Reactions of Polynuclear Thio- and Oxothiocomplexes of Molybdenum and Tungsten with Co(H), Ni(II), Cu(I) and Au(I) Chlorides

V. P. FEDIN*, M. N. SOKOLOV

Institute of Inorganic Chemistry, Siberian Branch of the Academy of Sciences of the U.S.S.R., Prospect Lavrentyeva 3, Novosibirsk 630090 (U.S.S.R.)

T. V. BAUKOVA

Institute of Organoelement Compounds, ul. Vavilova 28, Moscow II 7813 (U.S.S.R.)

and D. A. LEMENOVSKII

Lononosov State University, Department of Chemistry, Moscow 117234 (U.S.S.R.)

(Received December 3,1988;revised March 29,1989)

Abstract

Reactions of some polynuclear thio- and oxothiocomplexes of molybdenum and tungsten with Co(H), Ni(H), Cu(I) and Au(I) chlorides have been studied. Interaction of $(Et_4N)_2W_3S_9$ and $(Et_4N)_2W_4S_{12}$ with Ph_3PMCl (M = Cu, Au) is accompanied by elimination of WS_4^2 fragments giving rise to the heterometallic thiocomplexes $(\text{Ph}_3\text{P})_3\text{Cu}_2\text{WS}_4$ and $(\text{Ph}_3\text{P})_2\text{Au}_2\text{WS}_4$. The latter complex has been obtained in quantitative yield in the reaction of mononuclear WS_4^{2-} with Ph_3PAuCl or $[(Ph_3PAu)_3O]BF_4$.

The binuclear oxothiocomplex $(Bu_4N)_2Mo_2S_7O$ interacts with Co, Ni and Cu chlorides to form amorphous thiocomplexes $(Bu_4N)Cu(Mo_2S_7O)$ and $(Bu_4N)_2M(Mo_2S_7O)_2$ (M = Co, Ni). According to IR data the $(Mo_2S_7O)^{2-}$ fragment remains intact in these complexes.

Polynuclear thiocomplexes can also act as a source of sulfur with respect to weak Lewis acids. Reaction of the heterometallic thiocomplex $(Ph_3P)_2Au_2WS_4$ with a source of electrophilic particles Ph_3PAu^+ results in complete desulfuration of the thiocomplex and formation of $[(Ph_3PAu)_3S]BF_4$ in high yield.

Introduction

Mononuclear tetrahedral thioanions $M_0S_4^2$ and WS_4^2 are capable of coordinating several atoms of transition or posttransition metals which results in a large variety of linear, cyclic and sceleton structures with metal-metal interactions $[1,2]$. Thiocomplexes of Fe, Co, Ni and Cu have been studied most particularly. Iron complexes are essential for understanding enzyme [3]; complexes of copper are studied in connection with the problem of copper-molybdenum antagonism [4]. Complexes of cobalt and nickel can find application in the synthesis of petroleum hydrodesulfurisation catalysts [5]. At the same time the literature contains no information concerning the use of such polynuclear thio- and oxothiocomplexes as ligands. The present work is a study of complexation reactions of some polynuclear thioand oxothiocomplexes of molybdenum and tungsten with $Co(II)$, Ni (II) , Cu (I) and Au (I) chlorides.

the structure and mechanism of action of nitrogenase

Experimental

Compounds

 $(Et_4N)_2W_3S_9$ [6], $(Et_4N)_2WS_4$ [7], $(Bu_4N)_2MoS_4$ [7], Ph₃PCuCl [8], Ph₃PAuCl [8] and $[(Ph₃PAu)₃$ - $O|BF_4$ [9] were synthesised according to the procedures described in the cited references. For $(Bu_4N)_2$ - $Mo₂S₇O$ and $(Et₄N)₂W₄S₁₂$ new procedures have been developed. Benzene and toluene were distilled over Na, methylene chloride and CH_3CN over P_4O_{10} , and THF and ether over sodium-benzophenone.

Characterization Methods

IR spectra were recorded on a IFS-1 13 (Bruker) Fourier spectrometer. Raman spectra were obtained on a DFS-24 instrument at an angle of 90"by excitation with 441.5 and 632.8 nm lines of He-Cd and He-Ne lasers. The effective magnetic moments were determined from magnetic susceptibility data by the relative Faraday method taking into account diamagnetism. PMR spectra were recorded on a T-60 instrument (Varian) at a working frequency of 60 MHz with TMS as internal standard. Metals and sulfur were determined by weight methods in the form of

0020-1693/89/\$3.50

^{*}Author to whom correspondence should be addressed.

 $MoO₂(C₉H₆ON)₂$, $WO₃$, $Ni(C₄H₅N₄O₄)₂$, $Co₃O₄$ or $Co(C_{10}H_6NO_2)_3$. $2H_2O$, CuSCN and BaSO₄. Determination of carbon and hydrogen was performed in the laboratory of Microanalysis of the Institute of Inorganic Chemistry of the Siberian Branch of the U.S.S.R. Academy of Sciences.

Preparation of (Bu4N)zMozS70

 (Bu_4N) ₂MoS₄ (13.0 g) was dissolved in 100 ml ethanol upon heating in air and the solution was allowed to stay for a week in an open flask. The dark red precipitate was filtered off, washed with cold ethanol and ether and dried *in vacua.* Yield, 40%.

Anal. Calc. for $C_{32}H_{72}N_2Mo_2S_7O$: C, 41.9; H, 7.9; N, 3.1; MO, 20.9; S, 24.5. Found: C, 41.8; H, 7.7; N, 3.1; MO, 21.4; S, 24.9%. IR (KBr): 95Ovs, v(Mo=O); 530s, $\nu(S-S)$; 520s, $\nu(Mo=S)$; 462s, $\delta(Mo_2S_2)$. Raman: 942m, $\nu(Mo=O)$; 530s, $\nu(S-S)$; 516m, $\nu(Mo=S); 493m, 424m, 363m, 351s, 324m, 272w.$

Preparation of $(Et_4N)_2W_4S_{12}$ *²CH₂Cl₂*

(a) One ml of 48% HBr was added to a suspension of 1.5 g $(Et_4N)_2WS_4$ in 75 ml CH_2Cl_2 . After vigorous stirring for 1 h the resulting red-violet precipitate was filtered, washed successively with water, ethanol, CHzClz, and dried *in vacuo (30* mm Hg). Yield 0.80 g (80%).

(b) Using a procedure similar to that of (a) 1.0 g (c. 90%) $(Et_4N)_2W_4S_{12}$ was obtained from 2.0 g $(Et_4N)_2WS_4$ and 1 ml 38% HCl.

Anal. Calc. for $C_{18}H_{44}N_2Cl_4W_4S_{12}$: C, 13.9; H, 2.8; N, 1.7; W, 47.1; S, 24.8. Found: C, 13.9; H, 2.8; N, 1.8; W, 47.4; S, 25.0%. IR (KBr): 733m, v(C-Cl); 690w, $\nu(C-C1)$; 529s, $\nu(W=S)$; 500s, $\nu(W=S)$; 464s, $\delta(W_2S_2)$; 448m, $\delta(W_2S_2)$; 310w, 300m, 270m. Raman: 537m, $\nu(W=S)$; 507s, $\nu(W=S)$; 452m, $\delta(W_2S_2)$; 313s, 282w, 197vs.

Preparation of $(Ph_3P)_3Cu_2WS_4·2CH_3C_6H_5$ *(I)*

A solution of 1.31 g Ph_3PCuCl in 25 ml CH_2Cl_2 was added to a suspension of 2.00 g $(Et_4N)_2W_3S_9$ in 40 ml $CH₂Cl₂$. The resulting solution was stirred during 1 h, filtered off and evaporated. The precipitate was extracted with 70 ml of toluene and the extract cooled down to -5 °C. The bright yellow precipitate was filtered off and recrystallised from toluene. Yield 0.50 g (40%). The substance is insoluble in CH_3CN , readily soluble in CH_2Cl_2 , moderately soluble in benzene and toluene, melting point (m.p.) $240 °C$ (dec.).

Anal. Calc. for $C_{68}H_{61}P_3WCu_2S_4$: C, 58.0; H, 4.3; S, 9.1; W, 13.1; Cu, 9.9. Found: C, 59.4; H, 4.3; S, 8.8; W, 13.0; Cu, 9.6%.

Preparation of $(Ph_3P)_2Au_2WS_4 \cdot 1.5C_6H_6$ *(IIa)*

(a) From $(Et_4N)_2W_3S_9$. To a solution of 0.44 g $(Et_4N)_2W_3S_9$ in 50 ml CH₃CN 0.40 g Ph₃PAuCl was added. After stirring for 40 min the suspension was filtered and the solid extracted with hot benzene. Then the filtrate was treated with pentane and cooled to -5 °C. The citrus yellow precipitate was filtered, washed with pentane and dried. Yield 0.30 g (90%) m.p. 235 °C (dec.).

Anal. Calc. for $C_{39}H_{33}P_2Au_2WS_4$: C, 40.0; H, 2.8; P, 4.7. Found: C, 39.3; H, 2.6; P, 4.9%. IR (Nujol) 445vs, $\delta(AuWS_2)$. ¹H NMR (60 MHz, CD_2Cl_2): 7.16; 7.19; 7.23(m, 30 H, PPh₃); 7.42(s, 9 H, C₆H₆).

(b) From $(Et_4N)_2W_4S_{12}$. From 0.31 g $(Et_4N)_2$. W₄S₁₂ and 0.40 g Ph₃PAuCl complex IIa was obtained in quantitative yield analogously to (a). Then 0.10 g of sodium diethyldithiocarbamate was added to the mother liquor. NaCl precipitate was filtered off, the filtrate evaporated and reprecipitated with ether from CHCl₃. The IR spectrum of the orange substance was identical to that of $W_2S_4[(C_2H_5)_2$ - $NCS₂$]₂ [10].
(c) From $(Et₄N)₂WS₄$ and Ph₃PAuCl. To a solu-

tion of 0.50 g Ph_3PAuCl in CHCl₃ a solution of 0.30 g (Et₄N)₂WS₄ in water was added. After stirring for 15 min the organic layer was separated, treated with K_2CO_3 , evaporated to dryness and recrystallised from benzene. Yield 98%.

(d) From $(Me_4N)_2WS_4$ and $[(Ph_3PAu)_3O]BF_4$. To a solution of 0.31 g $(Me_4N)_2WS_4$ in 8 ml of water 5 ml THF and 1.00 g $[(Ph_3PAu)_3O]BF_4$ were added under intense stirring. After 3 h the precipitate was filtered off and repricipitated with ether from benzene in quantitative yield. Recrystallisation of II from CHCl₃ produces $(\text{Ph}_3\text{P})_2\text{Au}_2\text{WS}_4\text{·CHCl}_3$ solvate.

Anal. Calc. for $C_{37}H_{33}P_2Cl_3WAu_2S_4$: C, 32.9; H, 2.8. Found: C, 33.4; H, 2.8%.

Preparation of [(Ph,PAu)3S]BF4

(a) 0.20 g (Ph₃P)₂Au₂WS₄ and 0.32 g [(Ph₃PAu)₃- $O|BF_4$ were stirred for 16 h in THF to the disappearance of the qualitative reaction to oxonium [9]. The white precipitate was filtered off, washed with THF and dried. Yield c . 100%. IR (Nujol): 1107m, 1065s, 1003w, 810w, 735w, 715s, 705w, 539vs, 512s, 520sh [11].

(b) A solution of Ph_3PAuBF_4 prepared from 0.55 g of $AgBF_4 \cdot 3(O_2C_4H_8)$ and 0.58 g of Ph_3PAuCl in 25 ml THF was added to a solution of 0.15 g $(Ph_3P)_2Au_2WS_4$ in 50 ml THF. The solution was stirred for 48 h and allowed to stay overnight at -5 °C. The precipitate was extracted with CHCl₃, then a triple volume of pentane was added to the extract and the solution cooled down to -5 °C. The precipitate was filtered off. Yield 0.55 g (80%).

Interaction of FcHgCl with (Et₄N₂ W₃S₉)

FcHgCl (0.23 g) was added to a solution of 0.30 g $(Et_4N)_2W_3S_9$ in 20 ml of acetonitrile. The solution was boiled for 30 min, the black precipitate filtered off and the filtrate evaporated *in vacua.* The residue was extracted with *m*-xylene and evaporated. The orange substance has been identified by the TLC method to be a mixture of FcH and Fc₂ (Silufol, pentane), R_f : $Fc_2 = 0.11$; $FcH = 0.72$.

Preparation of (Bu₄N)Cu(Mo₂S₇O) (III)

(a) From CuCl. To a solution of 0.70 g $(Bu_4N)_2$ - $Mo₂S₇O$ in 20 ml of CH₃CN 0.09 g of CuCl was added under intense stirring. After 40 min 60 ml of ethanol was added to the brown solution. The precipitate was filtered, washed with hot ethanol, ether and dried *in vacua.* Yield 0.50 g (90%) of black X-ray amorphous powder III.

Anal. Calc. for C₁₆H₃₆NOMo₂CuS₇: C, 25.9; H, 4.9; N, 1.9; MO, 25.9; Cu, 8.6; S, 30.3. Found: C, 24.6; H, 4.9; N, 1.8; MO, 25.7; Cu, 9.0; S, 30.2%. IR (KBr): 955vs, v(Mo=O); 513m, v(S-S, Mo=S), 460s, $\delta(Mo_2S_2)$. Molar conductivity 270 ohm⁻¹ cm² $mol⁻¹ (DMF).$

(b) Analogously, reaction of 0.36 g $(Bu₄N)₂Mo₂$ - $S₇O$ and 0.22 g Ph₃PCuCl produced 0.30 g of complex III.

Preparation of $(Bu_4 N)_2 Ni(Mo_2 S_7 O)_2 (IV)$

To a solution of 0.70 g $(Bu_4N)_2Mo_2S_7O$ in 20 ml CH₃CN a solution of 0.10 g NiCl₂ \cdot 6H₂O in 20 ml of ethanol was added and stirred for 1 h. The precipitate was filtered from the colourless solution, washed with ethanol, ether and dried *in vacua.* Yield 0.50 g (90%) of brown X-ray amorphous powder IV.

Anal. Calc. for $C_{32}H_{72}N_2O_2Mo_4NiS_{14}: C, 27.3; H,$ 5.1; N, 2.1; MO, 27.3; Ni, 4.2; S, 31.9. Found: C, 27.0; H, 4.8; N, 1.6; MO, 28.2; Ni, 4.1; S, 32.0%. IR (KBr): 947vs, v(Mo=O), 52Os, v(Mo=S, S-S), 467m, $\delta(Mo_2S_2)$. $\Lambda_m(DMF) = 299$ ohm⁻¹ cm² mol⁻¹.

Preparation of $(Bu_4N)_2Co(Mo_2S_7O)_2$ *(V)*

Using procedures identical to those described for IV, complex V was prepared from $(Bu_4N)_2Mo_2S_7O$ and CoCl₂^{+6H₂O in 60% yield.}

Anal. Calc. for $C_{32}H_{72}N_2O_2Mo_4CoS_{14}: C, 27.3; H,$ 5.1; N, 2.0; MO, 27.3; Co, 4.2; S, 31.9. Found: C, 27.0; H, 5.1; MO, 27.3; N, 1.6; Co, 4.4; S, 31.6%. The IR spectrum and molar conductivity of V are identical to those of complex $\mathbf{I} \mathbf{V}$.

Results and Discussion

Reactions of $(Et_4N)_2W_3S_9$ *and* $(Et_4N)_2W_4S_{12}$ *with Ph3PMC1 (M = Cu, Au)*

In the polynuclear complexes $W_3S_9^2$ ⁻ and $W_4S_{12}^2$ ⁻ the metal atoms of central fragments $(W=S)^{2+}$ and $(S=W(u_0, S), W=S)^{2+}$ are coordinated by two tetra- $\frac{1}{2}$ hiometallate ions WS $^{2-}$ [12, 13].

Reaction of Ph₃PCuCl with $(Et_4N)_2W_3S_9$ and $(Et_4N)_2W_4S_{12}$ proceeds in a complex manner giving rise to at least two reaction products: $(\text{Ph}_3\text{P})_3\text{Cu}_2$ - $WS_4(I)$ and $(Ph_3P)_3(Cu_3WS_4Cl)$. In both reactions

complex I has been isolated as a solvate with toluene, $(\text{Ph}_3\text{P})_3\text{Cu}_2\text{WS}_4$ ²CH₃C₆H₅, in 40% yield. In an earlier study [14] a solvate of the composition $(Ph_3P)_3Cu_2WS_4 \cdot 0.8CH_2Cl_2$ has been obtained in the reaction of mononuclear complex $(NH₄)₂WS₄$ with PPh₃ and CuCl₂ \cdot 2H₂O in methylene chloride for which X-ray diffraction data indicated the following structure $[14]$.

Coincidence of the vibrational spectra for the complex obtained in the present study and that of ref. 14 suggests that they have the same structure. In addition to complex I, the reaction of $(Et_4N)_2W_3S_9$ and $(Et_4N)_2W_4S_{12}$ with Ph₃PCuCl also produced a small amount of single crystals (<5%) whose unit cell parameters were found to coincide with those of the cluster $(Ph_3P)_3$ $[Cu_3WS_4]$ Cl [14] prepared from mononuclear WS_4^2 ⁻.

The PhaPAuCl complex interacts with solutions of complexes $(Et_4N)_2W_3S_9$ and $(Et_4N)_2W_4S_{12}$ at room temperature producing $(Ph_3P)_2Au_2WS_4$ (II) in high yield. In the reaction with $W_4S_{12}^2$, addition of $(Et₂NCS₂)$ Na to the mother liquor after separation of II led to isolation of the diethyldithiocarbamate complex of tungsten, $W_2S_4(S_2CNEt_2)_2$. This fact indicates that the central fragment $W_2S_4^{2+}$ is preserved in the reaction

$$
(Et_4N)_2W_4S_{12} + 4Ph_3PAuCl + 2Et_2NCS_2Na \longrightarrow
$$

2(Ph_3P)_2Au_2WS_4 + W_2S_4(Et_2NCS_2)_2
II
+ 2Et_4NCl + 2NaCl

Complex II was obtained as solvates with benzene and chloroform. They are citrus yellow crystalline substances readily soluble in weakly polar solvents and having a sufficiently high thermal stability (dec. >235 "C). Concentrated hydrochloric acid destructs II upon heating to form $Ph₃PAuCl$ and tungsten trisulfide. IR spectra of II show bands of a

Thiometallate complexes of gold are much less studied than their copper and silver analogs and differ from them in composition. Only $(Ph₂MeP)₂Au₂WS₄$ [15] and $(\text{Ph}_3\text{P})_2\text{Au}_2\text{MoS}_4$ [16] have been described and structurally characterised. These complexes have been obtained by reaction of R_3PAuCl with the salts of WS_4^2 ⁻ and MoS_4^2 ⁻. Differences in stoichiometry between the complexes of copper and gold are due to the trend of the latter to lower coordination numbers. Complexes of three- and the more so fourfold coordinated gold are rather rare [17].

To verify the proposed structure of II the complex has been prepared by an alternative synthesis according to reaction (1)

 $2Ph_3PAuCl + (Et_4N)_2WS_4 \longrightarrow$

$$
(Ph3P)2Au2WS4 + 2Et4NC1
$$
 (1)

High yields of complex II have also been obtained in the reaction of the oxonium salt $[(Ph_3PAu)_3O]$ -BF₄ with the mononuclear complex:

$$
3(Me_4N)_2WS_4 + 2[(Ph_3PAu)_3O]BF_4 + 2H_2O \longrightarrow
$$

$$
3(Ph_3P)_2Au_2WS_4 + 4Me_4NOH + 2Me_4NBF_4
$$
 (2)

$$
II
$$

It should be noted that complexes I and II can be chromatographed on aluminium oxide without decomposition, a feature that is convenient to use for their purification and detection.

The sulfur atoms of the trinuclear thiocomplex II are capable of coordinating extra metal atoms on account of the unshared electron pairs. We made an attempt to use this potential property to synthesise large clusters, making use of $[(Ph_3PAu)_3O]BF_4$ and Ph₃PAuBF₄ as the sources of electrophilic particles, Ph₃PAu⁺. It turned out, however, that interaction of the trinuclear heterometallic complex II with these gold compounds leads in both cases to elimination of sulfur and formation of the sulfonium complex $[(Ph_3PAu)_3S]BF_4$. The fate of the tungsten could not be followed. The reaction with Ph_3PAuBF_4 is accompanied by elimination of four sulfur atoms from II and requires 10 equivalents of the reagent per one equivalent of **II.**

Thus, interaction of $(Et_4N)_2W_3S_9$ and $(Et_4N)_2$ -W₄S₁₂ with Ph₃PCuCl and Ph₃PAuCl proceeds via elimination of WS_4^2 fragments with subsequent coordination to them of Cu and Au atoms. These reactions can be considered as a transfer of WS_4^2 ligands from $(W=S)^{2+}$ and $(W_S,S)^{2+}$ fragments to Φ_{B} -PCu⁺ and Ph₂PAu⁺. The polynuclear thiocomplexes can also act as sources of sulfur with respect to weak Lewis acids, such as Ph₃PAu⁺.

Taking into account the fact that the organomercury compounds are isostructural and isoelectronic with complexes of $Au(I)$ we have studied the interaction of $(Et_4N)_2W_3S_9$ with FcHgCl. But in this reaction we were able to isolate only ferrocene and diferrocenyl and could not obtain any stable heterometallic species. It appears that first a complex with a thiometallate ligand is formed in the reaction which decomposes under the reaction conditions to form HgS and ferrocenyl radical.

Reactions of (Bu4N)2M02S70 with Co(H), Ni(II) and Cu(I) Chlorides

The binuclear oxothiocomplex of molybdenum $(Bu_4N)_2Mo_2S_7O$ contains no tetrathiometallate fragnent $M_0S₁²$ [18]. This substance contains the $\text{Mo}_{2}(\mu_{2} \text{-S}_{2})_{2}(\text{O})(\text{S})^{2+}$ core coordinated by two S_{2}^{2-} ligands.

The reaction of $Mo₂S₇O²⁻$ with Co(II), Ni(II) and Cu(I) chlorides proceeds readily already at room temperature producing heterometallic thiocomplexes II-v.

$$
CuCl + (Bu4N)2Mo2S7O =
$$

(Bu₄N) $Cu(Mo2S7O) + Bu4NCI$ (4)
III

 $Ph_3PCuCl + (Bu_4N)_2Mo_2S_7O =$

$$
III + Bu4NC1 + Ph3P
$$
 (5)

for II.

$$
MCl_2 + 2(Bu_4N)_2Mo_2S_7O
$$

= $(Bu_4N)_2M(Mo_2S_7O)_2 + 2Bu_4NCl$ (6)

$$
M = Co (IV), Ni (V)
$$

Elimination of $PPh₃$ in reaction (5) was indicated by the TLC data. This is one of the few examples of the elimination of a coordinated phosphine in the chemistry of $Cu(I)$ complexes. Complexes IV and V are formed even with a ten-fold excess of metal chloride.

Complexes III-V are black or dark brown substances. They dissolve only in strongly polar solvents, such as DMF, DMSO, to form solutions which slowly become colourless upon standing in air. The complexes are X-ray amorphous. Their IR spectra show a small redistribution of the intensities and a small shift of the $(Mo=S)$ and $(S-S)$ vibrational bands while the Mo=O valence vibrational band is practically the same in the original oxothiocomplex and in the complexes III-V.

Complex III is a diamagnetic substance while IV and V are paramagnetic ones. In the case of V the paramagnetism is temperature dependent: the value of μ_{eff} increases from 1.67 BM at 77 K to 1.84 BM at 300 K. For complex IV this value at 300 K is 3.06 BM. Such values are inconsistent with the presence of only one type of Co and Ni coordination and indicate that there are several types of metal coordination in these complexes. Complexes III-V are probably coordination polymers with the coordination of the Co, Ni, and Cu atoms occurring through the sulfur atoms of the Mo=S or S-S fragments. In the $(Ph_4P)_2$ - $M(M_0O_2S_2)$ $(M = Co, Ni)$ complexes described in ref. 19 the oxothiometallate ligand coordinates the Co and Ni atoms through sulfur atoms and not through oxygen.

In DMF solutions complexes III-V undergo solvolysis which is indicated by the relatively high values of the electrical conductivity of the solutions. Considerable dissociation of III-V is also indicated by the value of the magnetic susceptibility of V in DMF (2.43 BM at 300 K) which is consistent with the formation of the octahedral complex [Ni- $(DMF)_6$ ²⁺ [20]. There are many examples of the solvolysis of complexes with an aprotic solvent with a donor number as large as that of DMF [20], but complexes of Fe, Co, Ni with $MoS₄²⁻$ and $WS₄²$ usually do not dissociate in DMF. According to our

results the complexes with $Mo₂S₇O²⁻$ are less strong than those with $MS₄²$. The amorphous thiocomplexes are not numerous. Among them are $(Ph_4P)_2$. $Fe(MoS₄)₂$ [21] and also the products of the reactions of Cu(II) compounds with $M_0S_4^{2-}$ having the composition $CuMoS₄ - xO₆$ $(x = 2, 3)$ [22]. The synthesis of amorphous heterometallic thiocomplexes containing Cu, Ni, Co and MO is of interest because of their potential use as catalysts $[2,5]$.

References

- 1 A. Müller, E. Diemann, R. Jostes and H. Bögge, *Angew*. *Chem. Int. Ed. Engl., 20 (1981) 934.*
- 2 A. Müller, *Polyhedron*, 5 (1986) 323.
- 3 J. Chatt (ed.), New Trends in the Chemistry of Nitrogen *Fixation,* Academic Press, 1980.
- S. Sarkar and S. B. S. Mishra, *Coord. Chem. Rev., 59* (1984) 239.
- Yu. I. Yermakov, *Usp. Khim., 55 (1986) 499 (in* Russian).
- V. P. Fedin, Yu. V. Mironov, M. Sheer and V. E. Fedorov, *Zhurn. Vses.* Khim. 0-va, 32 (1987) 106 (in Russian).
- J. W. McDonald, G. D. Friesen, L. D. Rosenheim and W. E. Newton, *Inorg. Chim. Acta*, 72 (1983) 205.
- 8 G. Brauer (ed.), *Handbuch der Präparativen Anorganischen Chemie,* Ferdinand Enke Verlag, Stuttgart, 1975.
- A. N. Nesmeyanov, E. G. Perevalova, D. A. Lemenovskii, V. P. Djadchenko and K. I. Grandberg, Zzv. *AN SSSR. Ser. Khim., (1974) 166* (in Russian).
- *10* M. G. B. Drew, R. J. Hobson, P. P. E. M. Mumber, D. A. Rice and N. Turp, *J. Chem. Sot., Dalton Trans.,* (1987) 1163.
- 11 E. G. Perevalova, T. V. Baukova, M. M. Sazonenko and K. I. Grandberg, Zzv. *AN SSSR. Ser. Khim., (1985) 1973.*
- 2 A. Müller, W. Rittner, A. Neumann, E. Königer-Ahlbo and R. Brattacharyya, Z. Anorg. Allg. Chem., 461 (1980) 91.
- 13 F. Secheresse, J. Lefebvre, J. C. Daran and Y. Jeannin, *Inorg. Chem., 21 (1982)* 1311.
- 4 A. Müller, H. Bögge and U. Schimanski, *Inorg. Chim. Acta. 69 (1983) 5*
- 15 *J. C.* Huffmann, R. C. Roth and A. R. Siedle, *J. Am.* Chem. Soc., 98 (1976) 4340.
- 16 J. M. Charnok, S. Bristow, J. B. Nicholson, C. D. Garner and W. Glegg, *J. Chem. Sot., Dalton Trans., (1987) 303.*
- 17 R. J. Puddephatt, *The Chemistry of Gold,* Elsevier, 1978.
- 18 Xinquan Xin, N. C. Morris, G. B. Jameson and M. T. Pope, *Znorg. Chem., 24* (1985) *3482.*
- 19 A. Miiller, E. KGniger-Ahlborn, E. Krickemeyer and R. Jostes, Z. *Anorg Allg. Chem., 486 (1981) 69.*
- 20 V. Gutman, *Coordination Chemistry in Non-Aqueous Solutions,* Springer, 1968.
- 21 A. Miiller and S. Sarkar, *Angew. Chem. Znt. Ed. EngI., 16* (1977) *705.*
- 22 *S.* H. Lourie, D. E. Pratt and J. B. Rainor, Znorg. *Chim. Acta, 123* (1986) 193.