Synthesis, Characterization and Antitumor Activity of Manganese(II), Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Platinum(II) Complexes of 3- and 5-Substituted Salicylaldehyde Benzoylhydrazones

M. MOHAN*, A. KUMAR, M. KUMAR

Department of Chemistry, N.R.E.C. College, Khurja-203 131 (U.P.), India

and N. K. JHA

Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110 016, India (Received August 11, 1986)

Abstract

Complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pt(II) with 3- and 5-substituted salicylaldehyde benzoylhydrazones (XSBH, X = H, 3-NO₂, 3-CH₃O, 5-Br, 5-Cl, 5-CH₃ or 5-NO₂) were prepared and characterized by elemental analyses, conductance measurements, magnetic moments (300-78 K) and spectral studies. On the basis of these studies the following structures are suggested: distorted octahedral for Mn(XSBH)₂, dimeric, low-spin, fivecoordinate for Ni(XSBH)Cl·2H₂O, dimeric, high-spin, five-coordinate for Co(XSBH)Cl·2H₂O, dimeric fourcoordinate for Zn(XSBH) and a square-planar structure for M(XSBH)Cl·H₂O (M = Cu(II) or Pt(II)). The polycrystalline ESR spectra of Cu(II) complexes are isotropic and indicate a $d_{x^2-y^2}$ ground state in square-planar stereochemistry. All the metal(II) complexes were screened for their antitumor activity against the P388 lymphocytic leukaemia test system in mice and were found to possess no significant activity at the dosages used.

Introduction

Aroylhydrazones have been shown to possess modest bacteriostatic properties *in vitro* against micro-organisms such as *Mycobacterium tuberculosis*, *Mycobacterium smegmatis*, *Candida albicans* and *Aspergillus niger* [1, 2] and were found significantly to mobilize iron from ⁵⁹Fe-labeled reticulocytes in mammals [3, 4]. Thus, they are potentially of use in the treatment of iron overload in man [3, 4]. Recently, preliminary studies have shown that aroylhydrazones, particularly salicylaldehyde benzoylhydrazone (SBH) and pyridine-2'-carboxaldehyde-2pyridylhydrazone (PCPH) are potent inhibitors of

693/87/\$3 50

DNA synthesis in a variety of cultured human and rodent cells, and their copper(II) complexes produce significant inhibition of tumor growth when given to mice bearing a transplanted fibrosarcoma [4, 5]. Although the bioactive forms and the mechanisms of action of SBH and PCPH and their copper(II) complexes are uncertain, their cytotoxic activity is equal to or greater than that of many chelators previously known to possess such properties, including compounds used clinically [5]. Moreover, these compounds are relatively non-toxic to mice and show some measure of selectivity in their effects on different cell types [5]. Because of these promising results, we have synthesized some metal(II) complexes of 3and 5-substituted salicylaldehyde benzoylhydrazones to get more active antitumor compounds. All these compounds have been characterized by elemental analyses and various spectral studies and screened for their antitumor activity against the P388 lymphocytic leukaemia test system in mice at the National Cancer Institute, Bethesda, Md. It is highly surprising that none was found to possess significant activity.

Experimental

Salicylaldehyde, 3-methoxysalicylaldehyde (O-vanillin) benzoylhydrazide and K_2PtCl_4 were obtained from Aldrich Chemical Co., Milwaukee, Wis., and used without further purification. 5-Chlorosalicylaldehyde and 3- and 5-nitrosalicylaldehydes were purchased from Eastman Chemical Co., Rochester, N.Y. 5-Bromosalicylaldehyde and 5methylsalicylaldehyde were prepared according to reported methods [6]. All other chemicals and solvents were of reagent grade or equivalent.

3- and 5-Substituted salicylaldehyde benzoylhydrazones were prepared according to the reported procedure [6]. The authenticity of the compounds was proved by m.p. and infrared spectra.

^{*}Author to whom correspondence should be addressed.

Synthesis

All the metal(II) chelates were obtained by the following general method. A hot solution of 3- or 5-XSBH (1 mmol) in 95% ethanol (20 ml) was added to a hot solution of the metal(II) salt (1 mmol) in the minimum amount of ethanol or an aqueous solution of K_2PtCl_4 (0.415 g, 1 mmol) and the resulting dark colored solution was refluxed for 2–3 h. The boiling solution was then allowed to cool at room temperature and stand overnight. Dark colored crystalline solids were separated from the solution and were filtered off, washed with ethanol and diethyl ether and dried over P_2O_5 under vacuum.

Physical Measurements

Conductance measurements were carried out in ethanol at 10^{-3} M on a Toshniwal conductivity bridge type CL01/01. All magnetic susceptibilities were measured on polycrystalline samples with a vibrating sample magnetometer. ESR spectra were recorded on a Varian spectrometer in the solid state as polycrystalline samples using DPPH as a reference material. The diffuse reflectance spectra of the compounds were measured on a Cary 14 spectrophotometer equipped with a diffuse reflectance accessory, using MgO as a reference. The infrared spectra in the 4000-200 cm⁻¹ range of the free ligands and their complexes were measured on a Perkin-Elmer 337 spectrophotometer in CsI.

Elemental analyses for carbon, hydrogen and nitrogen were performed by the Microanalytical Laboratory of CDRI, Lucknow, India. Metal analyses were by standard gravimetric procedures. The analytical data of the compounds are reported in Table I.

Results and Discussion

The infrared spectra of the free ligands 3- and 5-XSBH exhibit strong ν (N-H) absorption bands at *ca*. 3276 and *ca*. 3210 cm⁻¹ and ν (C=O) at *ca*. 1670 cm⁻¹, suggesting that the ligands are in the keto form I in the solid state. However, in solution and in the presence of metal ions, the ligands may exist in equilibrium with the tautomeric enol form Ia. On the

 $X = H, 3-CH_{3}O, 3-NC_{2}, 5-Cl, 5-Br, 5-CH_{3}, 5-NO_{2}$

loss of the enolic and phenolic protons, tautomer Ia may act as a doubly charged tridentate ligand coordinating through the phenolic oxygen, the azomethine nitrogen and the carbonyl oxygen atoms. When a hot solution of 3- and 5-XSBH in ethanol is refluxed with ethanolic or aqueous solution of the metal(II) salt, colored shining crystals of the compounds of general formula Mn(XSBH)2, M(XSBH)Cl· $2H_2O$ (M = Co(II) or Ni(II)), Zn(XSBH) and $M(XSBH)Cl \cdot H_2O$ (M = Cu(II) or Pt(II)) are formed. The Mn(II), Cu(II) and Pt(II) complexes are soluble in water and in a variety of organic solvents, while the remaining complexes are insoluble in all solvents tested. The molar conductances of Mn(II), Cu(II) and Pt(II) complexes in ethanol at *ca.* 10^{-3} M at 27 °C are in the range 7.5-10.5 ohm⁻¹ cm² mol⁻¹, indicating their non-electrolytic behavior in solution [7].

The assignments of some of the important bands observed in the spectra of the free XSBH ligands and their metal(II) complexes are reported in Table II. The infrared spectra of the free ligands exhibit bands at ca. 3440s, 3380s and ca. 2800 cm^{-1} which are assigned to $v_{as}(OH)$, $v_{s}(OH)$ and intramolecular Hbonded (OH) of the phenolic group, respectively [8]. In the spectra of the metal(II) complexes, these absorption bands disappear and the phenolic (C-O) stretching and bending vibrations, observed at ca. 1520 and ca. 1280 cm⁻¹, respectively, in the free ligands, are displaced to higher frequencies in the Co(II), Ni(II) and Zn(II) complexes (ca. 1540-1550 cm^{-1} and 1290-1310 cm^{-1}), while in the Mn(II), Cu(II) and Pt(II) complexes these are not much perturbed. The trend of the displacement of these bands is a reliable criterion of the mono- or polymeric nature of the complexes. The upward shift is definite proof of the dimeric nature of the Co(II), Ni(II) and Zn(II) complexes, involving phenoxide bridging [9, 10]. The displacement of these bands to higher frequencies is probably due to the increase in C-O bond strength on extended delocalization of the π system of the azine moiety. The dimeric nature of the Co(II), Ni(II) and Zn(II) complexes is also supported by the appearance of new bands at 720-735 cm⁻¹. These bands originate from

ring vibrations [11, 12].

In the NH stretching frequency region, the high frequency spectral band $\nu_{as}(NH)$ remains practically unchanged on coordination with a metal ion, relative to that of the free ligands, while the low frequency spectral band $\nu_s(NH)$ is displaced to higher frequency by approximately 50 cm⁻¹ in the Mn(II), Cu(II) and Pt(II) complexes. This suggests that the ligands exist

Metal Complexes of Aroylhydrazones

TABLE I. Analytical Data of Metal(II) Complexes of 3- and 5-Substitute	ed Salicylaldehyde Benzoylhydrazo	ones
--	-----------------------------------	------

Compound	Color	Found (%)				Calculated (%)			
_		C	Н	N	М	C	Н	N	М
H-SBH	white	69.85	4.98	11.49		70.00	5.00	11.67	
3-NO2SBH	white	58.85	3.95	14.80		58.95	3.86	14.74	
3-CH ₃ OSBH	white	66.62	5.26	10.45		66.67	5.19	10.37	
5-BrSBH	white	52.59	3.39	8.70		52.68	3.45	8.78	
5-CISBH	white	61.15	4.10	10.15		61.20	4.01	10.20	
5-CH ₃ SBH	white	70.87	5.57	11.10		70.87	5.51	11.02	
5-NO ₂ SBH	white	59.10	3.90	14.82		58.95	3.86	14.74	
Mn(H-SBH) ₂	light vellow	63.14	4.10	10.47	10.50	63.04	4.13	10.51	10.31
Mn(3-CH ₂ OSBH) ₂	vellow	60.80	4.80	9 32	9 18	6071	4 7 2	9.44	9 27
Mn(3-NQ ₂ SBH) ₂	light vellow	54 10	3 28	13.56	8 90	53.94	3 21	13.48	8.87
Mn(5-CISBH) ₂	vellow	55 75	3.60	9.20	9.18	55.87	3.65	9 30	9.13
Mn(5-BrSBH)	dark vellow	48 59	2 95	8 17	7.86	48.63	2.03	8 10	7 95
$Mn(5-CH_2SBH)_2$	vellow	64 10	2.55	9.90	9.88	64 18	2.05	9 98	9.79
Mn(5-NO-SBH)	vellow	53.87	2.92	13.50	8 00	53 94	2.05	13/18	8.87
$C_0(H-SBH)C_1, 2H-O$	brown	15 37	J.17 A 19	7 11	15.97	15 18	1.06	7 59	15.04
Co(3-CH-OSPH)CI-2H-O	brown	45.00	4.10	7.44	14.07	45.40	4.00	7.50	13.74
$C_0(3 \times 11303BH)C1-2H_0$	dark brown	43.00	4.30	10.25	14.02	43.00	4.31	10.12	14.75
$C_0(5 C SP D C 2H O$	han brown	40.62	2.44	12.02	14.42	40.34	2.20	10.13	14.22
$C_0(5 \text{ P-SPIDCL 2H}_0)$	dools because	41.50	2.02	13.92	12.30	41.39	2.12	6.93	14.39
$C_0(5 CH SPH)(1.2H_2)$	dark brown	37.30	3.07	0.32	15.20	37.40	5.12	0.24	15.14
$C_{1}(5)$ NO SPH)CI 2H ₂ O	dark brown	46.89	4.39	1.25	15.42	46.94	4.43	7.30	15.37
NULLED LICE 2H O	brown	53.82	3.17	13.52	8.90	53.94	3.21	13.48	0.04
NI(HSBH)CI+2H ₂ O	green	45.42	4.10	7.62	15.98	45.50	4.06	7.58	15.89
NI(3-CH ₃ USBH)CI-2H ₂ U	yellowish-green	45.00	4.48	7.18	14.68	45.09	4.51	7.01	14.71
$N_1(3-NU_2SBH)CI \cdot 2H_2O$	green	40.70	3.45	10.20	14.25	40.56	3.37	10.14	14.17
$N_1(5-CISBH)C1+2H_2O$	green	41.70	3.80	13.78	14.65	41.61	3.72	6.94	14.54
$Ni(5-BrSBH)Cl \cdot 2H_2O$	greenish-yellow	37.57	3.08	6.19	13.15	37.48	3.12	6.25	13.09
Ni(5-CH ₃ SBH)Cl·2H ₂ O	green	46.89	4.50	7.38	15.45	46.97	4.44	7.31	15.32
Ni(5-NO ₂ SBH)Cl+2H ₂ O	green	40.48	3.29	10.05	14.07	40.56	3.37	10.14	14.17
Cu(H-SBH)Cl·H ₂ O	black	47.25	3.72	7.95	17.98	47.19	3.65	7.86	17.85
Cu(3-CH ₃ OSBH)Cl·H ₂ O	black	46.58	4.08	7.19	16.39	46.65	4.15	7.26	16.47
Cu(3-NO ₂ SBH)Cl·H ₂ O	black	41.9 0	3.10	10.52	15.92	41.89	2.99	10.47	15.84
Cu(5-ClSBH)Cl·H ₂ O	dark green	43.10	3.25	7.10	16.35	43.02	3.33	7.17	16.27
Cu(5-BrSBH)Cl+H ₂ O	black	38.69	2.80	6.52	14.69	38.62	2.76	6.44	14.61
Cu(5-CH ₃ SBH)Cl·H ₂ O	black	48.70	4.12	7.62	17.20	48.64	4.05	7.57	17.17
Cu(5-NO ₂ SBH)Cl·H ₂ O	black	41.79	2.89	10.39	15.88	41.89	2.99	10.47	15.84
Zn(H-SBH)	yellow	55.26	3.72	9.32	21.62	55.19	3.61	9.20	21.53
Zn(3-CH ₃ OSBH)	light yellow	53.79	4.26	8.30	19.49	53.83	4.19	8.37	19.55
Zn(3-NO ₂ SBH)	light yellow	48.00	2.94	12.10	18.82	48.09	2.86	12.02	18.71
Zn(5-CISBH)	light yellow	49.50	3.20	8.35	19.20	49.58	3.25	8.26	19.29
Zn(5-BrSBH)	yellow	43.88	2.70	7.25	16.98	43.82	2.61	7.30	17.05
Zn(5-CH ₃ SBH)	yellow	56.60	4.12	8.84	20.60	56.53	4.08	8.79	20.53
Zn(5-NO ₂ SBH)	yellow	48.12	2.92	12.12	18.76	48.09	2.86	12.02	18.71
Pt(H-SBH)Cl·H ₂ O	dark red	34.50	2.72	5.08	40.12	34.46	2.67	5.74	40.01
Pt(3-CH ₃ OSBH)Cl·H ₂ O	red	34.69	3.00	5.34	37.50	34.78	3.09	5.41	37.69
Pt(3-NO ₂ SBH)Cl·H ₂ O	black	31.60	2.20	8.00	36.70	31.54	2.25	7.89	36.63
Pt(5-CISBH)Cl·H2O	black	32.25	2.35	5.40	37.28	32.18	2.48	5.36	37.37
Pt(5-BrSBH)Cl·H ₂ O	black	29.58	2.08	5.06	34.50	29.65	2.11	4.94	34.43
Pt(5-CH ₃ SBH)Cl·H ₂ O	dark red	35.92	3.08	5.64	38.93	35.89	2.99	5.58	38.89
Pt(5-NO ₂ SBH)Cl·H ₂ O	black	31.61	2.30	7.92	36.70	31.54	2.25	7.89	36.63

in the keto form in these complexes [13], as partly confirmed by the upward shift of the amide-II $(\Delta\nu(CN) + \delta(NH) \simeq 30 \text{ cm}^{-1})$ and amide-VI $(\Delta\delta - (CO) \simeq 20 \text{ cm}^{-1})$ bands and the downward shift of the amide-I $(\Delta\nu(C=O) \simeq 35 \text{ cm}^{-1})$ and amide-III

 $(\Delta\delta(NH) \simeq 15 \text{ cm}^{-1})$ bands. However, the spectra of the Co(II), Ni(II) and Zn(II) complexes do not show any characteristic bands of the amide and amino groups, indicating that the ligands are coordinating in the enol form in these complexes [14].

HSBH 3276s 3210m 1630s 1520s, 1280s 3CH_30SBH 3276s 3210m 1632s 1518s, 1280n S-NO5SBH 3270s 3212n 1630s 1520s, 1280m S-CISBH 3276s 320m 1630s 1520s, 1280m S-CISBH 3276s 3212m 1628s 1520n, 1276m S-ON_5BH 3276s 3212m 1630s 1520m, 1276m M(1-SH1)2 3275m 3260m 1580m 1515m, 1280m 440s 340m 425m M(1-NO_5BH1)2 3275m 3260m 1590s 1516m, 1270m 433s 344m 425m M(1-NO_5BH1)2 3275m 3260m 1590s 150s, 1200m 433s 342s 422s M(1-SH2)SH1)2 3278m 3260m 1590s 150s, 130m 730m 440m 337m 430m M(1-SNO_5BH1)2 3280s 3258m 1540m, 1305m 72s 447m 340s 426m 410m Co(3-H20/5BH2hC1-2H2o 1580m	Compound	v _{as} (NH)	ν _s (NH)	ν(C=N)	ν(C-O)		v(M-O) phenolic	v(M-O) ketonic/ enolic	v(M-N)	ν(M-Cl)
3-C14_00SBH 3276s 3210m 1518s, 1280s SNO2SBH 3270s 3210a 1630s 1520s, 1280m S-CISBH 3276s 3208s 1628s 1520s, 1276m S-CH3SBH 3276s 3210m 1632vs 1520s, 1276m S-NO_SSBH 3276s 3210m 1632vs 1520s, 1276m S-NO_SSBH 3275s 3260m 155m, 1280m 440s 340s 430m Mn(1-S-CH3OSBH)_2 3275s 3260m 155m, 1280m 440m 340m 425m Mn(3-CH3OSBH)_2 3275s 3260m 158m 151m, 1275m 440m 337m 430m Mn(3-CH3SBH)_2 3280s 326bm 158m 151m, 1275m 440m 337m 425s Co(1-SBH1)_2 3280s 326bm 1590s 150m, 1270m 440s 33dm 425s Co(3-NO_SBH1)_2 3278m 3260m 1586s 1545m, 1310m 730m 4447m 340m 426m 410s Co(3-NO_SBH1)C1-2H_2O 1580s 1545m, 1310m 730m 448m 340m 425s 410m<	H-SBH	3276s	3210m	1630s	1520s, 1280s					
3-NO ₂ SBH 3272s 3212s 1630s 1518s, 1280m S-CISBH 3276s 3212m 1630s 1520s, 1276m S-CISBH 3276s 3212m 1632vs 1520s, 1276m S-NO ₂ SBH 3275s 3210m 1630s 1520s, 1276m Mn(15-BSH)2 3275s 3260s 1520m, 1270m 440s 340s 430m Mn(3-CH_05DSHH)2 3275s 3260s 1590s 1516s, 1280s 440m 340m 425m Mn(5-BISH)2 3275s 3260s 1590s 1516s, 1270m 430s 343m 425s Mn(5-BISH)2 3278m 3260s 1590s 1516s, 1270m 440s 333m 425s Co(H_SBH)C1-2H_2O 1586m 1510w, 1274m 440s 333m 425s 425s Co(G-SBHSH)C1-2H_2O 1580s 1545m, 130m 730m 444sm 340s 425m 410m Co(S-SBH)C1-2H_2O 1580s 1545m, 130m 730m 445m 346m 425m 410m Co(S-CBSDH)C1-2H_2O 1580s 1545m, 1308m 720s 448m	3-CH ₃ OSBH	3276s	3210m	1632s	1518s, 1280s					
5-CISBH 3270s 3210n 1630s 1520s, 1280m S-BRSH 3276s 3212m 1632s 1520s, 1276m S-NO2SBH 3275s 3210m 1630s 1520s, 1276m S-NO2SBH 3275s 3200m 155m, 1280m 440s 340s 430m M(1-S-KIJSBH)2 3275s 3260m 1585m 1520s, 1270m 438s 344m 425m M(1-S-KIJSBH)2 3275s 3260m 158m 151sm, 1275m 440om 340s 425m M(15-RISBH)2 3280s 3268m 158m 151m, 1275m 440s 337m 420m M(15-RISBH)2 3280s 3260m 1590s 150m, 1270m 440s 335m 425s Co(1+SBH)C1-2H ₂ O 1580s 1540m, 1305m 72s 447m 340s 42cm 415m Co(3-NO_SBH)C1-2H ₂ O 1580s 1550s, 1305m 730m 448s 345s 428m 408s Co(3-NO_SBH)C1-2H ₂ O 1580s 1550s, 1305m 730m <t< td=""><td>3-NO₂SBH</td><td>3272s</td><td>3212s</td><td>1630s</td><td>1518s, 1280m</td><td></td><td></td><td></td><td></td><td></td></t<>	3-NO ₂ SBH	3272s	3212s	1630s	1518s, 1280m					
5-BrSBH 3276s 3210s 1628s 1520n, 1276m S-CH3SBH 3275s 3210m 1630s 1520n, 1276m S-NO ₂ SBH 3275s 3210m 1630s 1520n, 1276m 440s 340s 430m Mn(I-S-H3OSBH)2 3275s 3260s 1590m 1515m, 1280m 440s 340s 430m Mn(3-CH3OSBH)2 3275s 3260s 1590s 1515n, 1277m 440w 340m 422s Mn(5-LSBH)2 3280s 326sm 150se, 1277m 440m 335m 422s Mn(5-CH3BH)2 3280s 326m 150se, 1277m 440s 335m 425s Co(3-CH3OSBH)2 3280s 326m 158m 154m, 130m 725s 447m 340s 426m 415m Co(3-CH3OSBH/C1-2H2O 158bs 154m, 130m 720s 448s 345s 425s 410m Co(5-CH3BH/C1-2H2O 158bs 155m, 130m 730m 445s 345m 425s 410m Co(5-CH3BH/C1-2H2O </td <td>5-CISBH</td> <td>3270s</td> <td>3210n</td> <td>1630s</td> <td>1520s, 1280m</td> <td></td> <td></td> <td></td> <td></td> <td></td>	5-CISBH	3270s	3210n	1630s	1520s, 1280m					
5-CH3SBH 3276s 3212m 1632vs 1520n, 1278m SNOSBH 3727s 3210m 1632vs 1520n, 1270m 440s 340s 430m Mn(13-CH3OSBH)2 3275m 3260m 1580m 1516n, 1280m 440m 340s 430m Mn(3-NO_SBH)2 3275m 3260m 1580s 1516n, 1275m 4400m 340m 425m Mn(5-CISBH)2 3275m 3260m 1580s 1520n, 1270m 433s 342s 422s Mn(5-CISBH)2 3280s 3260m 1590s 150m, 1274m 440m 337m 430m Mn(5-NO_SBH)2 3278m 3260m 1590s 1540m, 1305m 725s 447m 340s 426m 415m Co(3-NO_SBH)(C1-2H_2O 1580m 1545m, 1306m 720s 448m 340m 426m 410m Co(5-BISH)(C1-2H_2O 1585m 1545m, 1306m 730m 445m 345m 425m 410m Co(5-NO_SBH)(C1-2H_2O 1580m 1550m, 1300m 730m 447m 340m 422m 408w Co(5-NO_SBH)(C1-H_2O 158	5-BrSBH	3276s	3208s	1628s	1520s, 1276m					
5-NO_SBH 3275s 3210m 1630s 1520m, 1250m 440s 340s 430s Mn(3-CH ₃ OSBH)_2 3275s 3260m 1585m, 1590m 1515m, 1280m 440m 340s 430m Mn(3-CH ₃ OSBH)_2 3275s 3260b 1588s 1515m, 1275m 440w 340s 425m Mn(5-CH_5BH)_2 3280s 3250b 1590s 1510m, 1275m 440w 340s 422s Mn(5-CH_5BH)_2 3280s 3250b 150s, 170m 430s 335m 425s Co(1H-SBH)C1-2H ₂ O 570s 1580s 154m, 130m 73m 440m 440m 425s Co(3-CH_3OSBH)C1-2H ₂ O 1580s 154sm, 1310m 73m 445m 340m 426m 410s Co(3-CH_3OSBH)C1-2H ₂ O 1580s 154sm, 130m 730m 445m 340m 422m 408w N(G-4CSBBH)C1-2H ₂ O 1590s 1550m, 1310m 730m 445s 345s 425s 410m Co(3-NO_2SBH)C1-2H_2O 1590s 1550m, 1310m	5-CH ₃ SBH	3276s	3212m	1632vs	1520m, 1278m					
Mn(3-H, OSBH)2 3280s 3265m 1590m 151m, 1280m 440s 340s 430m Mn(3-H, OSBH)2 3275s 3260s 1590s 1516s, 1280s 440m 340s 430m Mn(3-H, OSBH)2 3275s 3260s 1590s 1516s, 1280s 440m 340s 430m Mn(5-Br, SBH)2 3280s 3260s 1590s 1520s, 1270m 435s 342s 422s Mn(5-No_SBH)2 3280s 3258m 1580m 1510w, 1274m 440s 335m 425s Co(1+SBH)C1-2H ₂ O 1580s 1540m, 1305m 725s 447m 340s 426m 415m Co(3-No_SBH)C1-2H ₂ O 1580s 1540m, 1305m 720m 448m 340m 428s 410s Co(3-No_SBH)C1-2H ₂ O 1580s 1540m, 1305m 730m 448m 340m 428s 410m Co(5-CH ₃ SBH)C1-2H ₂ O 1580s 1550m, 1300m 730m 445s 346s 428m 410s Co(5-CH ₃ SBH)C1-2H ₂ O 1580s 1550m, 1300m 730m 445s 346s 422sm 408w	5-NO ₂ SBH	3275s	3210m	1630s	1520s, 1276m					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Mn(H-SBH) ₂	3280s	3265m	1590m	1515m, 1280m		440s	340s	430m	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mn(3-CH ₃ OSBH) ₂	3275m	3260m	1585m	1520m, 1270m		438s	344m	425 m	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$Mn(3-NO_2SBH)_2$	3275s	3260s	1590s	1516s, 1280s		440m	340s	430m	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mn(5-CISBH) ₂	3275m	3260m	1588m	1515m, 1275m		440w	340m	425m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn(5-BrSBH) ₂	3280s	3260s	1590s	1520s, 1270m		435s	342 s	422s	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mn(5-CH ₃ SBH) ₂	3280s	3258m	1586m	1510w, 1274m		440m	337 m	430m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Mn(5-NO_2SBH)_2$	3278m	3260m	1590s	1508m, 1270m		440s	335 m	425 s	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(H-SBH)Cl·2H ₂ O			1586s	1540m, 1305m	725s	447m	340s	426 m	415m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(3-CH ₃ OSBH)Cl·2H ₂ O			1590m	1545m, 1310m	730m	445m	340m	426 m	410s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(3-NO ₂ SBH)Cl·2H ₂ O			1585s	1545m, 1310m	728s	448s	345 s	428m	408s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(5-ClSBH)Cl+2H ₂ O			1580m	1550s, 1305m	730m	445m	340m	428s	415m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(5-BrSBH)Cl+2H ₂ O			1585m	1545m, 1308m	720s	448m	340s	425m	410m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(5-CH ₃ SBH)Cl·2H ₂ O			1590s	1550m, 1310m	730m	445s	345 m	425s	410m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(5-NO ₂ SBH)Cl·2H ₂ O			1588m	1550m, 1300m	725 m	448m	340m	422m	408w
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(H-SBH)C1+2H ₂ O			1590s	1545s, 1310m	730m	448m	344m	420s	405 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(3-CH ₃ OSBH)Cl·2H ₂ O			1588m	1545m, 1308m	728m	445s	345s	428m	415m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(3-NO ₂ SBH)Cl·2H ₂ O			1590s	1550m, 1310m	730m	445s	340m	425s	415 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(5-CISBH)C1-2H ₂ O			1588m	1550m, 1308m	725s	447m	340s	420m	410s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(5-BrSBH)Cl·2H ₂ O			1587m	1540m, 1300m	730m	445m	340m	425 m	415s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(5-CH ₃ SBH)Cl·2H ₂ O			1585m	1545m, 1290m	728m	445m	340m	420s	415s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(5-NO ₂ SBH)C1·2H ₂ O			1588m	1545m, 1295m	730s	448m	340m	424m	415s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(H-SBH)Cl·H ₂ O	3276s	3260m	1585s	1515m, 1280m		435m	345m	435 m	330m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(3-CH ₃ OSBH)Cl·H ₂ O	3278s	3262m	1590m	1510m, 1285m		440s	345s	438m	330m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(3-NO ₂ SBH)Cl·H ₂ O	3280m	3260s	1590m	1506m, 1285m		436m	340s	438m	325m
$\begin{array}{c} {\rm Cu}(5\text{-}{\rm Br}{\rm SBH}){\rm Cl}\cdot{\rm H}_2{\rm O} & 3275{\rm s} & 3255{\rm m} & 1585{\rm s} & 1530{\rm m}, 1280{\rm m} & 437{\rm m} & 345{\rm s} & 438{\rm m} & 330{\rm m} \\ {\rm Cu}(5\text{-}{\rm CH}_3{\rm SBH}){\rm Cl}\cdot{\rm H}_2{\rm O} & 3275{\rm s} & 3260{\rm m} & 1580{\rm m} & 1520{\rm s}, 1280{\rm m} & 440{\rm s} & 340{\rm m} & 440{\rm s} & 325{\rm w} \\ {\rm Cu}(5\text{-}{\rm NO}_2{\rm SBH}){\rm Cl}\cdot{\rm H}_2{\rm O} & 3275{\rm s} & 3262{\rm s} & 1586{\rm m} & 1526{\rm m}, 1285{\rm m} & 440{\rm m} & 340{\rm m} & 440{\rm m} & 325{\rm m} \\ {\rm Zn}(4\text{-}{\rm SBH}) & 1580{\rm m} & 1540{\rm m}, 1300{\rm m} & 730{\rm m} & 445{\rm m} & 340{\rm s} & 420{\rm s} \\ {\rm Zn}(3\text{-}{\rm CH}_3{\rm O}{\rm SBH}) & 1585{\rm s} & 1545{\rm s}, 1295{\rm m} & 720{\rm m} & 448{\rm m} & 340{\rm s} & 425{\rm m} \\ {\rm Zn}(3\text{-}{\rm O}_2{\rm SBH}) & 1585{\rm m} & 1540{\rm m}, 1290{\rm m} & 725{\rm m} & 450{\rm s} & 345{\rm m} & 425{\rm m} \\ {\rm Zn}(5\text{-}{\rm CI}{\rm SBH}) & 1585{\rm m} & 1545{\rm m}, 1298{\rm s} & 730{\rm m} & 445{\rm m} & 340{\rm s} & 425{\rm m} \\ {\rm Zn}(5\text{-}{\rm Cl}{\rm SBH}) & 1585{\rm m} & 1545{\rm m}, 1298{\rm s} & 730{\rm m} & 445{\rm m} & 340{\rm s} & 425{\rm m} \\ {\rm Zn}(5\text{-}{\rm H}_3{\rm SBH}) & 1585{\rm m} & 1545{\rm m}, 1298{\rm s} & 730{\rm m} & 445{\rm m} & 338{\rm m} & 420{\rm m} \\ {\rm Zn}(5\text{-}{\rm H}_3{\rm SBH}) & 1580{\rm m} & 1545{\rm m}, 1300{\rm s} & 725{\rm s} & 445{\rm m} & 338{\rm s} & 428{\rm m} \\ {\rm Zn}(5\text{-}{\rm CH}_3{\rm SBH}) & 1580{\rm m} & 1545{\rm m}, 1300{\rm s} & 725{\rm s} & 445{\rm m} & 338{\rm s} & 422{\rm m} \\ {\rm Zn}(5\text{-}{\rm H}_3{\rm SBH}) & 1580{\rm m} & 1545{\rm m}, 1300{\rm s} & 725{\rm s} & 445{\rm m} & 338{\rm s} & 428{\rm m} \\ {\rm Zn}(5\text{-}{\rm H}_3{\rm SBH}) & 1590{\rm m} & 1520{\rm m}, 1280{\rm m} & 440{\rm m} & 345{\rm m} & 435{\rm m} & 325{\rm m} \\ {\rm Pt}(3\text{-}{\rm NO}_2{\rm SBH}){\rm Cl}\cdot{\rm H}_2{\rm O} & 3226{\rm m} & 3265{\rm m} & 1590{\rm s} & 1525{\rm m}, 1280{\rm m} & 440{\rm m} & 345{\rm m} & 435{\rm m} & 330{\rm m} \\ {\rm Pt}(5\text{-}{\rm C}{\rm SBH}){\rm Cl}\cdot{\rm H}_2{\rm O} & 3276{\rm m} & 3260{\rm m} & 1590{\rm s} & 1525{\rm m}, 1285{\rm m} & 437{\rm m} & 340{\rm s} & 440{\rm s} & 330{\rm m} \\ {\rm Pt}(5\text{-}{\rm C}{\rm SBH}){\rm Cl}\cdot{\rm H}_2{\rm O} & 3276{\rm m} & 3260{\rm m} & 1585{\rm m} & 1530{\rm m}, 1285{\rm m} & 437{\rm m} & 340{\rm m} & 440{\rm m} & 325{\rm m} \\ {\rm Pt}(5\text{-}{\rm C}{\rm H}_3{\rm BH}){\rm Cl}\rm $	Cu(5-CISBH)CI+H2O	3276m	3258m	1580m	1525m, 1280m		440s	344m	440s	324w
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(5-BrSBH)Cl·H ₂ O	3275s	3255m	1585s	1530m, 1280m		437m	345 s	438m	330m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(5-CH ₃ SBH)Cl·H ₂ O	3275s	3260m	1580m	1520s, 1280m		440s	340m	440s	325w
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(5-NO ₂ SBH)Cl·H ₂ O	3275s	3262s	1586m	1526m, 1285m		440m	340m	440m	325 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(H-SBH)			1580m	1540m, 1300m	730m	445m	340s	420s	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(3-CH ₃ OSBH)			1585s	1545s, 1295m	720m	448m	340s	425 m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Zn(3-NO_2SBH)$			1585m	1540m, 1290m	725m	450s	345 m	425 m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(5-ClSBH)			1585m	1545m, 1298s	730m	445m	340s	425 m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(5-BrSBH)			1588s	1550s, 1295m	728m	448m	338m	420m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(5-CH ₃ SBH)			1590m	1545m, 1300s	725s	445m	338s	428 m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Zn(5-NO_2SBH)$			1586m	1545s, 1310m	720s	445s	340s	425 s	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt(H-SBH)Cl·H ₂ O	3280m	3255m	1590m	1520m, 1280m		440m	345m	435m	325 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt(3-CH ₃ OSBH)Cl·H ₂ O	3276m	3260m	1590s	1525m, 1280m		435m	345 m	435 m	330m
Pt(5-ClSBH)Cl·H2O $3276m$ $3260m$ $1585m$ $1525m$, $1285m$ $437m$ $340s$ $440s$ $330m$ Pt(5-BrSBH)Cl·H2O $3275s$ $3265m$ $1580m$ $1530m$, $1285m$ $435m$ $340m$ $440m$ $325m$ Pt(5-CH3SBH)Cl·H2O $3276m$ $3260m$ $1590m$ $1525m$, $1280m$ $440m$ $340m$ $440m$ $324w$ Pt(5-CH3SBH)Cl·H2O $3276m$ $3260m$ $1590m$ $1525m$, $1280m$ $440m$ $340m$ $440m$ $324w$ Pt(5-NO2SBH)Cl·H2O $3280s$ $3260m$ $1586m$ $1530m$, $1285m$ $438m$ $340s$ $435m$ $325m$	Pt(3-NO2SBH)CI+H2O	3280m	3262m	1586 m	1530s, 1276m		440s	343m	438m	325 s
Pt(5-BrSBH)Cl·H2O $3275s$ $3265m$ $1580m$ $1530m$, $1285m$ $435m$ $340m$ $440m$ $325m$ Pt(5-CH3SBH)Cl·H2O $3276m$ $3260m$ $1590m$ $1525m$, $1280m$ $440m$ $340m$ $440m$ $324w$ Pt(5-NO2SBH)Cl·H2O $3280s$ $3260m$ $1586m$ $1530m$, $1285m$ $438m$ $340s$ $435m$ $325m$	Pt(5-CISBH)C1+H2O	3276m	3260m	1585m	1525m, 1285m		437m	340s	440s	330m
Pt(5-CH ₃ SBH)Cl·H ₂ O 3276m 3260m 1590m 1525m, 1280m 440m 340m 440m 324w Pt(5-NO ₂ SBH)Cl·H ₂ O 3280s 3260m 1586m 1530m, 1285m 438m 340s 435m 325m	Pt(5-BrSBH)Cl·H ₂ O	3275s	3265m	1580m	1530m, 1285m		435m	340m	440m	325 m
Pt(5-NO ₂ SBH)Cl-H ₂ O 3280s 3260m 1586m 1530m 1285m 438m 340s 435m 325m	Pt(5-CH ₃ SBH)Cl·H ₂ O	3276m	3260m	1590m	1525m, 1280m		440m	340m	440m	324w
	Pt(5-NO2SBH)Cl·H2O	3280s	3260m	1586m	1530m, 1285m		438m	340s	435 m	325 m

TABLE II. Important Infrared Spectral Data of the Metal(II) Complexes of 3- and 5-Substituted Salicylaldehyde Benzoylhydrazones

The coordination of the azomethine nitrogen atom to the metal(II) ion is indicated by the displacement of the bands chiefly assigned to the ν (N-N) and ν (C=N) stretching vibrations [15]. The spectra of all the complexes exhibit downward shifts of $\nu(N-N)$ from *ca*. 980 cm⁻¹ for ligands to approximately 970 cm⁻¹ and $\nu(C=N)$ from *ca*. 1630 cm⁻¹ to *ca*. 1590 cm⁻¹. These changes in $\nu(N-N)$ and $\nu(C=N)$

stretching vibrations are typical of coordination of the ligands to the metal ion through the azomethine nitrogen atom [15].

In the far-infrared spectral region, the Mn(II), Cu(II) and Pt(II) complexes exhibit bands at *ca.* 440, *ca.* 430 and *ca.* 340 cm⁻¹ which are assigned to $\nu(M-O)$ phenolic, $\nu(M-N)$, and $\nu(M-O)$ ketonic, respectively [16]. In addition to the above bands, the Cu(II) and Pt(II) complexes show a band at *ca.* 330 cm⁻¹ which is assigned to the $\nu(M-CI)$ stretching vibration [16]. The complexes of Co(II), Ni(II) and Zn(II) exhibit bands at *ca.* 445, *ca.* 425 and *ca.* 340 cm⁻¹ which are assigned to the $\nu(M-O)$ phenolic, $\nu(M-N)$ and $\nu(M-O)$ enolic vibrations, respectively [16]. The Co(II) and Ni(II) complexes also exhibit a band at *ca.* 415 cm⁻¹ which is assigned to the $\nu(M-CI)$ stretching vibration [16].

The magnetic susceptibilities data for the metal complexes are reported in Table III. The Zn(II) and Pt(II) complexes are diamagnetic. The μ_{eff} values of the Mn(II) complexes are typical of the high-spin configurations [17] and are relatively constant at *ca*. $60 \pm 0.2 \mu_{B}$ except for a drop at lower temperatures. The Curie–Weiss law is obeyed with a relatively small value of θ (*ca.* -5 K).

The magnetic susceptibilities of the dimeric Co(II) complexes in the 300-78 K range are slightly affected by what appear to be very weak antiferromagnetic interactions [18, 19], while the dimeric Ni(II) complexes exhibit anomalous magnetic moments (ca. 1.10 $\mu_{\rm B}$) which are in between the values expected for either high- or low-spin d⁸ nickel-(II) complexes, regardless of the coordination geometry about the metal. Several mechanisms may account for the magnetic moments of these complexes which have a linear tridentate $O^* - N^* - O^*$ ligand system. First, the complexes may be essentially diamagnetic low-spin ones that are contaminated with (or in equilibrium with) a small percentage of some high-spin species (*i.e.*, a low-spin square-planar or 5-coordinate material with a small fraction of a high-spin octahedral, square-planar, tetrahedral or 5coordinate complex). Precedence for such behavior is known [20-22]. Secondly, a spin-state isomerism [23, 24] between singlet and triplet states for a pseudo-square-planar or 5-coordinate complex may be envisioned [25]. In other words, two energy levels of different multiplicity are positioned with kT of each other (*i.e.*, the complex is near the 'magnetic cross-over point') whereby population of both states

TABLE III. Magnetic Susceptibility Data of the Metal(II) Complexes of 3- and 5-Substituted Salicylaldehyde Benzoylhydrazones

$Mn(H-SBH)_2 (\theta = -2 K)$	T (K) XM (cgsu)	298.7, 270.5, 212.3, 190.0, 154.5, 110.2, 96.2, 78.0 15065, 16635, 21126, 23605, 29029, 40563, 46466, 57308
$M_{\rm P}(2CHOSPH)$ (a - 2K)	$\mu_{\rm eff}(\mu_{\rm B})$	6.00, 6.00, 5.99, 5.99, 5.99, 5.98, 5.98, 5.98. 2000, 6.00, 258, 7, 208, 0, 160, 2, 108, 5, 98, 0, 78, 0
$MII(3-CH_3OSBH)_2 (02K)$	x _M (cgsu)	14950, 15964, 17337, 21563, 27886, 40822, 45613, 57117
	$\mu_{eff} \left(\mu_{\mathbf{B}} \right)$	5.99, 5.98, 5.99, 5.98, 5.98, 5.98, 5.97
$Mn(3-NO_2SBH)_2 (\theta = -1 K)$	<i>T</i> (K)	298.7, 270.5, 242.0, 208.0, 192.3, 148.0, 110.0, 94.5, 78.0
	x _M (cgsu)	15116, 16636, 18595, 21635, 23245, 30304, 40637, 47302, 57308
	$\mu_{\mathrm{eff}}\left(\mu_{\mathrm{B}}\right)$	6.01, 6.00, 6.00, 6.00, 5.98, 5.99, 5.98, 5.98, 5.98
$Mn(5-ClSBH)_2 (\theta = -3 K)$	<i>T</i> (K)	298.6, 265.5, 240.5, 210.0, 192.0, 150.5, 108.0, 95.0, 78.0
	x _M (cgsu)	15065, 16893, 18649, 21357, 23359, 29801, 41389, 47053, 57308
	$\mu_{\mathrm{eff}}\left(\mu_{\mathrm{B}}\right)$	6.00, 5.99, 5.99, 5.99, 5.99, 5.99, 5.98, 5.98, 5.98
$Mn(5-BrSBH)_2 (\theta = -1 K)$	<i>T</i> (K)	298.8, 265.5, 238.7, 210.2, 190.5, 110.0, 98.7, 78.0
	x _M (cgsu)	14960, 16836, 18727, 21266, 23386, 40501, 45138, 57117
	$\mu_{eff}(\mu_{B})$	5.98, 5.98, 5.98, 5.98, 5.97, 5.97, 5.96, 5.97
$Mn(5-CH_3SBH)_2 (\theta = -4 K)$	<i>T</i> (K)	300.0, 270.7, 240.5, 208.0, 195.0, 150.5, 107.6, 95.8, 78.0
	$\chi_{\mathbf{M}}$ (cgsu)	15000, 16624, 18649, 21858, 22923, 29701, 39079, 46660, 57308
	$\mu_{eff} (\mu_{B})$	6.00, 6.00, 5.99, 5.98, 5.98, 5.98, 5.98, 5.98
$Mn(5-NO_2SBH)_2 (\theta = -2 K)$	<i>T</i> (K)	298.0, 268.5, 242.0, 207.5, 194.5, 152.0, 108.5, 96.0, 78.0
	xM (cgsu)	15050, 16648, 18471, 21542, 22982, 29408, 41061, 46252, 56926
	$\mu_{eff}(\mu_{B})$	5.99, 5.98, 5.98, 5.98, 5.98, 5.97, 5.97, 5.96, 5.96
$Co(H-SBH)Cl \cdot 2H_2O (\theta = -7 K)$	<i>T</i> (K)	300.0, 280.0, 258.7, 218.5, 190.4, 160.2, 110.4, 98.0, 78.0
	$\chi_{\mathbf{M}}$ (cgsu)	8855, 9446, 9784, 11380, 12710, 14293, 20355, 22286, 27867
	μ _{eff} (μ _B)	4.61, 4.60, 4.50, 4.46, 4.40, 4.28, 4.24, 4.18, 4.17
$Co(3-CH_3OSBH)Cl \cdot 2H_2O(\theta = -6 K)$	<i>T</i> (K)	298.8, 270.5, 250.4, 210.0, 190.4, 150.2, 108.8, 97.5, 78.0
	$\chi_{\mathbf{M}}$ (cgsu)	8929, 9608, 9753, 11524, 12139, 14961, 20267, 22293, 27600
	$\mu_{\rm eff}(\mu_{\rm B})$	4.62, 4.56, 4.42, 4.40, 4.30, 4.24, 4.20, 4.17, 4.15
$Co(3-NO_2SBH)Cl \cdot 2H_2O(\theta = -4 K)$	<i>T</i> (K)	300.0, 268.8, 251.7, 208.6, 192.8, 150.7, 108.6, 98.0, 78.0
	$x_{\mathbf{M}}$ (cgsu)	8817, 9627, 10057, 11707, 12044, 15124, 20498, 22286, 27600
	$\mu_{\rm eff}(\mu_{\rm B})$	4.60, 4.55, 4.50, 4.42, 4.31, 4.27, 4.22, 4.18, 4.15

(continued)

TABLE III.	(continued)
------------	-------------

$Co(5-ClSBH)Cl \cdot H_2O(\theta = -6 K)$	<i>T</i> (K)	299.7, 270.5, 248.6, 210.5, 190.4, 148.7, 110.2, 97.5, 78.0
· · · · · ·	$\chi_{\mathbf{M}}$ (cgsu)	8825, 9651, 10092, 11237, 12139, 14899, 19630, 21974, 27202
	$\mu_{eff}(\mu_{B})$	4.60, 4.57, 4.48, 4.35, 4.30, 4.21, 4.16, 4.14, 4.12
$Co(5-BrSBH)Cl \cdot 2H_2O(\theta = -2 K)$	$T(\mathbf{K})$	300.0, 270.5, 252.6, 208.8, 190.5, 148.7, 110.2, 97.5, 78.0
	XM (cgsu)	8971, 9693, 10065, 11537, 12020, 14829, 19914, 22293, 27733
	$\mu_{eff}(\mu_{B})$	4.64, 4.58, 4.51, 4.39, 4.28, 4.20, 4.19, 4.17, 4.16
$Co(5-CH_3SBH)Cl \cdot 2H_2O (\theta = -7 \text{ K})$	T (K)	298.0, 270.2, 252.0, 208.0, 193.0, 148.0, 110.2, 98.0, 78.0
	$\chi_{\mathbf{M}}$ (cgsu)	8953, 9704, 10045, 11741, 12199, 15399, 20200, 22286, 27733
	$\mu_{eff}(\mu_{B})$	4.62, 4.58, 4.50, 4.42, 4.34, 4.27, 4.22, 4.18, 4.16
$Co(5-NO_2SBH)Cl \cdot 2H_2O(\theta = -6 K)$	<i>T</i> (K)	300.0, 268.8, 250.5, 207.7, 190.5, 148.7, 108.0, 96.5, 78.0
	x _M (cgsu)	8778, 9501, 9926, 11546, 12076, 15112, 20417, 22633, 27600
	$\mu_{\rm eff}(\mu_{\rm B})$	4.59, 4.52, 4.46, 4.38, 4.29, 4.24, 4.20, 4.18, 4.15
$Cu(H-SBH)Cl \cdot H_2O(\theta = -3 K)$	T (K)	300.0, 278.8, 247.5, 210.2, 150.4, 107.5, 98.0, 78.0
	x _M (cgsu)	1350, 1452, 1582, 1719, 2345, 3204, 3473, 4363
	$\mu_{\rm eff} (\mu_{\rm B})$	1.80, 1.80, 1.77, 1.70, 1.68, 1.66, 1.65, 1.65
$Cu(3-CH_3OSBH)Cl \cdot H_2O(\theta = -4 K)$	<i>T</i> (K)	298.7, 276.0, 250.4, 210.4, 147.9, 107.6, 96.8, 78.0
	x _M (cgsu)	1448, 1500, 1654, 1882, 2618, 3357, 3732, 4577
	$\mu_{eff}(\mu_{B})$	1.86, 1.82, 1.78, 1.76, 1.74, 1.70, 1.70, 1.69
$Cu(3-NO_2SBH)Cl \cdot H_2O(\theta = -2 K)$	<i>T</i> (K)	300.0, 280.0, 247.5, 212.0, 148.7, 108.3, 98.0, 78.0
	x _M (cgsu)	1320, 1414, 1582, 1785, 2429, 3257, 3473, 4363
	$\mu_{eff}(\mu_{B})$	1.78, 1.78, 1.77, 1.74, 1.70, 1.68, 1.65, 1.65
$Cu(5-CISBH)CI \cdot H_2O(\theta = -4 K)$	<i>T</i> (K)	300.0, 278.5, 251.6, 210.3, 149.0, 110.5, 97.6, 78.0
	x _M (cgsu)	1335, 1422, 1556, 1820, 2482, 3269, 3572, 4363
	$\mu_{eff}(\mu_{B})$	1.79, 1.78, 1.77, 1.75, 1.72, 1.70, 1.67, 1.65
$Cu(5-BrSBH)Cl \cdot H_2O \ (\theta = -6 \text{ K})$	<i>T</i> (K)	299.8, 280.3, 251.2, 208.4, 150.5, 108.7, 98.0, 78.0
	x _M (cgsu)	1351, 1413, 1559, 1858, 2544, 3442, 3686, 4469
	$\mu_{eff}(\mu_{B})$	1.80, 1.78, 1.77, 1.76, 1.75, 1.73, 1.70, 1.67
$Cu(5-CH_3SBH)Cl \cdot H_2O (\theta = -6 K)$	<i>T</i> (K)	300.0, 278.5, 247.6, 210.3, 148.8, 110.0, 97.8, 78.0
	χ _M (cgsu)	1335, 1438, 1582, 1841, 2543, 3323, 3607, 4416
	$\mu_{eff}(\mu_{B})$	1.79, 1.79, 1.77, 1.76, 1.74, 1.71, 1.68, 1.66
$Cu(5-NO_2SBH)Cl \cdot H_2O(\theta = -5 K)$	<i>T</i> (K)	298.7, 274.5, 248.5, 208.0, 150.2, 108.6, 98.0, 78.0
	xM (cgsu)	1326, 1427, 1540, 1757, 2405, 3287, 3557, 4416
	$\mu_{\mathrm{eff}}\left(\mu_{\mathrm{B}}\right)$	1.78, 1.77, 1.75, 1.71, 1.70, 1.69, 1.67, 1.66

becomes probable. The five-coordinate nickel(II) complexes have been shown to exist as high- or lowspin complexes depending upon the π -bonding character of the ligand donor atoms [26]. A spinstate isomerism between singlet and triplet states for a distorted five-coordinate complex is predicted for Ni(XSBH)Cl·2H₂O, based on the interpretation of their visible spectra, vide infra.

The μ_{eff} values of the Cu(II) complexes are very close to spin-only for one unpaired electron and are in the range normally observed for copper(II) complexes having an orbitally non-degenerate ground state [17, 27]. The magnitude and slight temperature dependence of the μ_{eff} values rules out the presence of metal-metal interaction in these complexes. No significant conclusion can be drawn from the magnetic data regarding the stereochemistry of these complexes, since there is little difference between the magnetic moments of various configurations in copper(II) complexes [17, 27].

The X-band ESR spectra of the powdered complexes are axial type with $g_{\parallel} > g_{\perp}$ and are consistent with a primarily $d_{x^2-y^2}$ ground state in square-planar structure [27, 28]. Typical examples of these ESR spectra are shown in Fig. 1 and the data are reported in Table IV.

In the UV region (400–200 nm), the free ligands exhibit absorption bands at *ca.* 41 670, *ca.* 38 460 and *ca.* 31 750 cm⁻¹ which are assigned to $n \rightarrow \sigma^*$, $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions, respectively [6]. The high absorption by the ligands masks any splitting of the bands and only slight wavelength and intensity variations are significant in all metal(II) complexes. The spectra of the complexes are dominated by the ligand absorption bands.

In the visible region, the Mn(II) complexes exhibit two intense absorption bands at *ca*. 18 000 and *ca*. 25 000 cm⁻¹ which are assigned to $\pi \rightarrow e_g^*$ and $e_g \rightarrow \pi^*$ transitions, respectively [29].

The spectra of the Co(II) complexes exhibit five ligand field transitions at *ca*. 6000 [${}^{4}A'_{2}(F) \rightarrow$ ${}^{4}E''(F)$], 11500, 12300 [${}^{4}A'_{2}(F) \rightarrow {}^{4}E'(F)$], *ca*. 16000 [${}^{4}A'_{2}(F) \rightarrow {}^{4}A'_{2}(P)$] and *ca*. 20200 [${}^{4}A'_{2}(F) \rightarrow$ ${}^{4}E''(P)$] cm⁻¹ in addition to the intense intra-ligands

Fig. 1. X-band ESR spectrum of (1) Cu(H-SBH)Cl+H₂O; (2) Cu(3-CH₃OSBH)Cl+H₂O at room temperature.

bands. The significant splitting of the ${}^{4}A'_{2}(F) \rightarrow {}^{4}E'(F)$ transition band into two components suggests the intermediate configuration with C_{2v} symmetry for the present Co(II) complexes [30].

The spectra of the Ni(II) complexes exhibit two absorption bands at *ca.* 16 250 and *ca.* 22 750 cm⁻¹. The lower energy band is characteristic of low-spin five-coordinate nickel(II) [26] and is assigned in a trigonal bipyramidal environment to the transition $d_{xy}, d_{x^2-y^2} \rightarrow d_{z^2}$. The higher energy band is assigned to the $d_{xz}, d_{yz} \rightarrow d_{z^2}$ transition.

The spectra of the Cu(II) complexes exhibit a broad band at *ca*. 14 500 cm⁻¹ which is assigned to the envelope of the ${}^{5}B_{1g} \rightarrow {}^{2}A_{1g}$, ${}^{2}B_{2g}$, ${}^{2}E_{g}$ transitions in a square-planar geometry [31].

The spectra of the Pt(II) complexes exhibit two bands at *ca.* 18 000 and *ca.* 20 500 cm⁻¹ which are assigned to the metal-to-ligand (Pt(II) \rightarrow ligand (π^*)) charge-transfer transition [32]. Antitumor Activity

The antitumor activity of the metal(II) complexes was determined at the National Cancer Institute, Bethesda, Md., according to the standard screening procedure (*cf.* instruction 14) in the P388 lymphocytic leukaemia test system in mice. The P388 lymphocytic leukaemia screen was carried out on $CD_2F_1(CDF_1)$ mice (female). On day 0, 1×10^6 ascites cells were injected intraperitoneally (ip). The drugs were suspended in saline with Tween-80 and administered ip once daily with the indicated dose (Table V), beginning on day 1 and ending on day 5. Six mice were used per test compound, and a T/C of greater than 125% was considered significant activity against P388 tumor growth.

All the metal(II) complexes were evaluated for antitumor activity against the P388 lymphocytic leukaemia test system in mice and the results are reported in Table V. None of the complexes shows

TABLE IV. ESR Data of the Copper(II) Complexes of 3- and 5-Substituted Salicylaldehyde Benzoylhydrazones^a

Compound	g_	81	(g)	(g)
Cu(H-SBH)Cl•H ₂ O	$2.042g_1$ 2.144g ₂	2.302g ₃	2.1626	
Cu(3-CH ₃ OSBH)Cl·H ₂ O	2.066	2.272	2.1346	4.12
Cu(3-NO ₂ SBH)Cl·H ₂ O	2.068	2.275	2.1370	4.04
Cu(5-CISBH)CI+H2O	2.064	2.272	2.1333	4.25
Cu(5-BrSBH)Cl+H ₂ O	2.068	2.274	2.1366	4.02
Cu(5-CH ₃ SBH)Cl·H ₂ O	2.067	2.272	2.1353	4.06
Cu(5-NO ₂ SBH)Cl•H ₂ O	2.068	2.273	2.1363	4.01

 $a(g) = \frac{1}{3}(2g_{\perp} + g_{\parallel}) \text{ or } \frac{1}{3}(g_1 + g_2 + g_3); \ (g) = (g_{\parallel} - 2)/(g_{\perp} - 2).$

Weight difference

(T - C)

-2.0

-1.4 -1.0

-1.4

-0.5 - 2.0

 $-1.7 \\ -1.2$

-0.3

-1.2

-1.2

-2.0

~1.7

-2.7

-3.0

--1.7 --1.0

-2.2

-0.9 -0.3

-2.4 - 0.8

-0.2 0.2

-0.1

-0.6

0.4 0.2 T/C

(%)

90

96

88 90

90

98 102 toxic toxic toxic

> 88 90

100 toxic toxic

88 toxic toxic

88 toxic toxic

86 toxic toxic

90 toxic toxic

90 toxić toxic

88 toxic toxic toxic 90

102

90 88

94 87

89 90

112

106 89

toxic toxic toxic toxic toxic toxic toxic toxic

102 toxic

				Compound	Dose
Compound	Dose (mg/kg)	Weight difference (T - C)	T/C (%)		(mg/kg)
		(1 - 0)		Co(3-NO2SBH)Cl+2H2O	400.00
H-SBH	400.00	0.3	95		200.00
	200.00	-1.0	105		100.00
	100.00	-1.7	112	Ni(3-NO ₂ SBH)Cl·2H ₂ O	400.00
Mn(H-SBH) ₂	240.00	0.6	96		200.00
	120.00	0.4	104		100.00
	60.00	1.1	101	Cu(3-NO ₂ SBH)Cl·H ₂ O	400.00
Co(H-SBH)Cl·2H ₂ O	200.00	-0.8	96		200.00
	100.00	-0.3	91		100.00
	50.00	-0.3	89	$Zn(3-NO_2SBH)$	400.00
Ni(H-SBH)C1·2H ₂ O	240.00	-0.3	86		200.00
	120.00	0.4	toxic		180.00
	60.00	0.2	87		50.00
Cu(H-SBH)Cl·H ₂ O	240.00		toxic		25.00
	120.00		toxic		12.50
	60.00		toxic	$Pt(3-NO_2SBH)$	240.00
	30.00	-6.2	toxic		120.00
	15.00	-5.9	103		60.00
Zn(H-SBH)	240.00	-6.5	toxic	$Mn(5-CISBH)_2$	400.00
	120.00	-3.1	106		200.00
	60.00	1.4	95		100.00
Pt(H-SBH)Cl•H ₂ O	240.00		toxic	$Co(5-CISBH)_2CI+2H_2O$	240.00
	120.00		toxic		120.00
	60.00		toxic		60.00
3-CH ₃ OSBH	400.00	1.6	toxic	$N_1(5-CISBH)_2CI+2H_2O$	240.00
	200.00	-1.5	97		120.00
N-(2 CH OSDII)	100.00	-1.0	90		240.00
Mn(3-CH ₃ OSBH)	400.00		toxic	Cu(3-CISBH)CI-H ₂ O	240.00
	200.00	1.5	loxic 80		60.00
Cold CH OSPHICE 2H O	100.00	-1.5	00 toxic	$7_{\rm P}(5{\rm CISPH})$	240.00
C0(3-CH3O3BH)CI-2H2O	200.00		toxic		120.00
	200.00	2.0	00		60.00
Ni(3 CH OSPH)CL2H.O	400.00	-2.0	toxic	Pt(5-CISBH)CI+H_O	240.00
N(3-CH303BH)CI-2H20	200.00	_12	98	1 (()-0.0011)01-1120	120.00
	100.00	-10	102		60.00
Cu(3-CH_OSBH)Cl+H_O	400.00	1.0	toxic		30.00
	200.00	-2.4	80		15.00
	100.00	-1.7	94	5-BrSBH	240.00
Zn(3-CH ₃ OSBH)Cl·H ₂ O	400.00	3.5	90		120.00
	200.00	-2.7	90		60.00
	100.00	-1.2	102	Mn(5-BrSBH) ₂	240.00
Pt(3-CH ₃ OSBH)Cl·H ₂ O	400.00	-2.8	88		120.00
	200.00	-1.6	95		60.00
	100.00	-1.0	100	Co(5-BrSBH)Cl+2H ₂ O	240.00
5-CISBH	400.00	-2.5	90		120.00
	200.00	-1.0	85		60.00
	100.00	-0.5	88	Ni(5-BrSBH)Cl·2H ₂ O	240.00
3-NO ₂ SBH	400.00		toxic		120.00
	200.00	-1.2	98		60.00
	100.00	-0.5	110	Cu(5-BrSBH)Cl·H ₂ O	240.00
$Mn(3-NO_2SBH)_2$	400.00	0.3	98		120.00
	200.00	-1.2	102		60.00
	100.00	-1.2	102		30.00
					15.00

 TABLE V. Antitumor Activity of the Metal(II) Complexes
 Operation
 Operati

TABLE V. (continued)

(continued)

(continued)

Metal Complexes of Aroylhydrazones

TABLE V. (continued)

Compound	Dose (mg/kg)	Weight difference (T C)	T/C (%)
Zn(5-BsSBH)	240.00	-0.9	99
	120.00	0.4	97
	60.00	0.6	103
Pt(5-BrSBH)Cl+H ₂ O	240.00	-2.2	90
	120.00	-0.9	88
	60.00	-0.3	94
5-CH ₃ SBH	240.00	-2.0	88
	120.00	-1.0	90
	60.00	-0.5	92
$Mn(5-CH_3SBH)_2$	240.00		toxic
	120.00		toxic
	60.00	-0.6	88
Co(5-CH ₃ SBH)Cl·2H ₂ O	240.00		toxic
	120.00		toxic
	60.00	-0.2	90
$Ni(5-CH_3SBH)Cl+2H_2O$	240.00		toxic
	120.00		toxic
	60.00		toxic
$Cu(5-CH_3SBH)CI+H_2O$	240.00		toxic
	120.00		toxic
	60.00		toxic
	30.00	-1.0	90
-	15.00	-0.6	92
$Zn(5-CH_3SBH)$	240.00	-2.0	88
	120.00	-1.7	88
BUG OIL ODINOL IL O	60.00	-0.6	95
Pt(5-CH ₃ SBH)CI·H ₂ O	240.00		toxic
	120.00	0.0	toxic
CNO ODU	60.00	-0.2	98
5-NO ₂ SBH	240.00	-3.5	89
	120.00	-2.5	92
Marte NO CDU	60.00	-1.0	105
$Mn(3-NO_2SBH)_2$	240.00		toxic
	120.00	1.0	toxic
Cole NO SPUDCI 211 O	60.00	-1.0	88
CO(3-NO23BH)CI-2H2O	240.00		toxic
	120.00		toxic
NIG NO SPUNCE SUL O	6 0.00		toxic
NI(3-NO ₂ 3BH)CI+2H ₂ O	240.00		toxic
	120.00		toxic
Cu(5-NO-SPH)CLH-O	240.00		toxic
Cu(3-NO23BII)CI-H2O	120.00		toxic
	60.00		toxic
	30.00		toxic
	15 00		toxic
7n(5-NO-SBH)	240.00		toxic
21(3-1(020011)	120.00	-20	88
	60.00	- 2.0	00 00
Pt(5-NO-SBH)CLH-O	240.00		tovio
1.(0.11020011)01-1120	120.00	-25	88
	60.00		92
	60.00	1.2	95

significant activity and they are all toxic at the doses used. These results are highly surprising as the metal chelates of aroylhydrazones, particularly copper(II) complexes, have been shown to be potent inhibitors of DNA synthesis and cell growth in a variety of human and rodent cell lines grown in culture [5]. The antitumor activity of the free ligands is also not enhanced by coordination.

Acknowledgements

We are grateful to the authorities of R.S.I.C., I.I.T., Madras, for IR and ESR studies and to Dr. R. Bembi, Roorkee University, Roorkee, for magnetic data. This work was supported in part by the Department of Science and Technology, New Delhi, through grant No. 1/53/83 STP-III.

References

- 1 H. A. Offe, W. Siefken and G. Domagk, Z. Naturforsch., Teil B, 7, 446 (1952).
- 2 J. R. Dimmock, G. B. Baker and W. G. Taylor, *Can. J. Pharm. Sci.*, 7, 100 (1972).
- 3 A. Jacobs, Br. J. Haematol., 43, 1 (1979).
- 4 D. K. Johnson, T. B. Murphy, N. J. Rose, W. H. Goodwin and L. Pickart, *Inorg. Chim. Acta*, 67, 159 (1982).
- 5 L. Pickart, W. H. Goodwin, W. Burgua, T. B. Murphy and D. K. Johnson, Biochem. Pharmacol., 32, 3868 (1983).
- 6 M. Mohan, N. S. Gupta, A. Kumar and M. Kumar, *Inorg. Chim. Acta*, 135, 167 (1987).
- 7 W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- 8 M. Mohan and M. Kumar, Polyhedron, 4, 1929 (1985).
- 9 R. J. Butcher, J. Jasinski, G. M. Mockler and E. Sinn, J. Chem. Soc., Dalton Trans., 1099 (1976).
- 10 J. O. Miners, E. Sinn, R. B. Coles and C. M. Harris, J. Chem. Soc., Dalton Trans., 1149 (1972).
- 11 D. J. Hewkin and W. P. Griffith, J. Chem. Soc. A, 472 (1966).
- 12 W. P. Griffith, J. Chem. Soc., A, 211 (1969).
- 13 M. Nonoyama, S. Tomita and K. Yamasaki, *Inorg. Chim. Acta*, 12, 33 (1975).
- 14 C. N. R. Rao, 'Chemical Applications of Infrared Spectroscopy', Academic Press, New York/London, 1962.
- 15 M. Mohan, P. Sharma and N. K. Jha, *Inorg. Chim. Acta*, 106, 117 (1985).
- 16 J. R. Ferraro, 'Low-Frequency Vibrations of Inorganic and Coordination Compounds', Plenum Press, New York, 1971.
- 17 A. Earnshaw, 'Magnetochemistry', Academic Press, New York, 1968.
- 18 L. Sacconi, M. Ciampolini and G. P. Speroni, J. Am. Chem. Soc., 87, 3102 (1965).
- 19 A. Earnshaw, P. C. Hewlett, E. A. King and L. F. Larkworthy, J. Chem. Soc. A, 241 (1968).
- 20 B. T. Kilbourn, H. M. Powell and F. A. C. Darbyshine, Proc. Chem. Soc., 207 (1963).
- 21 R. M. Holm and K. Sawaminathan, *Inorg. Chem.*, 2, 181 (1963).
- 22 L. Sacconi, in R. L. Carlin (ed.), 'Transition Metal Chemistry', Vol. 4, Marcel Dekker, New York, 1963.
- 23 S. M. Nelson and W. S. F. Kefley, Chem. Commun., 436 (1968).
- 24 E. K. Barefield, S. M. Nelson and D. H. Busch, Q. Rev., 22, 457 (1968).

- 25 R. M. Holm, J. Am. Chem. Soc., 82, 5632 (1960).
 26 L. Sacconi, Transition Met. Chem., 4, 227 (1968) and refs. therein.
- 27 B. J. Hathaway, in J. N. Bradley, R. D. Gillard and R. F. Hudson (eds.), 'Essays in Chemistry', Vol. 2, Academic Press, New York, 1971, p. 61.
- 28 B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 5, 143 (1970).
- 29 M. Mohan and B. D. Paramhans, Indian J. Chem., 19A. 759 (1980).
- 30 M. Ciampolini and I. Bertini, J. Chem. Soc. A, 2241 (1968) and refs. therein.
- 31 I. M. Procter, B. J. Hathaway and P. Nicholls, J. Chem. Soc. A, 1678 (1968).
- 32 M. Mohan, P. Sharma, M. Kumar and N. K. Jha, Inorg. Chim. Acta, 125, 9 (1986).

⁷⁴