
The Platinum(II) Hydride of Tris(2-(diphenylphosphino)ethyl)phosphine: a Novel Fivecoordinate Platinum Monohydride

PETER BRÜGGELLER

Institut für Anorganische und Analytische Chemie, Innrain 52a, Universität Innsbruck, 6020 Innsbruck, Austria (Received October 29, 1986; revised December 24, 1986)

Five-coordinate hydrido species containing tris(2-(diphenylphosphino)ethyl)phosphine (pp₃) and related ligands have been prepared with several lowspin d⁸ ions including Co(I), Ni(II) and Pd(II) [1-3]. Here the first example of the corresponding fivecoordinate platinum(II) monohydrides is reported. The new hydride was obtained by reduction of [(pp₃)PtCl]Cl (1) with NaBH_{4(s)} leading to [(pp₃)-PtH]Cl (2), and isolated as [(pp₃)PtH](BPh₄).

Experimental

¹⁹⁵Pt and ³¹P NMR spectra were recorded on a Bruker WP 80 spectrometer operating in the FT mode. ¹H NMR spectra were obtained on a Jeol, JNM-PMX 60 spectrometer. The positive chemical shifts are downfield from the standards, where 1.0 M Na₂PtCl₆, 85% H₃PO₄ and TMS were used as standards respectively. IR – Pye Unicam SP3-300 (KBr); CH-Analyse – Heraeus EH 425.

1: The complex was prepared according to ref. 4.

2: To an aqueous ethanol solution $(\nu/\nu = 1:5)$ of 1 was added a three-molar excess of NaBH_{4(s)} in small portions. The colorless solution was stirred for 30 min at room temperature and concentrated to a small volume. Complex 2 precipitated and was filtered off. However, it was not possible to obtain 2 in an analytically pure form.

 $[(pp_3)PtH](BPh_4)$: An aqueous ethanol solution $(\nu/\nu = 1:5)$ of 2 was treated with an equimolar amount of Na(BPh₄) in the same solvent and stirred for 2 h at room temperature. The colorless precipitate was filtered off, washed with water and dried *in vacuo*. It was recrystallized from CH₂Cl₂/n-hexane;

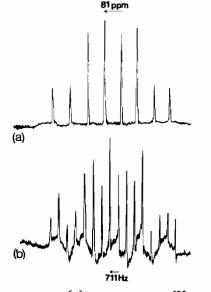


Fig. 1 (a) $\{H\}$ and (b) coupled ¹⁹⁵Pt NMR spectra of 2 in DMSO.

melting point 211-213 °C (dec). Anal. Found: C, 67.22; H, 5.56. Calc. for $C_{66}H_{63}BP_4Pt$: C, 66.84; H, 5.35%.

Results and Discussion

The formulation of 1 as a pentacoordinated complex has been established only recently [5, 6]. Treatment of an aqueous ethanol solution of 1 with excess NaBH₄₍₈₎ should give the corresponding platinum(0) complex [7]. However, no yellow precipitate typical for platinum(0) complexes is observed. Reduction of 1 gives a colorless solution, from which a colorless powder can be separated. In the infrared spectrum it shows a strong asymmetric absorption at 2053 cm⁻¹ typical for a terminal $\nu(Pt-H)$ [8]. The formation of the five-coordinate hydride 2 is confirmed by the NMR data given in Fig. 1 and Table I. In Fig. 1a and 1b proton decoupled and fully coupled ¹⁹⁵Pt NMR spectra are

TABLE I. ¹⁹⁵Pt, ³¹P and ¹H NMR Data on 2^a

¹⁹⁵ Pt	δ(¹⁹⁵ Pt)	¹ J(¹⁹⁵ Pt, H)	¹ J(195Pt, PPh ₂)	¹ J(¹⁹⁵ Pt, P)
	-5474	755	2975	1467
³¹ P	$\delta(PPh_2)$	δ(P)	$^{2}J(P, Pt-H)$	
	36.5	137	163	
^{1}H	δ(Pt-H)			
	-0.90 (triplet; $J = 81$)			

^aδ (ppm), J (Hz), 300 K. ¹⁹⁵Pt and ³¹P spectra were run in DMSO; ¹H spectra in DMSO-d₆.

0020-1693/87/\$3.50

given respectively. The proton decoupled spectrum consists of a 1:3:3:1 quartet, each line split into a further doublet due to ${}^{1}J({}^{195}\text{Pt}, \text{PPh}_{2})$ and ${}^{1}J({}^{195}\text{Pt}, \text{P})$, clearly indicating the presence of a trigonal bipyramidal $[(pp_{3})\text{PtH}]^{+}$ cation. In Fig. 1b this spectrum is further split into sixteen lines by ${}^{1}J({}^{195}\text{Pt}, \text{H})$. Chemical shifts and coupling constants of 2 are summarized in Table I.

The ¹⁹⁵Pt resonance of 2 ($\delta = -5474$ ppm) is strongly shifted towards a higher field compared with the corresponding value of 1 ($\delta = -4372$ ppm) [6]. ¹J(¹⁹⁵Pt, H) of 755 Hz is located within the range found for a series of terminal hydrides [9]. The magnitude of ¹J(¹⁹⁵Pt, P) of 1467 Hz indicates the presence of a *trans*-ligand which exhibits a high *trans* influence compared with the *trans*-ligands Cl⁻ (¹J(¹⁹⁵Pt, P) = 2553 Hz) and SnCl₃⁻ (¹J(¹⁹⁵Pt, P) = 1827 Hz) [5]. This agrees very well with the position of H⁻ in the *trans* influence series found for a series of tetracoordinated complexes [(ttp)PtX]⁺, where ttp is bis(3-(diphenylphosphino)propyl)phenylphosphine and X⁻ an anionic ligand [10].

The ³¹P{¹H} NMR spectral pattern of 2 is also consistent with an AX₃ spin-system and a trigonal bipyramidal structure in solution. Both signals show ¹⁹⁵Pt satellites, indicating that all four phosphorus nuclei are bonded to the platinum atom. In a fully coupled ³¹P NMR spectrum the resonance of the apical P-atom is split into a doublet due to ²J(P, Pt-H). The value of 163 Hz is typical for a *trans* ²J(P, H) coupling in a platinum(II) complex [10]. However, no ²J(P, P) and ²J(P, CH₂) couplings were observed.

The 60 MHz ¹H NMR signal is highly second order presumably arising from virtual coupling effects [11].

Solutions of 2 are air and light sensitive. Irradiation of a deaerated CH_2Cl_2 solution with a high pressure Xe-lamp leads completely within 30 min to a solvolysis product with an AX_3 ³¹P NMR spectral pattern.

In an attempt to produce a pp_3 -platinum(0) complex LAH in absolute THF was used as reducing agent. However, the reaction is erratic leading to two main products with AB₃ ³¹P NMR spectral patterns consisting of doublets and quartets together with the corresponding ¹⁹⁵Pt satellites. Presumably, the reaction pathway is obscured by the formation of a dimer and oligomers.

Acknowledgement

This work was supported by the Österreichische Industriellenvereinigung.

References

- 1 W. H. Hohman, D. J. Kountz and D. W. Meek, *Inorg. Chem.*, 25, 616 (1986).
- 2 F. Mani and L. Sacconi, Comments Inorg. Chem., 2, 157 (1983).
- 3 C. A. Ghilardi, S. Midollini and L. Sacconi, *Inorg. Chem.*, 14, 1790 (1975).
- 4 R. B. King, R. N. Kapoor and M. S. Saran, *Inorg. Chem.*, 10, 1851 (1971).
- 5 P. Brüggeller, Z. Naturforsch., 1986, in press.
- 6 E. G. Hope, W. Levason and N. A. Powell, *Inorg. Chim. Acta*, 115, 187 (1986).
- 7 R. B. King and P. N. Kapoor, *Inorg. Chem.*, 11, 1524 (1972).
- 8 D. M. Adams, 'Metal-Ligand and Related Vibrations', Arnold, London, 1967, p. 5.
- 9 P. S. Pregosin, Coord. Chem. Rev., 44, 247 (1982).
- 10 K. D. Tau and D. W. Meek, *Inorg. Chem.*, 18, 3574 (1979).
- 11 R. A. Schunn, Inorg. Chem., 15, 208 (1976).