Organometallic Compounds of Iridium and Rhodium. XXVII*. (t-Bu₂PCH₂CMe₃)IrH(Cl)(CH₂CMe₂CH₂P-Bu₂-t): A Metallacyclic Iridium Complex Formed by Metal Atom Insertion into a Neopentyl C-H Bond

L. DAHLENBURG** and N. HOCK

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther King-Platz 6, D-2000 Hamburg 13, F.R.G.

Received May 2, 1985

In a recent communication [1], we have described the binuclear cyclometallated hydrido iridium(III) $(C_8H_{14})_2$ Ir- μ -Cl₂-IrH[CH₂CMe₂CH₂Pcomplexes $(CH_2CMe_3)_2$ [P(CH_2CMe_3)_3], [t-BuP(CH_2CMe_3)_2]_2- $H_2Ir - \mu - Cl_2 - IrH[CH_2CMe_2CH_2P(Bu-t)CH_2CMe_3]$ $[t-BuP(CH_2CMe_3)_2]$, and $(t-Bu_2PCH_2CMe_2CH_2)HIr$ - μ -Cl₂-IrH(CH₂CMe₂CH₂PBu₂-t) obtained from Ir₂- $Cl_2(C_8H_{14})_4$ and the phosphines t-Bu_{3-n}P(CH₂- $CMe_3)_n$ (n = 3, 2, 1) in hot toluene. Treatment of the labile cyclooctene iridium(I) precursor with di-tbutyl(neopentyl)phosphine also gave the dihydride $IrH_2(Cl)(t-Bu_2PCH_2CMe_3)_2$ [1] and, as we now know, a mononuclear species of composition 'IrCl- $(t-Bu_2PCH_2CMe_3)_2$ '. This complex separated from the toluene/hexane mother liquors of $Ir_2Cl_2(C_8H_{14})_4/$ t-Bu₂PCH₂CMe₃ reaction mixtures as slowly growing orange crystals. Solutions in C₆D₆ of the crystals thus obtained showed a ¹H NMR hydride triplet at δ -32.83, ²J(PH) = 14.2 Hz, and a ³¹P NMR AB pattern characterized by $\delta(P_A) = 70.3 \text{ ppm}$, $\delta(P_B) = 44.7 \text{ ppm}$, and ${}^2J(P_AP_B) = 347 \text{ Hz}$. These data are consistent [2-5] with a metallacyclic hydrido iridium(III) complex $(t-Bu_2PCH_2CMe_3)IrH(Cl)(CH_2CMe_2CH_2P Bu_2$ -t (1), the overall molecular geometry of which should correspond to distorted trigonal-bipyramidal [6, 7] with the phosphine ligands occupying trans positions [1, 3, 4]. The X-ray structural analysis, described hereafter, clearly established the trans-(t- $Bu_2PCH_2CMe_3$)- $IrCl-(CH_2CMe_2CH_2PBu_2-t)$ moiety of 1.

X-ray measurements were made at room temperature on a Syntex P2₁ instrument using MoK α radiation ($\lambda = 71.069$ pm). The data were obtained from one of several specimens examined, each of which revealed a minor unseparable twin component. The notorious presence of these small twin components in the crystals of 1 resulted in diffraction intensities of poor quality and thus gave rise to unusually high residuals (vide infra).

Crystals of 1, C₂₆H₅₈ClIrP₂ (660.4), were found to be triclinic, space group $P\overline{1}$, with a = 881.6(5), $b = 913.6(6), c = 2122(2) \text{ pm}, \alpha = 90.24(6), \beta = 98.09(6), \gamma = 115.13(5)^{\circ}, V = 1528 \times 10^{6} \text{ pm}^{3}, Z = 2, and D_{c} = 1.44 \text{ g cm}^{-3}$. A total of 3749 unique intensities with $5^{\circ} \leq 2\theta \leq 44^{\circ}$ was collected in the ω scan mode. Of these, 2515 gave counts with I > $2.5\sigma(I)$ and were used in the structure determination. The intensity data were corrected for Lorentz, polarization, and absorption effects ($\mu = 43.9 \text{ cm}^{-1}$). The structure was solved by the heavy-atom method and refined by a full-matrix least-squares procedure with allowance for anisotropic thermal behaviour of the Ir, Cl, and P atoms, and isotropic vibrations of the carbon atoms. Hydrogen atoms were not included. With unit weights, refinement converged at R =0.113 and $R_w = 0.128$. All computations were performed with the SHELX 76 program package. Final atomic positions are presented in Table I. Relevant bond distances and angles are given in the caption to Fig. 1 showing the molecular arrangement and the numbering scheme of the non-hydrogen atoms of the complex.[†]

The metal-phosphorus distance within the unmetallated Ir-P(Bu-t)₂CH₂CMe₃ fragment, 240.2(9) pm, is longer than those of 232.6(4) and 233.9(4)

Fig. 1. Molecular arrangement and numbering scheme of the non-hydrogen atoms of 1. Selected bond lengths (pm) and angles (°) are: P1-Ir, 240.2(9); P2-Ir, 233.6(9); Cl-Ir, 251.3(9); C26-Ir, 217(2). P2-Ir-P1, 167.8(3). Cl-Ir-P1, 93.1(3); Cl-Ir-P2, 98.7(3); C26-Ir-P1, 102.8(5); C26-Ir-P2, 80.2(5); C26-Ir-Cl, 91.2(5).

^{*}For Part XXVI, see ref. 1.

^{**}Author to whom correspondence should be addressed.

^{*}Further crystallographic information including tables of thermal parameters and F_0/F_c listings is available from the Fachinformationszentrum Energie, Physik, Mathematik GmbH (in cooperation with the Cambridge Crystallographic Data Centre), D-7514 Eggenstein-Leopoldshafen 2 (F.R.G.). Any request should be accompanied by the registration number CSD-51360, as well as by the full literature citation for this communication.

TABLE I. Atomic Coordinates.

Atom	x/a	y/b	z/c
Ir	0.1125(2)	0.3291(2)	0.2421(1)
P(1)	0.2793(10)	0.4949(9)	0.3371(5)
P(2)	-0.0809(10)	0.2022(10)	0.1497(4)
Cl	0.2225(11)	0.1187(10)	0.2640(5)
C(1)	0.290(2)	0.712(2)	0.340(1)
C(2)	0.389(2)	0.813(2)	0.288(1)
C(3)	0.370(2)	0.805(2)	0.406(1)
C(4)	0.104(2)	0.689(2)	0.322(1)
C(5)	0.511(2)	0.513(2)	0.357(1)
C(6)	0.505(2)	0.344(2)	0.374(1)
C(7)	0.618(2)	0.635(2)	0.414(1)
C(8)	0.592(2)	0.568(2)	0.295(1)
C(9)	0.165(2)	0.417(2)	0.409(1)
C(10)	0.013(2)	0.249(1)	0.403(1)
C(11)	-0.080(2)	0.267(2)	0.457(1)
C(12)	0.071(2)	0.109(2)	0.416(1)
C(13)	-0.105(2)	0.207(2)	0.341(1)
C(14)	-0.294(2)	0.223(2)	0.143(1)
C(15)	-0.404(2)	0.109(2)	0.188(1)
C(16)	-0.392(2)	0.179(2)	0.072(1)
C(17)	-0.256(2)	0.399(2)	0.162(1)
C(18)	-0.118(2)	0.017(2)	0.121(1)
C(19)	-0.177(2)	-0.118(2)	0.183(1)
C(20)	0.055(2)	-0.006(2)	0.113(1)
C(21)	-0.249(2)	-0.099(2)	0.062(1)
C(22)	0.024(2)	0.325(2)	0.083(1)
C(23)	0.198(2)	0.463(2)	0.108(1)
C(24)	0.323(2)	0.471(2)	0.061(1)
C(25)	0.192(2)	0.629(2)	0.111(1)
C(26)	0.276(2)	0.427(2)	0.171(1)

pm which were observed for the related dihydride $IrH_2(Cl)(t-Bu_2PCH_2CMe_3)_2$ [1]. In this latter complex, the *trans* P-Ir-P angle amounts to 167.3(1)° [1]. The P-Ir-P unit of 1 is characterized by a bond angle of 167.8(3)° and thus deviates from linearity in a similar way. The Ir-P bond length of 233.6(9) pm found for the metallacycle may be compared with those of 229.9(3)-231.5(3) pm exhibited by the bicyclic systems $IrH(Cl)[t-Bu-PCH_2CH(R)-1]$

CHCH₂CH₂PBu-t₂] (R = H, Me) [2, 3]. The endocyclic P-Ir-C angle of 80.2(5)° observed for 1 is close to the 82.8° characterizing the chelates of the dimeric platinum complex $[t-Bu_2PCH_2CMe_2CH_2-$ PtCl]₂ [8]. In both this platinum(II) derivative and the metallacyclic hydrido iridium(III) compound, reported herein, the five-membered rings adopt an envelope conformation. The structure of 1 also demonstrates the aspect of M···C-H proximity which is known to facilitate the formation of metallated rings in transition metal complexes containing bulky phosphine ligands [9]: the distance between the central metal and the methyl carbon C(13) measures *ca.* 293 pm which is 50-60 pm less than the typical van der Waals contact between a carbon and a platinum metal atom!

Acknowledgements

We gratefully acknowledge financial support by the Fonds der Chemischen Industrie. Thanks are also expressed to Degussa, Hanau, for a generous gift of iridium salts.

References

- 1 L. Dahlenburg and A. Yardimcioglu, J. Organomet. Chem., in press.
- 2 C. Croccker, H. D. Empsall, R. J. Errington, E. M. Hyde, W. S. McDonald, R. Markham, M. C. Norton, B. L. Shaw and B. Weeks, J. Chem. Soc., Dalton Trans., 1217 (1982).
- 3 R. J. Errington, W. S. McDonald and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1829 (1982).
- 4 W. J. Youngs and J. A. Ibers, J. Am. Chem. Soc., 105, 639 (1983).
- 5 P. E. Garrou, Chem. Rev., 81, 229 (1981).
- 6 H. D. Empsall, E. M. Hyde, E. Mentzer, B. L. Shaw and M. F. Uttley, J. Chem. Soc., Dalton Trans., 2069 (1976).
- 7 S. Hietkamp, D. J. Stufkens and K. Vrieze, J. Organomet. Chem., 152, 347 (1978).
- 8 R. Mason, M. Textor, N. Al-Salem and B. L. Shaw, J. Chem. Soc., Chem. Commun., 292 (1976).
- 9 B. L. Shaw, J. Am. Chem. Soc., 97, 3856 (1975); J. Organomet. Chem., 200, 307 (1980).