⁹⁵Mo Nuclear Magnetic Resonance Spectra of Tetrathiomolybdate(VI) Complexes of d⁸ Metals

MICHAEL J. TOOHEY, COLIN D. SCATTERGOOD and C. DAVID GARNER*

The Chemistry Department, University of Manchester, Manchester M13 9PL, U.K. (Received November 21, 1986)

⁹⁵Mo NMR spectroscopy is now established as a valuable probe of the environment of this element in diamagnetic systems [1]. Recent studies have shown that the molybdenum chemical shift provides a sensitive probe of the particular chemical environment of this element in M-Mo-S (M = Cu, Ag, or Au) clusters [2-4]. Herein we report an extension of these studies to the $[M'(MOS_4)_2]^{2-}$ (M' = Ni, Pd, or Pt) complexes reported by Müller *et al.* [5] and Callahan and Piliero [6]. $[PPh_4]_2[Ni(MOS_4)_2]$ has been structurally characterised; two bidentate {MOS₄} groups provide a planar coordination geometry at the nickel and the Ni----Mo separation of 2.80 Å was not considered indicative of a direct metal--metal bond [7].

⁹⁵Mo NMR spectra were recorded on a Varian XL 300 spectrometer operating at a frequency of 19.55 MHz for solutions of the $[NPr_4]_2[M'(MoS_4)_2]$ salts (*ca.* 0.05 M) in DMF at *ca.* 21 °C. The spectra recorded are shown in Fig. 1 and the chemical shifts and linewidths are summarised in Table I.

Clearly, these results show that coordination of $[MoS_4]^{2-}$ to Ni(II), Pd(II), or Pt(II) results in an increased shielding of the molybdenum nucleus. The magnitude of this shielding increases down the group (Pt > Pd > Ni) in contrast to observations for

Fig. 1. ${}^{95}Mo$ NMR spectra of $[NPr_4]_2[M'(MoS_4)_2]$ (M' = Ni, Pd or Pt) in DMF at ca. 21 °C, the linewidths are not directly comparable due to the use of different exponential weightings in the free induction decay.

0020-1693/87/\$3.50

TABLE I. ⁹⁵Mo NMR Chemical Shifts $(\delta)^{a}$ of $[NPr_4]_2$ -[M'(MoS₄)₂] (M' = Ni, Pd or Pt) in DMF Solution at *ca*. 21 °C

Compound	δ (ppm)	J(M'-Мо) (Hz)
[NPr4]2[Ni(MoS4)2] [NPr4]2[Pd(MoS4)2] [NPr4]2[Pt(MoS4)2]	1882 ± 2 1839 ± 2 1744 ± 2 ^b	96 ± 1

^aChemical shifts were referenced externally to a solution of Na₂[MoO₄] (2 M) in D₂O at 21 ± 1 °C and an apparent pH of 11, linewidths at half-height <20 Hz in each case. Acquisition parameters; transmitter frequency = 19.545 MHz; acquisition time = 0.4 s; pulse width = 17 μ s; number of points = 32 × 10³. ^bFor central resonance.

{MoS₄} complexes of Cu, Ag and Au. Thus, for $[MoS_4(MCN)]^{2-}$ (M = Cu or Ag) [2], $MoS_4(MPPh_3)$ -(M(PPh₃)₂)] (M = Cu or Ag) [4], and $[MoS_4(M-PPh_3)_2]$ (M = Ag or Au) [4] the increased shielding varies as Au > Cu > Ag.

A notable aspect of the ⁹⁵Mo NMR spectrum of $[NPr_4]_2[Pt(MoS_4)_2]$ is the appearance of a doublet centred on the main resonance which is attributed to ⁹⁵Mo-¹⁹⁵Pt coupling (¹⁹⁵Pt, $I = \frac{1}{2}$, natural abundance 33.8%), $J(^{95}Mo, ^{195}Pt) = 96$ Hz. This represents the first reported NMR observation of molybdenummetal (M) coupling in an Mo-S-M cluster and, also, provides a novel example of Mo-Pt coupling. The magnitude of this coupling implies the existence of a significant interaction between the metals of $[Pt(MoS_4)_2]^{2-}$ and, presumably, this is also true for the corresponding nickel and palladium systems.

Acknowledgement

We thank the S.E.R.C. for financial support including the award of studentships (M.J.T., C.D.S.).

References

- M. Minelli, J. H. Enemark, R. T. C. Brownlee, M. J. O'Connor and A. G. Wedd, *Coord. Chem. Rev.*, 68, 169 (1986).
- 2 S. F. Gheller, T. W. Hambley, J. R. Rodgers, R. T. C. Brownlee, M. J. O'Connor, M. R. Snow and A. G. Wedd, *Inorg. Chem.*, 23, 2519 (1984).
- 3 M. Minelli, J. H. Enemark, J. R. Nicholson and C. D. Garner, *Inorg. Chem.*, 23, 4384 (1984).
- 4 J. M. Charnock, S. Bristow, J. R. Nicholson and C. D. Garner, J. Chem. Soc., Dalton Trans., 303 (1987).
- 5 A. Müller, E. Ahlborn and H. H. Heinsen, Z. Anorg. Allg. Chem., 386, 102 (1971).
- 6 K. P. Callahan and P. A. Piliero, J. Chem. Soc., Chem. Commun., 13 (1979); Inorg. Chem., 19, 2619 (1980).
- 7 I. Søtofte, Acta Chem. Scand., Ser. A, 30, 157 (1976).

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.