Synthesis and Structure of (PPN)₂Au₂Te₄: A New Gold Telluride Containing Planar Au₂Te₄²⁻ Rings

R. C. HAUSHALTER

Exxon Research and Engineering Company, Clinton Township, Route 22 East, Annandale, N.J. 08801, U.S.A. Received April 17, 1985

There are very few examples of binary gold chalcogenide anions AuX_m^{n-} (X = S, Se, Te). Some recent structurally characterized compounds in the sulfur system include AuS_9^{1-} [1], $Au_2S_8^{2-}$ [2] and Au_{12} - S_8^{4-} [3]. Using a different synthetic approach than that used for the preparation of the gold sulfide anions [1-3], namely extraction of ternary K/Au/Te alloys, we have been able to prepare several novel Au-Te clusters. In addition to the title compound (PPN)₂Au₂Te₄, (1) we recently reported the structures of [K₂Au₄Te₄·2DMF·2MeOH²⁻] [4], [K₂-Au₄Te₄·4en²⁻⁻] [4] and [KAu₉Te₇⁴⁻⁻] [4].

Compound (1) has been observed as a product from the treatment of several ethylenediamine (en) extracts of ternary or quaternary alloys, such as K-Au-As-Te, K-Au-Ge-Te and K-Au-Te, with en solutions of PPN·Cl (PPN⁺ = $[(Ph_3P)_2N]^+$). The gold telluride (1) forms dark brown planes and crystallizes in the monoclinic space group $P2_1/n$ (see Table I). Cell constants for (1) (Table I) at 23(1) °C were obtained from 25 reflections with 2 $< \theta < 16^\circ$. For MoK_{α} radiation, $\mu = 64.7$ cm⁻¹ and an empirical absorption correction was applied.

TABLE I. Crystal Data.

Space group	$P2_1/n$				
Temperature	23(1) °C				
a (pm)	1218.9(4)				
<i>b</i> (pm)	1300.9(4)				
<i>c</i> (pm)	2174.1(6)				
β (deg)	105.16(2)°				
$V (10^6 \text{ pm}^3)$	3327.4				
d_{calc} (g cm ⁻³)	1.98				
Z	2				
Crystal color	brown				
Crystal size (mm)	$0.10 \times 0.30 \times 0.35$				
Radiation (pm)	71.07 (MoK _a)				
$2\theta_{max}$ (deg)	45				
Number of unique data	4349				
Number of data with $F > 3\sigma F$	2288				
Number of variable parameters	194				
R(F)	0.058				
Rw(F)	0.067				
Largest Δ/σ	0.02				

0020-1693/85/\$3.30

The position of the Au atom was located on a Patterson map and the remaining non-hydrogen atoms located by different methods. Hydrogen atoms on the phenyl rings were included in their calculated positions (C-H = 95 pm) but not refined. The Au, Te and P atoms were refined anisotropically and the C, N atoms isotropically.

In addition to the PPN⁺ cations, (1) contains the novel $Au_2Te_4^{2-}$ anion which is essentially planar (max deviation 2.6 pm) and lies on a crystallographic inversion center. The structure of the anion is shown in Fig. 1 and the atomic coordinates and thermal

Fig. 1. Distances (pm) and angles (degrees) in the structure of the $Au_2Te_4^{2-}$ anion in (PPN)₂Au₂Te₄. The anion resides on a crystallographic inversion and is planar to $\pm 2.6(1)$ pm.

parameters in Table II. As expected for Au(I), the Te-Au-Te angle is close to 180° . All Au-Au-Te and Au-Te-Te angles are near 90° . The Te-Te distance of 278.1(2) pm is similar to Te-Te contacts in other tellurides [5]. The Au-Au distance of 290.8(1) pm in (1) is slightly longer than the 288 pm observed in Au metal. In contrast to the Au₂Te₄²⁻ anion, the other structurally characterized Au-Te anions [4] all have K⁺ coordinated to the gold centers.

In summary, these results show that the extraction binary and ternary potassium containing alloys provide a route to $AuTe_{x}^{n-}$ anions which does not depend on the use of inconvenient and unstable H₂Te.

Experimental

All manipulations were performed in a high purity (<1 ppm O_2) argon atmosphere. Ethylenediamine (en) was purified by distillation from CaH₂ onto K₄Sn₉ followed by a second distillation from the red K₄Sn₉ solution.

Compound (1) has been observed as a product from the treatment of en extracts of alloys of

© Elsevier Sequoia/Printed in Switzerland

Atom	x	у	2	β1,1	β2,2	β _{3,3}	β1,2	β1,3	β2,3
Aul	0.06891(7)	0.08332(7)	-0.01431(4)	0.00815(6)	0.00456(5)	0.00298(2)	-0.0016(1)	0.00552(5)	-0.00019(6
Te1	-0.0205(2)	0.0420(1)	-0.13101(7)	0.0176(2)	0.0066(1)	0.00265(4)	-0.0008(3)	0.0060(1)	0.0004(1)
Te2	0.1479(1)	0.1214(1)	0.10435(8)	0.0086(1)	0.0098(1)	0.00342(4)	-0.0048(2)	0.0030(1)	-0.0028(1)
P1	0.4231(4)	0.0896(4)	-0.2774(2)	0.0040(3)	0.0040(3)	0.0012(1)	-0.0008(7)	0.0011(3)	-0.0008(3)
P2	0.2040(4)	0.1005(4)	-0.3730(2)	0.0031(3)	0.0036(3)	0.0014(1)	0.0003(6)	0.0019(3)	-0.0002(3)
Atom	x	у	z	B (Å ²)	Atom	x	у	z	B (Å ²)
N1	0.300(1)	0.130(1)	-0.3120(6)	2.9(3)	C34	0.221(2)	-0.238(2)	0.4240(9)	4.2(5)
C1	0.420(1)	0.018(1)	-0.2046(8)	3.0(4)	C35	0.192(2)	-0.210(2)	-0.3701(9)	4.4(5)
C2	0.315(2)	0.015(1)	-0.1894(8)	3.4(4)	C36	0.184(1)	-0.107(1)	-0.3558(8)	3.0(4)
C3	0.319(2)	-0.032(2)	-0.1291(9)	4.7(5)	H1	0.2471	0.0413	-0.2168	5.0000
C4	0.415(2)	-0.066(2)	-0.0917(10)	4.9(5)	H2	0.2508	-0.0379	-0.1158	5.0000
C5	0.517(2)	-0.064(2)	-0.1073(11)	6.0(6)	Н3	0.4136	-0.0946	-0.0516	5.0000
C6	0.514(2)	-0.020(2)	-0.1660(9)	4.2(5)	H4	0.5845	-0.0908	-0.0800	5.0000
C7	0.488(1)	0.013(1)	-0.3276(8)	2.6(4)	H5	0.5829	-0.0161	-0.1788	5.0000
C8	0.481(2)	-0.093(2)	-0.3279(9)	4.1(4)	H6	0.4526	0.1281	-0.2968	5.0000
С9	0.516(2)	-0.149(2)	-0.3744(10)	5.2(5)	H7	0.5105	-0.2217	-0.3755	5.0000
C10	0.558(2)	-0.101(2)	-0.4162(10)	5.3(5)	H8	0.5827	-0.1409	-0.4467	5.0000
C11	0.566(2)	0.002(2)	-0.4179(9)	4.3(5)	Н9	0.5961	0.0333	-0.4494	5.0000
C12	0.530(2)	0.065(1)	-0.3728(8)	3.3(4)	H10	0.5342	0.1378	-0.3736	5.0000
C13	0.519(1)	0.195(1)	-0.2520(7)	2.6(4)	H11	0.6645	0.1103	-0.2279	5.0000
C14	0.635(2)	0.178(1)	-0.2295(8)	3.3(4)	H12	0.7861	0.2481	-0.1953	5.0000
C15	0.707(2)	0.261(2)	-0.2095(9)	4.0(5)	H13	0.7206	0.4120	-0.1940	5.0000
C16	0.669(2)	0.357(2)	-0.2093(9)	4.0(5)	H14	0.5273	0.4451	-0.2321	5.0000
C17	0.555(2)	0.377(2)	-0.2315(9)	3.9(5)	H15	0.3992	0.3076	-0.2693	5.0000
C18	0.478(2)	0.294(1)	-0.2535(8)	3.1(4)	H16	0.0599	0.1337	-0.4971	5.0000
C19	0.208(1)	0.180(1)	-0.4394(7)	2.0(3)	H17	0.0628	0.2356	0.5863	5.0000
C20	0.122(2)	0.178(1)	-0.4948(8)	3.3(4)	H18	0.2191	0.3486	-0.5767	5.0000
C21	0.122(2)	0.239(2)	-0.5481(10)	5.1(5)	H19	0.3646	0.3563	-0.4830	5.0000
C22	0.216(2)	0.306(2)	-0.5419(9)	4.4(5)	H20	0.3567	0.2450	-0.3986	5.0000
C23	0.303(2)	0.310(1)	-0.4869(8)	3.5(4)	H21	-0.0193	0.0163	-0.4209	5.0000
C24	0.296(1)	0.244(1)	-0.4364(8)	2.8(4)	H22	-0.1965	0.0423	-0.4003	5.0000
C25	0.068(1)	0.117(1)	-0.3568(7)	1.8(3)	H23	-0.2165	0.1604	-0.3258	5.0000
C26	-0.026(2)	0.065(1)	-0.3893(8)	3.4(4)	H24	-0.0612	0.2474	-0.2683	5.0000
C27	-0.132(2)	0.080(2)	-0.3771(8)	3.7(4)	H25	0.1211	0.2233	-0.2855	5.0000
C28	-0.144(2)	0.149(2)	-0.3333(9)	4.3(5)	H26	0.2527	-0.0118	-0.4780	5.0000
C29	-0.052(2)	0.200(2)	-0.2999(10)	5.5(6)	H27	0.2631	-0.1882	-0.5020	5.0000
C30	0.057(2)	0.186(2)	-0.3100(9)	4.0(5)	H28	0.2257	-0.3085	-0.4333	5.0000
C31	0.208(1)	-0.033(1)	-0.3966(7)	2.2(3)	H29	0.1779	-0.2610	-0.3421	5.0000
C32	0.237(1)	-0.062(1)	-0.4500(8)	3.1(4)	H30	0.1613	-0.0876	-0.3188	5.0000
C33	0.243(2)	-0.167(2)	-0.4644(9)	4.2(5)					

TABLE II. Table of Positional and Thermal Parameters and Their Estimated Standard Deviations.^a

^aThe form of the anisotropic thermal parameter is: $\exp[-(\beta_{1,1} \times h^2 + \beta_{2,2} \times k^2 + \beta_{3,3} \times l^2 + \beta_{1,2} \times hk + \beta_{1,3} \times hl + \beta_{2,3} \times kl)]$. Estimated standard deviations in the least significant digits are shown in parentheses. Hydrogens were included in calculated positions (assuming idealized geometries with C-H = 0.95 Å) and were not refined.

nominal composition $KAuTe_2$, $K_2AuAsTe_3$ and K_3 -AuGeTe₃ (which were prepared from fusion of the elements under helium in quartz ampoules) with PPN·Cl in en. The aforementioned alloys did not appear homogeneous in all cases nor were they completely soluble in en.

To isolate (1), the filtered brown en extracts were carefully layered with PPN·Cl in en and the products filtered off after standing for 1 or 2 days.

References

- I G. Marbach and J. Strähle, Angew. Chem., 96, 229 (1984); Angew. Chem., Int. Ed. Engl., 23, 246 (1984).
- 2 A. Müller, D. Römer, H. Bögge, E. Krickenmeyer and K. Schmitz, Inorg. Chim. Acta, 85, L39 (1984).
- 3 G. Marbach and J. Strähle, Angew. Chem., 96, 695 (1984); Angew. Chem., Int. Ed. Engl., 23, 715 (1984).
- 4 R. Haushalter, Angew. Chem., (1985) in press.
- 5 R. Teller, L. Krause and R. Haushalter, *Inorg. Chem.*, 22, 1809 (1983) and references therein.