>3</sub> or AsPh<sub>3</sub>) are air stable, brown diamagnetic solids. The IR spectra (Table II) of these complexes contain a strong band in the range 1835-1845  $cm^{-1}$  due to  $\nu(NO)$  stretching absorption which occurs at ca. 35 cm<sup>-1</sup> lower than that for precursor nitrosyl complexes  $Ru(NO)X_3L_2$ . The bands in the regions 1000-1020 and 700-745 cm<sup>-1</sup> due to  $\nu(NS)$  and 592-600 cm<sup>-1</sup> due to  $\nu(S-S)$  are in close agreement with the values for the coordinated bidentate  $S_3N^-$  ligand reported in the literature [8, 9, 12, 13]. The low frequency IR spectra of these complexes have two bands in the range 345-290  $cm^{-1}$  which are assigned to  $\nu$ (Ru–Cl). The absorption at the highest energy is assigned to the  $\nu(Ru-Cl)$ stretch trans to the nitrosyl group and at a lower energy is assigned to the  $\nu(Ru-Cl)$  stretch trans to the  $S_3N^-$  ion. The corrected nitrosyl stretching frequency according to Ibers' rules [23] falls above 1620  $\text{cm}^{-1}$ , which indicates a linear bonding of the nitrosyl group. The diamagnetic behaviour and linear bonding mode of the nitrosyl group suggest that the oxidation state of the metal ion is +2 and these complexes are regarded as complexes between Ru(II) and NO<sup>+</sup>. It is, therefore, possible to assign the following structure to {RuNO}<sup>6</sup>:



Ruthenium ion, thus, has an electronic configuration  $t_{2g}^6$  transforming as  ${}^{1}A_{1g}$ . Excitation of an electron to the  $e_g$  orbital yields the configuration  $t_{2g}^5 e_g^1$  which spans  ${}^{3}T_{1g} + {}^{1}T_{1g} + {}^{1}T_{2g} + {}^{3}T_{2g}$  with the spintriplet state lying at a lower energy than the singlet. Their electronic spectra should show four

#### Disulphidothionitrate Ru(II) Complexes

| Compounds                                | Colour | Melting point<br>(°C) | ν(NO)<br>(cm <sup>-1</sup> ) | Bands due to $S_3N^-$ ligand (cm <sup>-1</sup> ) |
|------------------------------------------|--------|-----------------------|------------------------------|--------------------------------------------------|
| Ru(NO)(S3N)Cl2(PPh3)                     | brown  | 220                   | 1840                         | 1020                                             |
|                                          |        |                       |                              | 745                                              |
|                                          |        |                       |                              | 592                                              |
| Ru(NO)(S3N)Br2(PPh3)                     | brown  | 235                   | 1835                         | 1020                                             |
|                                          |        |                       |                              | 742                                              |
|                                          |        |                       |                              | 600                                              |
| $Ru(NO)(S_3N)Cl_2(AsPh_3)$               | brown  | 222                   | 1838                         | 1003                                             |
|                                          |        |                       |                              | 739                                              |
|                                          |        |                       |                              | 600                                              |
| Ru(NO)(S3N)Br2(AsPh3)                    | brown  | 236                   | 1834                         | 1001                                             |
|                                          |        |                       |                              | 735                                              |
|                                          |        |                       |                              | 600                                              |
| Ru(NO)(S <sub>3</sub> N) <sub>2</sub> Cl | black  | >360                  | 1845                         | 1025                                             |
|                                          |        |                       |                              | 745                                              |
|                                          |        |                       |                              | 700                                              |
|                                          |        |                       |                              | 473                                              |
| Ru(NO)(S <sub>3</sub> N) <sub>2</sub> I  | black  | >360                  | 1840                         | 1020                                             |
|                                          |        |                       |                              | 740                                              |
|                                          |        |                       |                              | 700                                              |
|                                          |        |                       |                              | 473                                              |

TABLE II. Colour, Melting Point and Important Infrared Frequencies of the Complexes



Fig. 1. Absorption spectra of  $Ru(NO)(S_3N)Cl_2(PPh_3)$ (-----) and  $Ru(NO)(S_3N)Br_2(PPh_3)$  (-----) (ca. 10<sup>-4</sup> M solution for visible; 10<sup>-5</sup> M solution for UV in dichloromethane).

d-d transition bands (two spin allowed and two spin forbidden). The visible spectra of the complexes showed two bands around 18000 cm<sup>-1</sup> and 24000 cm<sup>-1</sup> (Fig. 1). However, the extinction coefficients of these bands are higher (~10<sup>3</sup>) as compared to the ones found normally for the octahedral complexes. These bands may be d-d singlet to singlet transitions in which case the intensity of the bands may arise due to (i) the covalent nature of the complex and (ii) the lowering of the symmetry of the molecule whereby the center of symmetry is lost. On the other hand, these bands may arise due to charge transfer or  $\pi-\pi^*$  transitions of the S<sub>3</sub>N<sup>-</sup> ligand [8]. The complexes Ru(NO)(S<sub>3</sub>N)<sub>2</sub>X (X = Cl or I) are air stable, diamagnetic solid and insoluble in most of the organic solvents. The IR spectrum of Ru(NO)( $S_3N$ )<sub>2</sub>Cl shows absorption bands at 1845 cm<sup>-1</sup> due to  $\nu(NO)$ , at 1025, 745, 700 cm<sup>-1</sup> due to  $\nu(NS)$ , at 473 cm<sup>-1</sup> due to  $\nu(Ru-S)$  and at 340 cm<sup>-1</sup> due to  $\nu(Ru-Cl)$ . The IR spectrum of Ru(NO)-( $S_3N$ )<sub>2</sub>I shows absorption bands at 1840 cm<sup>-1</sup> due to  $\nu(NO)$  at 1020, 740, 700 cm<sup>-1</sup> due to  $\nu(NS)$  and at 473 cm<sup>-1</sup> due to  $\nu(Ru-S)$ . The IR absorption bands due to the  $S_3N^-$  ligand are in close agreement with values for the bidentate  $S_3N^-$  ligand. The diamagnetic behaviour, linear bonding mode of the nitrosyl group and bidentate bonding mode of the  $S_3N^-$  ligand suggest the following structure for these complexes:



### Acknowledgement

We thank the Council of Scientific and Industrial Research, New Delhi for financial assistance (Project No. 1(998)/84-EMR II).

#### References

1 K. K. Pandey, Inorg. Chim. Acta, 111, 9 (1986) and refs. therein.

- 2 P. F. Kelly and J. D. Woollins, Polyhedron, 5, 607 (1986).
- 3 T. S. Piper, J. Am. Chem. Soc., 80, 30 (1958).
- 4 J. Weiss and H. S. Neubert, Z. Naturforsch., Teil B, 21, 286 (1966).
- 5 J. Weiss and U. Thewalt, Z. Anorg. Allg. Chem., 346, 234 (1966).
- 6 D. T. Haworth and G. Y. Lin, J. Inorg. Nucl. Chem., 39, 1838 (1977).
- 7 I. S. Butler and T. Sawai, Can. J. Chem., 55, 3838 (1977).
- 8 J. D. Woollins, R. Grinter, M. K. Johnson and A. J. Thomson, J. Chem. Soc., Dalton Trans., 1910 (1980).
- 9 M. Herberhold, L. Haumaier and U. Schubert, Inorg. Chim. Acta, 49, 21 (1981).
- 10 J. Bojes and T. Chivers, J. Chem. Soc., Chem. Commun., 1023 (1980).
- 11 J. Bojes, T. Chivers and P. W. Codding, J. Chem. Soc., Chem. Commun., 1171 (1981).

- 12 J. Bojes, T. Chivers, W. G. Laidlaw and M. Trsic, J. Am. Chem. Soc., 104, 4837 (1982). 13 H. W. Roesky, K. K. Pandey, M. Noltemeyer and G. M.
- Sheldrick, Acta Crystallogr., Sect. C, 40, 1555 (1984).
- 14 J. Weiss, Z. Anorg. Allg. Chem., 521, 37 (1985).
- 15 J. Weiss, Z. Anorg. Allg. Chem., 532, 184 (1986).
- 16 K. K. Pandey, Int. Conf. Coord. Chem., Greece, 1986, No. 24.
- 17 K. C. Jain, K. K. Pandey, R. Parashad, T. Singh and U C. Agarwala, Indian J. Chem., 19A, 1089 (1980).
- 18 J. M. Fletcher, I. L. Jenkins and F. M. Lever, J. Inorg. Nucl. Chem., 1, 378 (1955).
- 19 H. G. Heal and J. Kane, Inorg. Synth., 11, 184 (1968)
- 20 A. I. Vogel, 'A Textbook of Quantitative Inorganic Analysis', 3rd edn., Longmans, London, 1961.
- 21 K. K. Pandey, Spectrochim. Acta, Part A, 39, 925 (1983).
- 22 T. Chivers and I. Drummond, Inorg. Chem., 13, 1222 (1974).
- 23 B. L. Haymore and J. A. Ibers, Inorg. Chem., 14, 3060 (1975).