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Abstract 

Chemically based structural models of icosahedral aluminum alloy quasicrystals use lattices of polyhedra 
of icosahedral local symmetry which are closely related to icosahedral structures found in boron 
chemistry, particularly the two rhombohedral allotropes of elemental boron. The structures of both 
fl-rhombohedral boron and cubic R-Al,CuLi, can be constructed from 60-vertex truncated icosahedra 
(the ‘Cho polyhedron’) but linked in very different ways in a three-dimensional crystalline lattice. 
Electron-precise models for the chemical bonding topology of both structures can be described using 
methods similar to those used to treat isolated globally delocalized deltahedral boranes such as B,,H,,2-. 
In the structure of R-Al,CuLi, the truncated icosahedra form the surfaces of 84-vertex Samson complexes 
retaining icosahedral local symmetry where each of the peripheral vertices is shared with an adjacent 
Samson complex leading to 54-atom building blocks. Simple pairwise rotation of the 30 pairs of vertices 
connecting pentagonal faces in the peripheral truncated icosahedron of each 54-atom building block 
in this lattice leads to a closely related lattice of 54-atom Mackay icosahedra. Such processes may 
convert crystal lattices such as R-AlJuLi, into closely related icosahedral quasicrystal structures such 
as T2-Al,CuLi,. 

Introduction 

One of the most exciting recent developments in 
materials science has been the discovery of aluminum 
alloys exhibiting diffraction patterns with apparently 
sharp spots containing five-fold symmetry axes [l, 
21. This discovery raises a crystallographic dilemma 
since the sharpness of the diffraction peaks suggests 
long-range translational order, as in periodic crystals, 
but five-fold axes are incompatible with such peri- 
odicity. Such materials are described as quasicrystals 
[3, 41, which are defined to have delta-functions in 
their Fourier transform but local point symmetries 
incompatible with periodic order. The structures of 
these materials may be viewed as three-dimensional 
analogues of Penrose tiling [S-8] which is a geometric 
structure exhibiting five-fold symmetries and Bragg 
diffraction. Location of atoms in quasicrystals requires 
the use of six-dimensional crystallography [9, lo] in 
which the atoms correspond to three-dimensional 
hypersurfaces in six-dimensional periodic lattices. For 
this reason the chemical structures of quasicrystals 
are not readily described in ways familiar to chemists. 
Chemically based models for quasicrystal structures 

are therefore more readily developed by first con- 
sidering closely related true crystalline materials and 
then introducing appropriate perturbations destroy- 
ing the periodic translational order but retaining the 
long-range translational and orientational order char- 
acteristic of quasicrystals [3, 41. 

In considering the chemistry of icosahedral quas- 
icrystals (i.e. those having five-fold symmetry) a 
striking observation is the presence of aluminum in 
almost all such materials [ll, 121. Aluminum is a 
congener of boron, which forms icosahedra in discrete 
molecular and ionic species such as C2B1,-,Hr2 [13] 
and BrzHiz2- [14] as well as infinite solid state 
materials such as boron-rich borides and several 
allotropes of elemental boron [15-171. The proposed 
designation of the B, Al, Ga, In, Tl column of the 
Periodic Table as ‘icosogens’ [18] is also supported 
by the existence of Gal* icosahedra in intermetallic 
phases such as RbGa,, CsGa,, Li*Ga,, K3Gar3 and 
Naz2GaXP [ 18-201. 

This paper examines the relationship of chemically 
based structural models of icosahedral aluminum 
alloy quasicrystals to the icosahedral structures found 
in boron chemistry, particularly the two rhombohedral 
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allotropes of elemental boron. The phase Al,CuL& 
is selected as an example of an icosahedral aluminum 
alloy since appropriate structural models for this 
phase and closely related cubic phases have been 
developed by Audier and collaborators [21]. This 
paper thus considers the structural and electronic 
effects of increasing the packing density of icosahedral 
atomic aggregates in three-dimensional space starting 
with the discrete ion B12Hr2’- and then going suc- 
cessively to the simple (0) [22] and complicated (/?) 
[23-2.51 forms of rhombohedral boron. Further in- 
crease in the packing density of icosahedral building 
blocks then leads to the Audier structure [21] for 
cubic R-A15CuLi3. Simple atomic motions in this 
structure can then destroy the periodic translational 
order while retaining the long-range translational 
and orientational order required for quasicrystals. 

Polyhedra of icosahedral symmetry 

The icosahedral phases of interest have local ico- 
sahedral (I,,) symmetry and thus must have structures 
constructed from atoms at the vertices of polyhedra 
of icosahedral symmetry. Such polyhedra are depicted 
in Figs. 1 and 2, their properties are summarized 
in Table 1, and their symmetries are depicted in 
Fig. 3 [26]. The six polyhedra listed in Table 1 
correspond to three pairs of dual polyhedra. In this 
context a given polyhedron P is converted to its dual 
P* by locating the vertices of P* above the midpoints 
of the faces of P and connecting two vertices of P* 
by an edge if and only if the corresponding faces 
of P share an edge [27]. A pair of dual polyhedra 
P and P* has the following properties: 

(i) the numbers of vertices and edges in a pair 
of dual polyhedra satisfy the relationships v =f*, 
e =e*, f =v*; 

(ii) dual polyhedra have the same symmetry ele- 
ments and thus belong to the same symmetry point 
group (I,, in the cases discussed in this paper); 

(iii) the numbers of edges meeting at a vertex of 
P correspond to the numbers of edges in the cor- 
responding face of P*; 

DUAL 

lcorahsdron Regular 

Dodecahedron 

Fig. 1. The icosahedron and its dual, the regular dode- 
cahedron. 

DUAL 

Truncated Omnicapped 

(a) 1cosahedrc.n Dodecahedron 

DUAL 

- 
(b) Icoridodccohedron Rhombic 

Triacontohcdron 

Fig. 2. (a) The truncated icosahedron (‘Cc0 polyhedron’) 
and its dual, the omnicapped dodecahedron; (b) the icos- 
idodecahedron and its dual, the rhombic triacontahedron. 

(iv) (P*)* =P, i.e. the dual of a dual of a polyhedron 
is topologically identical to the original polyhedron. 

The three pairs of dual polyhedra of icosahedral 
symmetry depicted in Figs. 1 and 2 are the following. 

(i) The regular polyhedra of icosahedral symmetry, 
namely the icosahedron itself and its dual, the regular 
(pentagonal) dodecahedron (Fig. 1). 

(ii) The 60-vertex semiregular truncated icosa- 
hedron postulated [28] for the structure of ChO (‘Buck- 
minsterfullerene’) and its dual, the 60-face omni- 
capped dodecahedron (Fig. 2(a)). 

(iii) The 30-vertex icosidodecahedron and its dual, 
the 30-face rhombic triacontahedron (Fig. 2(b)). The 
30 vertices of an icosidodecahedron are located at 
the 30 edge midpoints of an underlying icosahedron. 
The rhombic triacontahedron is an example of a 
zonohedron [7, 291, which is a polyhedron in which 
all faces are centrosymmetric and bounded by pairs 
of equal and parallel faces. Both of these polyhedra 
are relevant in understanding the structures of ico- 
sahedral quasicrystals. 

Boron icosahedra 

The prototypical example of an isolated boron 
icosahedron is found in the borane dianion Bi2HiZ2-. 
In B12H122- each boron atom provides the four 
valence orbitals of its sp3 manifold. One of these 
four orbitals (an sp hybrid) is used for external 
bonding to a hydrogen atom whereas the remaining 
three orbitals are available as internal orbitals for 
the skeletal bonding of the boron icosahedron. Of 
the three internal orbitals on each boron atom, two 
equivalent orbitals (the twin internal or tangential 
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TABLE 1. Some polyhedra of icosahedral symmetry 

Polyhedron Vertices Edges Faces Types of vertices’ Types of face? 

‘u3 V4 US %i f3 f4 fs f6 

Icosahedron 12 30 20 0 0 12 0 20 0 0 0 Regular dodecahedron 20 30 12 20 0 0 0 0 0 12 0 Dual pair 

Truncated icosahedron 60 90 32 60 0 0 0 0 0 12 0 Omnicapped dodecahedron 32 90 60 0 0 12 20 60 0 0 0 Dual pair 

Icosidodecahedron 30 60 32 0 30 0 0 20 0 12 0 Rhombic triacontahedron 32 60 30 20 0 12 0 0 30 0 0 Dual pair 

%I,, refers to the number of vertices having n edges meeting at that vertex (i.e. vertices of degree n). %, f4, fj* and ff, 

refer to the numbers of triangular, quadrilateral, pentagonal and hexagonal faces, respectively. 

Fig. 3. The two-fold, three-fold and five-fold rotation axes 
in five polyhedra of icosahedral symmetry. 

orbitals) are p orbitals which participate in bonding 
on the icosahedral surface. The remaining internal 
orbital (an sp hybrid) participates in a 1Zorbital 
core bond in the center of the icosahedron leading 
to the global delocalization [30] of Br2HIZ2-. The 
Br2H12*- anion has a total of (12)(3) + 12+2=50 
valence electrons of which 24 electrons are used in 
12 two-center bonds to the external hydrogen atoms, 

24 electrons are used for the skeletal surface bonding, 
and 2 electrons are used for the single 1Zorbital 
skeletal core bond leading to a closed shell electronic 
configuration. A number of approaches [30-321 have 
been used to describe the bonding in deltahedral 
boranes such as B12H122-. 

Elemental boron exists in a number of allotropic 
forms of which four (two rhombohedral forms and 
two tetragonal forms) are well established (Table 
2). The structures of all of these allotropic forms 
of boron are based on various ways of joining Br2 
icosahedra using the external orbitals on each boron 
atom. The structures of the two rhombohedral forms 
of elemental boron are of interest in illustrating what 
can happen when icosahedra are packed into an 
infinite three-dimensional lattice. Note that in rhom- 
bohedral structures the local symmetry of an ico- 
sahedron is reduced from I,, to D,,, because of the 
loss of the five-fold rotation axes. The twelve vertices 
of an icosahedron, which are all equivalent under 
I,, local symmetry, are split under Dxh local symmetry 
into two non-equivalent sets of six vertices each (Fig. 
4) [ 161. The six rhombohedral vertices (circled vertices 
in Fig. 4) define the directions of the rhombohedral 
axes. The six equatorial vertices (uncircled vertices 
in Fig. 4) lie in a staggered belt around the equator 
of the icosahedron. The six rhombohedral and six 
equatorial vertices form prolate and flattened oblate 
trigonal antiprisms, respectively. 

TABLE 2. Allotropic forms of elemental boron 

Type Structural units Literature 
reference 

cY-Rhombohedral J312 22 
&Rhombohedral BI~(B&(B,o)~B 24 
a-Tetragonal (B,MB)z 33 
/3-Tetragonal (B&(BtMB)ro 34 



Fig. 4. The six rhombohedral vertices (circled vertices) and 
sixequatorial vertices (uncircledvertices) of an icosahedron. 

In the simple (cr) rhombohedral allotrope of boron 
all boron atoms are part of discrete icosahedra. In 
a given B,* icosahedron the external orbitals of the 
rhombohedral borons are each used to form a two- 
center bond with a rhombohedral boron of an ad- 
jacent Blz icosahedron and the external orbitals of 
the equatorial borons are each used to form a three- 
center bond with equatorial borons of two adjacent 
B12 icosahedra. The available (12)(3) = 36 electrons 
from an individual BtZ icosahedron are fully used 
as follows. 

Skeletal bonding 
12-center core bond: 2 electrons 
12 2-center surface bonds: (12)(2)= 24 electrons 

External bonding 
(a) Rhombohedral borons: 
l/2 of 6 2-center bonds: (6/2) (2)= 6 electrons 
(b) Equatorial borons: 
l/3 of 6 3-center bonds: (6/3) (2)= 4 electrons 

Total electrons required: 36 electrons 

a-Rhombohedral boron thus has a closed-shell elec- 
tronic configuration. 

The structure of the complicated (~3) rhombohedral 
allotrope of boron avoids the three-center interi- 
cosahedral bonding of a-rhombohedral boron but is 
considerably more complicated. This structure is best 
described as a rhombohedral packing of B8., poly- 
hedral networks known as Samson complexes (Fig. 
5) [35] linked by Blo polyhedra and an interstitial 
boron atom so that the fundamental structural unit 
is B&B,&B = Bras. The idealized isolated Bs4 Sam- 
son complexes have Z,, local symmetry which is dis- 
torted to D3,, in the rhombohedral local environment 
of the lattice. Within the Bs4 Samson complex the 
external orbital of each of the twelve boron atoms 
of a central Bi2 icosahedron forms a two-center bond 
with the external orbital of the apical boron of a 

Fig. 5. A view of the surface of a Samson complex showing 
six of the twelve pentagonal pyramid cavities. 

“1 
Fig. 6. The Bzs polyhedron linking three Samson complexes 
in the P-rhombohedral boron structure. 

Bs pentagonal pyramid (i.e. a half-icosahedron) lead- 
ing to the B&B& = Ba4 stoichiometry. The external 
surface of this Ba4 Samson complex (Fig. 5) is a Be0 
truncated icosahedron (Fig. 2). The Bs pentagonal 
pyramids in the rhombohedral positions (see Fig. 4) 
of the central B,* icosahedron of the Bs4 Samson 
complex overlap with analogous B6 pentagonal pyr- 
amids of adjacent Ba4 Samson complexes to form 
six new B12 icosahedral cavities. The Bh pentagonal 
pyramids in the equatorial positions (see Fig. 4) of 
the central B,* icosahedron of the BS4 Samson com- 
plex each overlap with the corresponding equatorial 
Bh pentagonal pyramids of two adjacent Be4 Samson 
complexes by means of an additional BiO unit (vertices 
A, B, C and D in Fig. 6) to form new polyhedra 
of (3)(6) + lo=28 boron atoms (Fig. 6). These Bza 
polyhedra have local CXU symmetry and are con- 
structed by fusion of three icosahedra so that in 
each icosahedron one vertex (A in Fig. 6) is shared 
by all three icosahedra and four vertices (B and D 
in Fig. 6) are each shared by two of the icosahedra 
so that 3 (B7B4,2B1,3) =Bzs. Additional features of 
the structure of /3-rhombohedral boron include the 
following: 



(i) partial occupancy (73.4%) [25] of three of the 
boron vertices (D in Fig. 6) of the Bi,, unit linking 
three Bd pentagonal pyramids to form the BZ8 po- 
lyhedron; 

(ii) an interstitial boron atom (B(15) in the struc- 
tural papers [25]) within bonding distance of six of 
the above partially occupied boron vertices corre- 
sponding approximately to an isolated tetracoordi- 
nate boron atom (i.e. (0.734)(6) =4.4); 

(iii) partial boron occupancy (24.8%) [25] of an 
interstitial site in the B, Samson complexes (B(16) 
in ref. 25). 

In order to consider an electron counting scheme 
for @rhombohedral boron it is first necessary to 
consider the chemical bonding topology of the ideal- 
ized Bzs polyhedron (Fig. 6) formed by the fusion 
of three globally delocalized [30, 36, 371 boron ico- 
sahedra. The 28 boron atoms furnish a total of 
(28)(4)= 112 orbitals of which 24 orbitals (one on 
each boron atom except for boron atoms A and B 
in Fig. 6) are required for external bonding leaving 
112 - 24 = 88 atomic orbitals for the skeletal (internal) 
bonding. A 12-center core bond in each of the three 
icosahedral cavities of the BZ8 polyhedron requires 
(3)(12) = 36 atomic orbitals leaving 88 - 36 = 52 
atomic orbitals for pairwise surface bonding cor- 
responding to 26 surface bonds. Thus a closed shell 
electronic configuration for the Bzs polyhedron with 
one electron in each external orbital is BZs2+ requiring 
82 electrons as follows. 

24 external two-center bonds: (24/2)(2) = 24 electrons 
3 12-center core bonds: (3)(2)= 6 electrons 
26 surface bonds: (26)(2)= 52 electrons 

Total electrons required: 82 electrons 

The - 213 partial occupancy of three boron positions 
(D in Fig. 6) in the Bzs polyhedron necessitated by 
the availability of only four valence orbitals of the 
interstitial boron (B(15) in ref. 25) for chemical 
bonding corresponds approximately to removing one 
of these borons from each BZ8 polyhedron. Removal 
of this boron atom to give a B2, polyhedron removes 
three electrons and four orbitals. Loss of these four 
orbitals has the following three effects: 

(i) one external bond is eliminated reducing the 
required number of electrons by one; 

(ii) one core bond is reduced from a 12-center 
bond to an ll-center bond with no effect on the 
required number of electrons; 

(iii) one surface bond is eliminated reducing the 
required number of electrons by two. Thus the 
removal of one D vertex in the B28 polyhedron 
removes three electrons but also the need for three 
electrons (3 = 1 +0+ 2 from (i), (ii) and (iii) above, 
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respectively) so that the net charge on the species 
with the closed shell electronic configuration is not 
affected. 

Next the roles of the two types of interstitial borons 
in P-rhombohedral boron must be considered. The 
boron atom in the fully occupied interstitial site 
(B(15) in ref. 25) bonded to four boron atoms of 
the B2, polyhedron (D in Fig. 6) has a closed shell 
configuration B- (compare BH4- or B(C,H,),-). 
The -25% occupancy of the other six interstitial 
sites in each B,, Samson complex (B(16) in ref. 25) 
provides another B,,, to a fundamental structural 
unit. This additional B1.S provides an extra 
(1.5)(3) =4.5 electrons without adding any new bond- 
ing orbitals since the atomic orbitals of these latter 
interstitial boron atoms merely increase some two- 
center surface bonds to three-center bonds. 

All of these considerations indicate a fundamental 
B104.5 structural unit for @rhombohedral boron, which 
can be dissected as follows. 

Boron Net 
atoms charge 

Central Blz icosahedron 
6/2 Rhombohedrally located 

peripheral B12 icosahedra: 
(6/2)(12) = 
(6/2)( - 2) = 
6/3 Equatorially located 

peripheral B2, polyhedra: 
(6/3)(27) = 
(6/3)( + 2) = 
1 B(15) interstitial boron 

atom: 
(0.25)(6) = 1.5 B(16) 

interstitial boron atoms: 
(1.5)(l) = 
(1.5)(+3)= 

Total boron atoms and 
overall net charge 

12 -2 

36 
-6 

54 
+4 

1 -1 

1.5 
+ 4.5 

104.5 -0.5 

The net charge of -0.5 for a 313.5 valence electron 
structural unit can be assumed to be zero within 
the experimental error of partial occupancies etc., 
indicating that p-rhombohedral boron, like the much 
simpler cr-rhombohedral boron, has a closed shell 
electronic configuration. Note that in the lattices of 
both rhombohedral forms of boron the six rhom- 
bohedral and six equatorial borons of a central B12 
icosahedron are linked to two and three other such 
B12 icosahedra, respectively, using simple two-center 
and three-center chemical bonds, respectively, for 
cr-rhombohedral boron but using Bi2 icosahedra and 
Bzs polyhedra (Fig. 6), respectively, for P-rhombo- 
hedral boron. 
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Icosahedral quasicrystals 

There are several classes of icosahedral quasi- 
crystals with diverse compositions [ll]. The following 
classes are the most important: 

(1) the i(Al-Mt) class (Mt = transition metal) in- 
cluding i(AlsoMnzo) [l], i(AlU74Mn2,&) [38, 391, 
i(AWrr7Ru4) 1401; 

(ii) the i(AlZnMg) class including i(A125Zn38Mg37) 
[41], i(A144Zn,,Cu5Mg,6) [42] and i(Al&u,OLi~O) [43]. 

All of these phases contain relatively large amounts 
of aluminum suggesting the comparison of the struc- 
tures of these materials with those of the icosahedral 
boron derivatives discussed above. 

Consider the i(A160Cu10Li30) system and related 
alloys containing aluminum, lithium, and copper and/ 
or zinc, which have been studied in detail by Audier 
and collaborators [21]. This system is significant since 
there are crystalline phases of stoichiometries similar 
to the T2 icosahedral quasicrystal phases. The atom 
positions in the crystalline cubic R phase of ap- 
proximate Al,CuLi, stoichiometry are known so that 
the structure of this phase can provide some insight 
into the structure of the closely related T2 icosahedral 
phase of approximate stoichiometry [21] Al0J70- 
CuO.lOsLio.szz. Of interest in the structure of R- 
Al&uLi, is the presence of discrete AlI2 icosahedra 
indicating the icosogen nature of aluminum like its 
congeners boron and gallium [18]. 

Audier and collaborators [21, 441 have described 
a polyhedral shell structure for R-Al&uL& using 
some of the polyhedra of icosahedral symmetry listed 
in Table 1 and depicted in Figs. 1 and 2 (see Fig. 
6 in ref. 21 or Fig. 2 in ref. 44). This shell structure 
consists of the following layers: 

(a) a central (Al, Cu),, icosahedron; 
(b) an Liz0 regular dodecahedron with the Li 

positions above the faces of the central (Al, CU)~* 
icosahedron (layer a) analogous to the construction 
of dual polyhedra discussed above; 

(c) a larger (Al, Cu),, icosahedron formed from 
the external orbitals of the central (Al, CU)~* ico- 
sahedron (layer a) so that its atoms lie above the 
twelve faces of the Liz0 dodecahedron in another 
‘polyhedral dual construction’; 

(d) An (Al, CU)~~ truncated icosahedron (Figs. 2 
and 7) distorted from I,, local symmetry to Oh sym- 
metry so that 12 vertices are of one type (circled 
in Fig. 7) and 48 vertices are of another type (not 
circled in Fig. 7). The atoms of this polyhedron lie 
above the midpoints of the faces of the omnicapped 
dodecahedron (Fig. 2) formed by combining the Liz0 
dodecahedron (layer b) with the larger (Al, Cu),, 
icosahedron (layer c) in still another ‘polyhedral dual 
construction’, since the truncated icosahedron is the 
dual of the omnicapped dodecahedron (Fig. 2). 

Fig. 7. The two different types of vertices in the (AI, Cu),, 
truncated icosahedron distorted from I,, to O,, symmetry 
found in the structure of cubic R-AI,CuLi,. 

The (Al, Cu) subskeleton (layers a + c + d discussed 
above) in R-AlSCuLi3 forms a lattice containing 84- 
vertex Samson complexes (Fig. 5) identical to the 
BU Samson complex in the P-rhombohedral boron 
lattice discussed above. However, the packing of the 
(Al, Cu), Samson complexes in the R-Al&uL& 
lattice is totally different from the packing of the 
BW Samson complexes in P-rhombohedral boron. 
The (Al, Cu) subskeleton of the R-Al,CuLi, lattice 
thus consists of a CsCl-type cubic packing of the 
(Al, 01)~~ Samson complexes so that each atom of 
the peripheral (Al, Cu),, truncated icosahedron of 
the (Al, Cu),, Samson complex is shared with an 
adjacent Samson complex in one of the following 
two ways. 

(i) The six edges connecting the six pairs of circled 
vertices in Fig. 7 lie in the faces of a cube and are 
shared with the corresponding edges of the adjacent 
Samson complex in the adjacent cube sharing the 
face containing the edge in question. 

(ii) The eight hexagonal faces of the peripheral 
(Al, CU)~~ truncated icosahedron not containing any 
circled vertices in Fig. 7 are shared with the cor- 
responding faces of the adjacent Samson complex 
in the cube sharing the vertex lying at the end of 
the body diagonal of the original cube containing 
the midpoint of the hexagonal face in question. 

The basic structural unit of the (Al, Cu) subskeleton 
of R-A15CuLi3 thus is (Al, CU)~~ = (Al, CU)~*+ (Al, 
Cu),, + (Al, Cu)~2 corresponding, respectively, to 
the layers a +c+ d discussed above. In addition to 
the 20 lithium atoms in layer b, additional lithium 
atoms (layer e) are located above the twelve pen- 
tagonal faces of the peripheral truncated icosahedra, 
which, because of the way the truncated icosahedra 
are linked, simultaneously cap the pentagonal faces 



of two adjacent truncated icosahedra sharing an edge 
(sharing method (i) above). The sum of the number 
of atoms in layers a through e, respectively, in this 
model is (Al, Cu)rz + Liz,,+ (Al, Cu)i, + (Al, CU)~,,, 
2 + LilUz = (Al, Cu)54Li26 corresponding to an (Al+ 
Cu)/Li ratio of 2.08 in close agreement with 2.12 
implied by the A10.5&u,,116Li0,3 stoichiometry. 

Now consider the electron counting in R-A15CuLi3. 
In the (Al, Cu) subskeleton the aluminum and copper 
atoms function as donors of three and one electrons, 
respectively, assuming in the case of copper a stable 
d” configuration corresponding to Cu+. The lithium 
atom is a one-electron donor by ionization to Li+. 
The stoichiometry A10.5&u0.116Li,,32 coupled with 
the Audier model [21, 441 for R-A15CuLi3 leads to 

. . 
the storchrometry Al&u9 26- for the fundamental 
Samson complex structural unit corresponding to 
(45)(3) + (9)( 1) + 26 = 170 electrons. In addition ap- 
plication of the same Audier model to the cubic R 
phase of the Al-Cu-Li-Mg alloy of stoichiometry 
Al,.,,Cuo.lsLio.25Mg.~~ leads to the stoichiometry 
A142Cu12Liz,,Mg, = Al&~rr~~*- for its fundamental 
Samson complex structural unit also corresponding 
to (42)(3) + (12)(l) -t-32= 170electrons. This suggests 
that 170 electrons is a ‘magic number’ for the 54- 
atom Samson complex structural unit of cubic crys- 
talline aluminum alloy phases closely related to the 
icosahedral quasicrystals of the i(AlZnMg) class. This 
model assumes that the aluminum and copper atoms 
in these structures occupy the vertices of the Samson 
complexes (layers a, c, and d in the Audier model) 
and the more electropositive metals (Li and Mg) 
occupy interstitial positions (layers b and e in the 
Audier model). 

The topology of the 84-atom Samson complex (Fig. 
4) and the linkages of such complexes in a CsCl- 
type cubic lattice in R-A15CuLi3 are consistent with 
the observed 170 electrons corresponding to a closed 
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shell electronic configuration with delocalized bond- 
ing in polyhedral cavities of the following two types. 

(i) The central (Al, Cu),, icosahedron (layer a) 
having the required (2)(12) + 2 = 26 skeletal electrons 
for globally delocalized chemical bonding topology 
similar to Br2Hr2*-. 

(ii) The twelve pentagonal pyramid (Al, Cu)“(Al, 
Cu)‘& cavities (layers c and d) where (Al, Cu)” refers 
to the single apical atom and (Al, CU)~~ refers to 
the five basal atoms; each of the basal atoms is part 
of two different pentagonal pyramid cavities forming 
parts of different Samson complexes and thus has 
only two internal orbitals to contribute to the skeletal 
bonding of a given pentagonal pyramid cavity. In 
the view of the surface of the Samson complex in 
Fig. 5 six of the pentagonal pyramid cavities can be 
seen. 

The nido bonding [30,31,32,36,45] in a pentagonal 
pyramid leading to 2n + 4 = 16 skeletal electrons and 
eight bonding orbitals requires (6)(3) = 18 internal 
orbitals. However, in the pentagonal pyramid cavities 
in the Samson complex in the R-A15CuLi3 structure 
there are only 3 +(5)(2) = 13 internal orbitals. For 
this reason only one five-center core bond and four 
two-center surface bonds are possible using these 
13 internal orbitals leading to 10 rather than 16 
skeletal electrons for each pentagonal pyramid. The 
chemical bonding topology for a (Al, Cu)r2(Al, 
Cu)r2(Al, CU)~,,,~ Samson complex outlined in Table 
3 can lead to the observed 170 electrons while using 
the available 4 (12 + 12 + 60/2) = 216 valence orbitals 
of the sp3 manifolds of the 54 vertex atoms. 

The above discussion considers a model for the 
structure of the crystalline cubic R-A15CuLi3. NOW 
consider possible perturbations in this model to give 
the quasicrystal T2-A15CuLi3. In this connection the 
54-vertex Mackay icosahedron [46] (Fig. 8) appears 
as a structural unit in certain quasicrystals [9, 471. 

TABLE 3. Electron and orbital counting in a Samson complex structural unit in R-Al,CuLi, 

(A) 1 central (Al, CU),~ icosahedron (layer a) 
Core bonding: 2 electrons; 12 orbitals 
Surface bonding: (12)(2) = { 24 electrons; 24 orbitals 1 

Xl= 

(B) 12 two-center bonds between the external orbitals of the central (Al, Cu)t, icosahedron 
(layer a) and the (Al, CU),~ icosahedron in the next layer (layer b) 
(2 electrons; 2 orbitals) X 12 

(C) 12 (Al, Cu)a(Al, Cu)ic pentagonal pyramid cavities (layer d) 
Core bonding @center): 

{ 
2 electrons; 5 orbitals 

> 
x12= 

Surface bonding: (4)(2) = 8 electrons; 8 orbitals 

Total electrons and orbitals per (Al, Cu),,(AI, CU),~(AI, Cu), Samson complex 

Total Total 
electrons orbitals 

2 12 
24 24 

24 24 

24 60 
96 96 

-- 

170 216 



Mackay lcorohedron 

Fig. 8. A view of the surface of a Mackay icosahedron 
showing the vertices of the larger icosahedron (layer b) 
as black circles and the vertices of the icosidodecahedron 
(layer c) as white circies. The vertices of the central 
icosahedron (layer a) are not visible. 

Oblate Rhombohedron 

Fig. 9. The oblate and prolate rhombohedra used in a 
three-dimensional analogue of Penrose tiling to give a 
lattice of rhombic triacontahedra. 

The Mackay icosahedron has a shell structure con- 
sisting of the following layers: 

(a) a central icosahedron (not visible in Fig. 8); 
(b) a larger icosahedron formed from the external 

orbitals of the atoms in the central icosahedron (layer 
a) overlapping with an additional set of twelve atoms 
(black circles in Fig. 8); 

(c) a 30-vertex icosidodecahedron (Fig. 2) formed 
by placing atoms above each of the 30 edges of the 
larger icosahedron (layer b). Layer c is shown as 
white circles in Fig. 8. 

Layers a and b of the Mackay icosahedron are 
identical to the first two layers of the Samson complex 
(i.e. layers a and c in the Audier model for 
R-Al&uLi,) whereas the outer icosidodecahedron 
layer of the Mackay icosahedron (layer c) has exactly 
half the number of atoms of the outer truncated 
icosahedron in the Samson complex. Furthermore, 
the packing of the Samson complexes into the R- 

Al,CuLi, lattice results in each of the peripheral 
truncated icosahedron atoms being shared between 
exactly two adjacent complexes (see above) so that 
a single Samson complex structural unit has the same 
54 atoms as a corresponding Mackay icosahedron. 
This suggests a very close relationship between the 
packing of Samson complexes in the R-A1,CuLi3 
crystal and a possible packing of Mackay icosahedra 
in a T2-AlsCuLi3 quasicrystal. In fact a concerted 
90” rotation about a tangential axis of each of the 
30 edges connecting pairs of pentagonal faces in the 
peripheral truncated icosahedron in each Samson 
complex of the R-AlsCuLi, crystalline lattice converts 
a lattice of %-atom Samson complexes into a lattice 
of 54-atom Mackay icosahedra. This type of process 
may be crucial in converting crystals built from 
icosahedral building blocks to quasicrystals and re- 
sembles ‘martensitic’ transformations such as those 
found in A-15 superconductors [48]. 

The final point of interest is the relationship of 
these models for quasicrystals to three-dimensional 
analogues of Penrose tiling [4-8, 49, 501. Consider 
the Audier model [21, 461 for R-Al,CuLi, discussed 
above. The center (Al, CU),~ icosahedron (layer a) 
and the Liz0 regular dodecahedron flayer b) can be 
combined to form a 32-vertex rhombic triaconta- 
hedron (Fig. 2). Such rhombic triacontahedra re- 
sulting from capping the 20 faces of an icosahedron 
followed by deletion of the original 30 edges of the 
icosahedron can be constructed by an appropriate 
packing of ten oblate and ten prolate rhombohedra 
(Fig. 9) in a three-dimensional analogue of Penrose 
tiling discussed in detail elsewhere [4, 7, 8, 49, 501. 
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