Hydride platinum gold clusters: synthesis and characterization

J. J. Bour, P. P. J. Schlebos, R. P. F. Kanters, M. F. J. Schoondergang, H. Addens, A. Overweg and J. J. Steggerda*

Department of Inorganic Chemistry, University of Nijmegen, 6525 ED Nijmegen (The Netherlands)

(Received July 9, 1990)

Abstract

 $[Pt(H)(AuPPh_3)_8]^+$ and $[Pt(H)(PPh_3)(AuPPh_3)_6]^+$ were prepared from $[Pt(AuPPh_3)_8]^{2+}$ and $[Pt(PPh_3)-(AuPPh_3)_6]^{2+}$, respectively, using an alkaline methanol solution as hydride forming reagent, while $[Pt(H)(SnCl_3)(AuPPh_3)_7]^+$ was prepared from $[Pt(H)(PPh_3)(AuPPh_3)_7]^{2+}$ and $SnCl_3^-$. The clusters were characterized by ³¹P, ¹⁹⁵Pt and ¹H NMR, analysis and by the reaction with acid. The cluster growth of PtAu_x clusters is discussed. The newly prepared compounds did not show any catalytic activity for the hydrogenation and isomerization of hexenes at ambient temperature and atmospheric pressure.

Introduction

Platinum-gold clusters of the type $Pt(AuPPh_3)_r$ (x=2-9) resemble mononuclear platinum complexes in the way that they show electrophilic and nucleophilic addition reactions, substitution as well as oxidative addition reactions [1-3]. We have suggested that in the synthesis of these compounds starting from $Pt(PPh_3)_3$, $AuPPh_3^+$ and H_2 cluster growth proceeds by a sequence of oxidative additions of H₂ and electrophilic substitutions with $AuPPh_3^+$ [4], in which hydride containing clusters should be intermediates. However so far only [Pt(H)(PPh₃)- $(AuPPh_3)_7]^{2+}$ has been prepared and characterized [5]. Therefore we have studied the reactivity of platinum gold clusters towards hydride forming reagents [6] to see if new hydride platinum gold clusters could be identified. We report here the synthesis and characterization of three new cluster compounds $[Pt(H)(AuPPh_3)_8]^+$, $[Pt(H)(PPh_3)(AuPPh_3)_6]^+$ and $[Pt(H)(SnCl_3)(AuPPh_3)_7]^+$. As mononuclear platinum hydride compounds are catalysts for isomerization and hydrogenation reactions, we have explored a possible catalytic activity of the newly prepared cluster compounds.

Experimental

Elemental analyses were carried out in the microanalytical department of this university and by Dr A. Bernhard, Elbach über Engelskirchen, F.R.G. ICP analyses were carried out on a Plasma 200 ICP A-E spectrometer in DMSO solutions, with $Pt(AuPPh_3)_8(NO_3)_2$ as reference, giving Pt:Au:P ratios. ³¹P NMR spectra were recorded on a Bruker WM 200 instrument at 81.02 MHz, using CH_2Cl_2 solutions and TMP in CD_2Cl_2 as reference; ¹⁹⁵Pt NMR at 43.02 MHz, using CD_2Cl_2 solutions and K₂PtCl₆ in D₂O as reference; and ¹H NMR at 200.13 MHz using CD_2Cl_2 solutions and TMS in CD_2Cl_2 as reference. All NMR spectra were measured at room temperature. IR spectra were recorded on a Perkin-Elmer 1720-X Fourier transform spectrometer.

Preparation

 $[Pt(AuPPh_3)_8]^{2+}$, $[Pt(PPh_3)(AuPPh_3)_6]^{2+}$, $[Pt(H)-(PPh_3)(AuPPh_3)_7]^{2+}$ and NH₄SnCl₃ were prepared according to the literature [5, 7–9]. As hydride-forming reagents solutions of KOH in methanol and ethanol were used. The presence of formaldehyde or acetaldehyde was detected by a spot-test with fuchsine as described by Feigl [10]. Pure methanol and ethanol as well as KOH solutions in methanol and ethanol were measured as blanks. Methanol with formaldehyde and ethanol with acetaldehyde gave positive spot-test results.

$[Pt(H)(AuPPh_3)_8]NO_3$

 $[Pt(AuPPh_3)_8](NO_3)_2$ (50 mg, 0.012 mmol) was dissolved in 30 ml methanol and 500 mg (8 mmol) KOH were added. After the KOH had dissolved

^{*}Author to whom correspondence should be addressed.

the solution was evaporated to dryness yielding a red solid. The red solid was dissolved in 20 ml CH_2Cl_2 , filtered and evaporated to dryness again. This last procedure was repeated twice. The red solid was dried *in vacuo*. Yield 40 mg (0.01 mmol, 80%).

IR: ν 1378 cm⁻¹, free NO₃⁻. ICP:Pt:Au:P= 0.98:8.0:7.95. ³¹P{¹H} NMR: δ =52.1 ppm, ²J(¹⁹⁵Pt-³¹P)=452 Hz (Au-P). ¹H NMR: δ =5.4 ppm nonet, ¹J(¹⁹⁵Pt-¹H)=705 Hz, ³J(³¹P-¹H)=14.3 Hz (Pt-H). Phenyl protons 6.3-7.8 ppm. ¹⁹⁵Pt NMR: δ =-5673 ppm (nonet), ¹J(¹⁹⁵Pt-¹H)=721 Hz; ²J(¹⁹⁵Pt-³¹P)=453 Hz. ¹⁹⁵Pt{¹H} NMR: δ =-5673 ppm (nonet), ²J(¹⁹⁵Pt-³¹P)=453 Hz.

$[Pt(H)(AuPPh_3)_8](PF_6)$

To a solution of 100 mg (0.025 mmol) [Pt(H)-(AuPPh₃)₈]NO₃ in 5 ml CH₂Cl₂, 100 mg (0.3 mmol) Bu₄NPF₆ were added. After 15 min, 25 ml of methanol were added to this solution resulting in the formation of a red precipitate. The precipitate was filtered off, washed with 10 ml methanol and ether and dried *in vacuo*. Yield 80 mg (0.02 mmol).

IR: $\nu = 840 \text{ cm}^{-1}$, free PF₆⁻; no NO₃⁻ bands. ³¹P{¹H} NMR: $\delta = 52.1 \text{ ppm}$, ²J(¹⁹⁵Pt-³¹P)=452 Hz (Au-P).

$[Pt(H)(PPh_3)(AuPPh_3)_6]NO_3$

The same procedure was used as for $[Pt(H)-(AuPPh_3)_8]NO_3$ but, instead of $[Pt(AuPPh_3)_8](NO_3)_2$, $[Pt(PPh_3)(AuPPh_3)_6](NO_3)_2$ was used. Yield 90% based on $Pt(PPh_3)(AuPPh_3)_6(NO_3)_2$.

IR; $\nu = 1372 \text{ cm}^{-1}$, free NO₃⁻. ICP:Pt:Au:P = 1.1:6.0:7.2. ³¹P{¹H} NMR: $\delta = 48.2$ ppm (doublet) $^{2}J(^{195}\text{Pt}-^{31}\text{P}) = 457 \text{ Hz} (\text{Pt}-\text{P}), 68.0 \text{ ppm} (\text{septet})$ ${}^{3}J({}^{31}P-{}^{31}P) = 37$ Hz, ${}^{1}J({}^{195}Pt-{}^{31}P) = 2583$ Hz (Au-P). ¹H NMR: $\delta = 0.34$ ppm (doublet of septets), $^{1}J(^{195}\text{Pt}-^{1}\text{H}) = 687$ Hz, $^{2}J(^{31}P-^{1}H) = 9.3$ Hz. ${}^{3}J({}^{31}P-{}^{1}H) = 18.3$ Hz (Pt-H). Phenyl protons 6.3-7.8 195 Pt{ 1 H} $\delta = -5035$ NMR: ppm. ppm, ${}^{1}J({}^{195}Pt-{}^{31}P) = 2581 \text{ Hz}, {}^{2}J({}^{195}Pt-{}^{31}P) = 455 \text{ Hz}. {}^{195}Pt$ NMR: $\delta = -0.5035$ ppm ${}^{1}J({}^{195}Pt-{}^{1}H) = 690$ Hz, ${}^{1}J({}^{195}\text{Pt}-{}^{31}\text{P}) = 2581 \text{ Hz}, {}^{2}J({}^{195}\text{Pt}-{}^{31}\text{P}) = 454 \text{ Hz}.$

$Pt(H)(PPh_3)(AuPPh_3)_7^{2+}$

When a solution of $[Pt(H)(PPh_3)(AuPPh_3)_6](NO_3)$ in CH_2Cl_2 was treated with 1 equiv. AuPPh_3NO_3, $[Pt(H)(PPh_3(AuPPh_3)_7](NO_3)_2$ was formed in 90% yield. Crystallization takes place by slow diffusion of diethyl ether into the CH_2Cl_2 solution.

Acidimetric titration

Solutions of $[Pt(H)(AuPPh_3)_8](NO_3)$ and $[Pt(H)-(PPh_3)(AuPPh_3)_6](NO_3)$ in methanol were titrated with 0.025 M HCl, with potentiometric end point

detection. For both compounds a sharp end point could be detected after addition of 1 equiv. acid.

$[Pt(H)(SnCl_3)(AuPPh_3)_7](SnCl_3)$

A suspension of 100 mg NH₄SnCl₃ (0.4 mmol) in 5 ml methanol at 55 °C was added to a solution of 100 mg [Pt(H)(PPh₃)(AuPPh₃)₇](NO₃)₂ (0.025 mmol) in 5 ml methanol. A yellow precipitate was immediately formed. After stirring for 30 min the precipitate was filtered off, washed with 15 ml methanol, 15 ml ethanol and diethyl ether and dried *in vacuo*. The total procedure was carried out in a Schlenk apparatus under N₂. Yield 80 mg, 80% on [Pt(H)(PPh₃)(AuPPh₃)₇](NO₃)₂.

Anal. Calc. for Au₇C₁₂₆H₁₀₆Cl₆P₇PtSn₂ (molecular weight 3860.28): Sn, 6.15; Cl, 5.51. Found: Sn, 6.08; Cl, 5.37%. ICP:Pt:Au:P = 1.0:7.0:7.3. IR: ν = 305, 275 cm⁻¹, coordinated SnCl₃; ν = 330 cm⁻¹, free SnCl₃⁻. ³¹P{¹H} NMR: δ = 51.1 ppm, ²J(¹⁹⁵Pt-³¹P) = 443 Hz, ³J(¹¹⁷Sn-³¹P) = 372 Hz, ³J(¹¹⁹Sn-³¹P = 389 Hz (Au-P). ¹⁹⁵Pt NMR: δ = -5634 ppm (doublet of octets), ¹J(¹⁹⁵Pt-¹H) = 680 Hz, ²J(¹⁹⁵Pt-³¹P) = 445 Hz, Sn satellites with ¹J(¹⁹⁵Pt-¹¹⁷Sn) = 8050 Hz, ¹J(¹⁹⁵Pt-¹¹⁹Sn) = 8200 Hz. ¹⁹⁵Pt {¹H} NMR: δ = -5634 ppm (octet), ²J(¹⁹⁵Pt-³¹P) = 445 Hz. ¹H NMR: δ = 2.75 ppm, ¹J(¹⁹⁵Pt-¹H) = 680 Hz, ³J(³¹P-¹H) = 16.2 Hz, ²J(Sn-¹H) not found, (Pt-H). Phenyl protons 6.6–7.5 ppm.

$[Pt(H)(SnCl_3)(AuPPh_3)_7]PF_6$

To a solution of 100 mg (0.03 mmol) $[Pt(H)(SnCl_3)$ (AuPPh₃)₇](SnCl₃) in 5 ml CH₂Cl₂ a suspension of 40 mg (0.2 mmol) KPF₆ in 5 ml methanol was added and stirred for 15 min. The solution was evaporated to dryness and the remaining yellow solid was redissolved in CH₂Cl₂, filtered, and again evaporated to dryness. This procedure was repeated twice.

IR: $\nu = 305$, 275 cm⁻¹, coordinated SnCl₃⁻; 840 cm⁻¹ free PF₆⁻. ³¹P{¹H} NMR: $\delta = 50.2$ ppm, ²*J*(¹⁹⁵Pt-³¹P) = 443 Hz, ³*J*(¹¹⁷Sn-³¹P) = 372 Hz, ³*J*(¹¹⁹Sn-³¹P) = 389 Hz.

Catalytic studies

Methanol and CH_2Cl_2 solutions of the cluster compounds with 1-hexene, *cis* or *trans* 2-hexene were kept for several days at room temperature or 50 °C and atmospheric H_2 pressure. The reaction mixture was analysed daily for isomerization and hydrogenation products by GLC measurements, using a HP-1 apolar capillary column at 40 °C.

Results

$[Pt(H)(AuPPh_3)_8]^+$

The NO_3^- and PF_6 salts of this cluster ion can be prepared in high yield by the reaction of

 $[Pt(AuPPh_3)_8]^{2+}$ with an alcoholic solution of KOH.

 $[Pt(AuPPh_3)_8]^{2+} + OCH_3^- \longrightarrow$

$$[Pt(H)(AuPPh_3)_8]^+ + OCH_2$$

The compounds are stable in air but react with dilute acids, consuming 1 equiv. H^+ to produce the parent compound in nearly 100% yield and H₂. The ³¹P{¹H} NMR spectrum shows one signal at 52.0 ppm with Pt satellites with a coupling constant of 452 Hz. This is in the range of ²J(¹⁹⁵Pt-³¹P) couplings [3, 4] and is thus interpreted as such. The ¹H NMR spectrum shows a nonet at 5.4 ppm, with a coupling of 14.3 Hz, which is interpreted as a ³J(³¹P-¹H). There are Pt satellites with a coupling of 705 Hz which is in the range of ¹J(¹⁹⁵Pt-¹H)⁵.

The ¹⁹⁵Pt{¹H} NMR spectrum contains a nonet at -5671 ppm (²J(¹⁹⁵Pt-³¹P) = 452 Hz), without H decoupling the spectrum changes into a doublet of nonets, indicating the presence of one H atom (see Fig. 1). These NMR data indicate a cluster with a composition of Pt(H)(AuPPh₃)₈, with Pt in the centre, bonded to one H atom and eight AuPPh₃ groups. The composition [Pt(H)(AuPPh₃)₈]NO₃ is indicated

Fig. 1. $^{195}\text{Pt}\{^{1}\text{H}\}$ NMR (a) and ^{195}Pt NMR (b) of $[\text{Pt}(\text{H})(\text{AuPPh}_{3})_{8}]^{+}.$

by elemental analysis, IR spectra, the reaction with one equiv. of H^+ and the diamagnetism.

$[Pt(H)(PPh_3)(AuPPh_3)_6]^+$

The nitrate salt of this cluster ion can be prepared in high yield by the reaction of $[Pt(PPh_3)-(AuPPh_3)_6](NO_3)_2$, with an alcoholic solution of KOH.

$$[Pt(PPh_3)(AuPPh_3)_6]^{2+} + OCH_3^- \longrightarrow$$

$$[Pt(H)(PPh_3)(AuPPh_3)_6]^+ + OCH_2$$

The compound is stable in air but reacts with dilute acid consuming 1 equiv. of H⁺ to produce the parent compound in high yield and H₂. With 1 equiv. of AuPPh₃⁺ the well-known [Pt(H)(PPh₃)-(AuPPh₃)₇]²⁺ is formed in high yield. The ³¹P{¹H} NMR spectrum shows a septet at 68.0 ppm and a doublet at 48.2 ppm both with coupling constants of 36.7 Hz, which is interpreted as a ³J(³¹P-³¹P). Both the septet and the doublet have Pt satellites with coupling constants ¹J(¹⁹⁵Pt-³¹P) of 2583 Hz and ²J(¹⁹⁵Pt-³¹P) of 457 Hz, respectively. These data are close to those of [Pt(H)(PPh₃)(AuPPh₃)₇]²⁺ [6], and indicate that there is one PPh₃ group and six AuPPh₃ groups bonded to Pt.

In the ¹H NMR spectrum there is a multiplet signal at 0.34 ppm with Pt satellites $({}^{1}J({}^{195}Pt-{}^{1}H) = 687$ Hz). The multiplet can be intrepreted as ${}^{2}J({}^{1}H-{}^{31}P) = 9.3$ Hz and ${}^{3}J({}^{1}H-{}^{31}P) = 18.3$ Hz. These data are close to those of $[Pt(H)(PPh_3)(AuPPh_3)_7]^{2+}$. The ¹⁹⁵Pt{¹H} spectrum shows a doublet of septets at -5035 ppm, with ${}^{1}J({}^{195}Pt-{}^{31}P) = 2582$ Hz and $^{2}J(^{195}Pt-^{31}P) = 454$ Hz which doubles without ¹H decoupling showing ${}^{1}J({}^{195}Pt-{}^{1}H) = 689$ Hz (see Fig. 2). These data indicate the presence of only one H atom attached to platinum. The cluster cation can thus be formulated as Pt(H)(PPh₃)(AuPPh₃)₆ with Pt in the centre, coordinated by H, PPh₃ and six (AuPPh₃) groups. The reactions with H^+ and (AuPPh₃)⁺ as well as elemental analysis, IR spectra and diamagnetism indicate the composition [Pt(H)(PPh₃)(AuPPh₃)₆]NO₃ for the newly prepared cluster compound.

$[Pt(H)(SnCl_3)(AuPPh_3)_7]^+$

The SnCl₃ salt of this cluster ion can be synthesized by the reaction of $[Pt(H)(PPh_3(AuPPh_3)_7]^{2+}$ with NH₄SnCl₃, the corresponding PF₆ salt is obtained in a metathesis reaction of the SnCl₃ salt with KPF₆.

$$[Pt(H)(PPh_3)(AuPPh_3)_7]^{2+} + SnCl_3^{-} \longrightarrow$$

 $[Pt(H)(SnCl_3)(AuPPh_3)_7]^+ + PPh_3$

The ³¹P{¹H} NMR spectrum shows a signal at 51.1 ppm with Pt satellites with ² $J(^{195}Pt-^{31}P) = 443$ Hz and ¹¹⁹Sn, ¹¹⁷Sn satellites with ³ $J(^{119}Sn-^{31}P) = 389$ Hz and

Fig. 2. ${}^{195}Pt{}^{1}H$ NMR (a) and ${}^{195}Pt$ NMR (b) of $[Pt(H)(PPh_3)(AuPPh_3)_{6}]^{+}$.

 ${}^{3}J({}^{117}Sn-{}^{31}P) = 373$ Hz. In the ${}^{1}H$ NMR spectrum there is an octet at 2.75 ppm with ${}^{3}J({}^{31}P-{}^{1}H) = 16.2$ Hz; there are Pt satellites with ${}^{1}J({}^{195}Pt-{}^{1}H) = 680$ Hz. The ¹⁹⁵Pt NMR spectrum shows an octet at -5634 ppm with ${}^{2}J({}^{195}Pt-{}^{31}P) = 445$ Hz and Sn satellites with ${}^{1}J({}^{117}Sn - {}^{195}Pt) = 8050$ Hz and ${}^{1}J({}^{119}\text{Sn}-{}^{195}\text{Pt}) = 8200 \text{ Hz}$. Without ${}^{1}\text{H}$ decoupling this spectrum doubles showing ${}^{1}J({}^{195}Pt-{}^{1}H) = 680$ Hz (see Fig. 3). All these data indicate the cluster cation to be [Pt(H)(SnCl₃(AuPPh₃)₇]⁺ with one H atom, one SnCl₃ group and seven (AuPPh₃) groups attached to the central Pt atom. The composition of the SnCl₃⁻ and PF₆⁻ salts was confirmed by elemental analysis and IR spectra.

Catalytic study

The catalytic behaviour of $[Pt(H)(PPh_3)-(AuPPh_3)_6]^+$, $[Pt(H)(PPh_3)(AuPPh_3)_7]^{2+}$ and $[Pt(H)-(SnCl_3)(AuPPh_3)_7]^+$ with respect to the hydrogenation and isomerization of 1-hexene and *cis* and *trans* 2-hexene was investigated. Methanol and CH_2Cl_2

Fig. 3. ${}^{31}P{}^{1}H$ NMR (a), ${}^{195}Pt{}^{1}H$ NMR (b) and ${}^{195}Pt$ NMR (c) of $[Pt(H)(SnCl_3)(AuPPh_3)_7]^+$.

solutions of these clusters and the olefines were kept for several days at room temperature and 50 °C at atmospheric H₂ pressure. However, no indications of isomerization or hydrogenation could be detected in the analysis of the reaction product. In an attempt to abstract PPh₃ from the cluster and to create a free coordination site for the olefine $AuPPh_3NO_3$ was added to the reaction mixture but no catalytic effect was achieved.

Discussion

The formation of $[Pt(H)(AuPPh_3)_8]^+$ and $[Pt(H)-(PPh_3)(AuPPh_3)_6]^+$ from $[Pt(AuPPh_3)_8]^{2+}$ and $[Pt(PPh_3)(AuPPh_3)_6]^{2+}$, respectively, with methanolate is analogous with the hydride formation in mononuclear Pt compounds [11-13]. CH₃O⁻ could add to Pt completing the 18 electron configuration, but the compound is unstable as it could not be detected. The hydride is formed probably via a β -H transfer. Formaldehyde was detected as the reaction product.

Unfortunately no suitable crystals for X-ray structure determination could be obtained but the NMR data give a reliable picture of the structure. For $[Pt(H)(AuPPh_3)_8]^+$ and $[Pt(H)(PPh_3)(AuPPh_3)_6]^+$, both 18 electron systems, spherical structures are expected [14-16], in contrast to the toroidal 16 electron systems of [Pt(AuPPh₃)₈]²⁺ and [Pt(PPh₃)- $(AuPPh_3)_6]^{2+}$. The fast and clean conversion [Pt- $(H)(PPh_3)(AuPPh_3)_6]^+ + AuPPh_3^+ \rightarrow [Pt(H)(PPh_3)_6]^+$ $(AuPPh_3)_7$ ²⁺ gives further evidence for the structural relationship between both clusters; the X-ray structure of $[Pt(H)(PPh_3)(AuPPh_3)_7]^{2+}$ is known [5]. In a further reaction with AuPPh₃⁺ and a base the Pt bonded PPh₃ is substracted and $Au(PPh_3)_2^+$ is formed, a second AuPPh₃⁺ is bonded to Pt at least forming $[Pt-(AuPPh_3)_8]^{2+}$.

Up to now, in the reaction of $Pt(PPh_3)_3$ and $AuPPh_3NO_3$ with H_2 as reducing agent, $[Pt(AuPPh_3)_8]^{2+}$ is the ultimate product with a Au:Pt ratio of 8. The proposed growth mechanism [4] is a succession of oxidative additions of H_2 at the Pt center and electrophilic substitutions of AuPPh₃⁺.

Further growth beyond $[Pt(AuPPh_3)_8]^{2+}$ is probably blocked by the steric hindrance of eight voluminous triphenyl-phosphine groups, that almost completely fill the peripheral space, and clusters with more than eight phosphines have never been detected [17]. The interconversion of the different known hydride clusters is shown in Scheme 1. The structure of $[Pt(H)(SnCl_3)(AuPPh_3)_7]^+$ will not only be related

Scheme 1.

to $[Pt(H)(PPh_3)(AuPPh_3)_7]^{2+}$ but also to $[Au(SnCl_3)-(AuPPh_3)_7]^+$ [18]. However the positions of the (AuPPh_3) groups in $[Pt(H)(SnCl_3)(AuPPh_3)_7]^+$ and $[Pt(H)(PPh_3)(AuPPh_3)_7]^{2+}$ may differ like they do in the $[Au(PPh_3)(AuPPh_3)_7]^{2+}$ and $[Au(SnCl_3)-(AuPPh_3)_7]^+$ clusters.

Hydrogenation and isomerization of 1-hexene and 2-hexene in the presence of $[Pt(H)(PPh_3)-(AuPPh_3)_7]^{2+}$, $[Pt(H)(SnCl_3)(AuPPh_3)_7]^+$ or $[Pt(H)-(PPh_3)(AuPPh_3)_6]^+$ is not detected.

Steric hindrance, the nucleophilic behavior of the 18 electron system and/or the lack of dissociation of PPh₃ or SnCl₃ of the Pt atom obviously prevent a reaction with olefines.

References

- W. P. Bosman, W. Bos, J. M. M. Smits, P. T. Beurskens, J. J. Bour and J. J. Steggerda, *Inorg. Chem.*, 25 (1986) 2093.
- 2 R. P. F. Kanters, J. J. Bour, P. P. J. Schlebos and J. J. Steggerda, J. Chem. Soc., Chem. Commun., (1988) 1634.
- 3 J. J. Bour, P. P. J. Schlebos, R. P. F. Kanters, W. P. Bosman, J. M. M. Smits, P. T. Beurskens and J. J. Steggerda, *Inorg. Chim. Acta, 171* (1990) 177.
- 4 J. J. Bour, R. P. F. Kanters, P. P. J. Schlebos and J. J. Steggerda, *Recl. Trav. Chim. Pays-Bas*, 107 (1988) 211.
- 5 R. P. F. Kanters, J. J. Bour, P. P. J. Schlebos, W. P. Bosman, H. Behm, J. J. Steggerda, L. N. Ito and L. H. Pignolet, *Inorg. Chem.*, 28 (1989) 2591.
- 6 J. Chatt and B. L. Shaw, J. Chem. Soc., (1962) 5075.
- 7 J. J. Bour, R. P. F. Kanters, P. P. J. Schlebos, W. P. Bosman, H. Behm, P. T. Beurskens and J. J. Steggerda, *Recl. Trav. Chim. Pays-Bas, 106* (1987) 157.
- 8 P. D. Boyle, B. J. Johson, B. D. Alexander, J. A. Casalnuovo, R. P. Cannon, S. H. Johnson, E. A. Larks, A. M. Mueting and L. H. Pignolet, *Inorg. Chem.*, 26 (1987) 1346.
- 9 J. S. Morrison and H. M. Haendler, J. Inorg. Nucl. Chem., 29 (1967) 393.

- 10 F. Feigl, *Quantitative Analysis by Spot Tests*, Elsevier, London, 1939, p. 280.
- 11 J. Chatt and B. L. Shaw, J. Chem. Soc., (1962) 5075.
- 12 Toshikatsu Yoshida, Tamon Okano, Sei Otsuka, J. Chem. Soc., Dalton Trans., (1976) 993.
- 13 D. P. Arnold and M. A. Bennet, *Inorg. Chem.*, (1984) 2110.
- 14 K. P. Hall, D. I. Gilmour and D. M. P. Mingos, J. Organomet. Chem., 268 (1984) 275.
- 15 D. M. P. Mingos, J. Chem. Soc., Dalton Trans., (1967) 1163.
- 16 D. M. P. Mingos, Proc. R. Soc. London, Ser. A, 75 (1982) 308.
- 17 J. J. Steggerda, J. J. Bour, J. W. A. van der Velden, *Recl. Trav. Chim. Pays-Bas, 99* (1980) 137.
- 18 Z. Demidowicz, R. Johnston, D. P. M. Mingos, I. D. Williams, J. Chem. Soc., Dalton Trans., (1988) 1751.