Substituent effects on the physical properties of $(\mu$ -oxo) $(\mu$ carboxylato)bis{tris(2-pyridylmethyl)aminechromium(III)} dimers

Thomas F. Tekut^a, Charles J. O'Connor^b and Robert A. Holwerda^{a,*}

"Department of Chemzshy and Blochemlstly, Texas Tech Umversity, Lubbock, TX 79409 (USA) bDepartment of Chemistry, Unnlverslty of New Orleans, New Orleans, LA 70148 (USA)

(Received May 6, 1993; revised June 25, 1993)

Abstract

In order to document the influence of carboxylate substituents on the physical properties of $[(\text{tmpa})Cr(\mu-O)(\mu-O)]$ $RCO₂)Cr(tmpa)]³⁺$ dimers, electronic spectra, Cr(III,IV/III,III) half-wave reduction potentials, μ -OH⁻ ionization constants and antiferromagnetic coupling constants are reported for $R=CH_2Cl$, $CHCl_2$, $C(CH_3)_3$, $C(C_6H_5)_3$, 1adamantyl and Ph-4-X (X=NMe₂, OH, OCH₃, CH₃, CF₃, F, Cl, CN, NO₂); tmpa= tris(2-pyridylmethyl)amine. $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\in$ $\frac{(\text{time})C}{\text{time}}$ Cr($\frac{(\text{time})C}{\text{time}}$) Cr($\frac{(\text{time})}{\text{time}}$)]3+ dimers. A linear free energy relationship between Elisabeth Elisabet $\lim_{n\to\infty}$ $\lim_{n\to\infty}$ III,III) and $pK_a(Cr(\mu\text{-}OH)Cr)$ indicates a high degree of cooperativity among bridging oxo, complementary bridging and non-bridging ligands with regard to π -donation towards the Cr(III) centers. Trends in antiferromagn coupling constants are interpreted through the influence of configuration interaction between ligand- and metalcentered b, symmetry orbitals on the $HOMO(b_1)$ -LUM $O(a_2)$ singlet-triplet energy gap.

Introduction

The bioinorganic chemistry of oxo, carboxylatobridged Fe [l, 21 and Mn [3] complexes has stimulated the investigation of these and related transition metal compounds [4-191. Our interest in these species centers on the synergism between bridging 0x0 and carboxylato groups with regard to π -donation towards the metal centers. We have reported $[(\text{tmpa})Cr(\mu-O)(\mu-P)]$ $RCO₂)Cr(tmpa)³⁺$ complexes having single oxo and carboxylato bridges in addition to tris(2-pyridylmethyl)amine N₄ donor sets; R = H, CH₃, C₆H₅ [20]. The acetate-bridged dimer has markedly non-equivalent Cr-0-Cr bond lengths of 1.79 and 1.85 A, a CrOCr bond angle of 132° and unsymmetric tmpa ligation, i.e. one apical nitrogen atom is *trans* to μ -O²⁻ while the other is trans to a carboxylate O atom [20]. The $Cr(III, IV/$ $H_{\text{H}}(t) = E$, $F_{\text{H}}(t) = \int_{0}^{t} h(t) \, h(t) \, dt$, $F_{\text{H}}(t) = \int_{0}^{t} h(t) \, h(t) \, dt$ $\sum_{i=1}^{N}$ called $\sum_{i=1}^{N}$ (impa)Cr(μ O)(μ crease linearly with increasing bridging 0x0 group basicity, suggesting that the HOMO energy rises according to the progression: μ -C₆H₅CO₂⁻ $\approx \mu$ -HCO₂⁻ < μ -CH₃CO₂⁻ \approx NCS⁻⁻ <NCO⁻⁻ \approx Cl⁻⁻ <N₃⁻⁻ \ll μ -F⁻⁻ < μ -OH $^-$ [21].

In order to further document the influence of carboxylate bridging groups on the electronic structure of Cr(II1) dimers, we report here substituent effects on electronic and IR spectra, Cr(III,IV/III,III) halfwave reduction potentials, acid-base properties and magnetic susceptibilities of $[(\text{tmpa})Cr(\mu-O)(\mu-RCO_2)]$ - $Cr(tmpa)]^{3+}$ complexes, where $R = CH_2Cl$, CHCl₂, $C(CH_3)$, $C(C_6H_5)$, 1-adamantyl and Ph-4-X (X= NMe₂, OH, OCH₃, CH₃, CF₃, F, Cl, CN, NO₂).

Experimental

Reagent grade chemicals and doubly or triply distilled water were used throughout. Sodium chloroacetate, sodium dichloroacetate, sodium trichloroacetate, sodium trimethylacetate hydrate, triphenylacetic acid, ladamantanecarboxylic acid and benzoic acid derivatives of the type $4-X-C₆H₄COOH$ ($X=CH₃CF₃F, Cl, OH,$) OCH₃, CN, NO₂ and N(CH₃)₂) were used as supplied by Aldrich. Complexes of the form $[(\text{tmpa})Cr(\mu-O)(\mu-P))$ $RCO₂)Cr (tmpa) [(ClO₄)₃·nH₂O were readily prepared$ as before [20] from the reactions of [Cr(tmpa)- (OH)]₂ $(CIO_a)_a$. 4H₂O [22] with excess carboxylate incoming group (acetonitrile or methanol solvent). Free acids were neutralized with stoichiometric lithium hydroxide or triethylamine. Analytical data for the new[(tmpa)Cr(μ -O)(μ -RCO₂)Cr(tmpa)](ClO₄)₃·nH₂O complexes are presented in Table 1.

^{*}Author to whom correspondence should be addressed.

\mathbb{R}	\boldsymbol{n}	Yield $(\%)$	Calc. $(\%)$				Found $(\%)$			
			Cr	$\mathbf C$	$\mathbf H$	N	Cr	$\mathbf C$	$\mathbf H$	N
CH ₂ Cl	4	93	8.93	39.19	3.98	9.62	901	39 15	3.33	9.42
CHCl ₂	2	53	894	39.24	3.55	9.63	8.97	39.40	3.23	9.66
C(CH ₃) ₃	2	51	9.15	43.34	3.55	9.86	9.30	43.53	3.99	9.97
$C(C_6H_5)_3$	$\bf{0}$	72	808	52 29	4.00	8.71	8.01	52.40	3.98	8.48
$C_{10}H_{15}$ ^a		89	869	47.19	4.42	9.37	8.72	47.54	4.32	8.94
C_6H_4 -4-NMe ₂	2	56	8.67	45 07	387	10.51	8.74	44.81	3.71	10.34
C_6H_4 -4-OH	4	70	8.61	42.75	409	9.27	853	4347	369	8.99
C_6H_4 -4-OCH ₃	2	70	8.77	44.55	3.65	9.45	8.76	44.11	362	9.45
C_6H_4 -4-CH ₃	$\overline{2}$	72	8.89	45.16	370	9.58	9.14	45.31	3 74	9 3 1
C_6H_4 -4- CF_3	$\mathbf{2}$	78	8.49	43.17	3.29	9.15	8.76	43.30	3 2 0	897
$C_6H_4 - 4 - F$	$\mathbf{2}$	75	886	43.98	3.43	9.54	8.99	44.05	3 4 4	9.43
C_6H_4 -4-Cl	2	77	8.73	43.38	3.39	9.41	8.90	43 53	3.07	9.13
C_6H_4 -4-CN	\overline{c}	24	8.80	44.74	3.41	10.67	9.04	44.61	3.21	10.15
C_6H_4 -4-NO ₂	4	63	8.41	41.74	3 91	10.19	8.59	41.91	3.35	968

TABLE 1. Analytical data for $[(\text{tmpa})Cr(\mu-O)(\mu-RCO_2)Cr(\text{tmpa})](ClO_4)$ **₃·nH₂O complexes**

'l-Adamantyl group.

[(OH)(tmpa)Cr(μ -O)Cr(tmpa)(Cl₃CCO₂)](ClO₄)₂ was synthesized by refluxing NaCl₃CCO₂ (0.935 g, 5.04) mmol) with $[Cr(tmpa)(OH)]_2(CIO_a)_4 \cdot 4H_2O$ (0.598 g, 0.503 mmol) in 100 ml of $CH₃CN$ for 1 h. The reaction mixture was filtered following evaporation to 50 ml and the filtrate was then combined with 2 g of $LiClO₄$ dissolved in 100 ml of water. A green microcrystalline product (0.398 g, 67%) was collected, washed with ether and air-dried. Anal. Calc. for $[(OH)(tmpa)CrOCr(tmpa) (Cl_3CCO_2)[(ClO_4)_2$: Cr, 9.64; C, 42.30; H, 3.46; N, 10.38. Found: Cr, 9.69; C, 42.21; H, 3.60; N, 9.73%. Several attempts to prepare the analogous trifluoroacetate derivative were unsuccessful.

Electronic (CH,CN solution) and IR (KBr pellet) spectra were acquired on Shimadzu UV-260 and Perkin-Elmer model 1600 instruments, respectively. Spectrophotometric titrations of aqueous solutions (371 nm; 25.0 °C, $I = 0.1$ M (NaNO₃)), cyclic voltammetric measurements on acetonitrile solutions (Pt button working electrode; 25.0 °C, $I=0.1$ M (N(n-C₄H₉)₄ClO₄)) and magnetic susceptibility measurements (4-300 K) were performed and interpreted as previously described [20, 211.

Results and discussion

Oxo, carboxylato dimers of the type $[(\text{tmpa})Cr(\mu O((\mu \text{-}RCO_2)Cr(rmpa))^{3+}$ are easily prepared in good yields by the displacement of $H₂O$ from a dihydroxobridged precursor (eqn. (1)). Electronic spectra and

$$
[(\text{tmpa})Cr(OH)_2Cr(\text{tmpa})]^4^+ + RCO_2^- \longrightarrow
$$

$$
[(\text{tmpa})Cr(O)(RCO_2)Cr(\text{tmpa})]^3^+ + H_2O \quad (1)
$$

carboxylate stretching frequencies are reported in Table 2. Excellent correlations of $\nu_{as}(CO_2^-)$ with RCOOH pK_a [23] pertain for dimers with both aliphatic and aromatic substituents (Fig. l), consistent with expectations for isostructural compounds. Small energy differences between $\nu_{as}(CO_2^-)$ and $\nu_s(CO_2^-)$ support this conclusion [20]. A significant exception is $R = CCl_3$, for which $\nu_{as}(CO_2^-)$ is much smaller than anticipated on the basis of CCl₃COOH acidity. The trichloroacetate complex is best formulated as $[(OH)(tmpa)Cr(\mu-$ O)Cr(tmpa)(CCl₃CO₂)]³⁺ in view of the analytical data and other anomalies in its physical properties (vide *unfra*); the weakly basic $CCl₃CO₂$ anion is thought to function as a monodentate rather than a bridging ligand.

Electronic spectra of $[(tmpa)Cr(\mu-O)(\mu-RCO_2)Cr (tmpa)$ ³⁺ dimers are essentially independent of the R group; very modest variations in peak positions and band intensities were observed. The $(b_1)^2(a_1)^2(b_2)^2$ - $(a_2)^2(b_1)^2(C_{2\nu})$ π -electronic configuration was proposed for these complexes, leaving non-bonding a_2 in addition to a_1 and b_1 π -antibonding levels unoccupied [20]; b₁(HOMO) = Cr d_{xy}(1) + d_{xy}(2), a₂(LUMO) = Cr $d_{xy}(1) - d_{xy}(2)$. Four allowed UV-Vis transitions are predicted: ${}^{1}B_{2} \leftarrow {}^{1}A_{1}$ (a₂ \rightarrow b₁), ${}^{1}B_{2} \leftarrow {}^{1}A_{1}$ (b₂ \rightarrow a₁), ${}^{1}A_{1} \leftarrow {}^{1}A_{1}$ (b₁ \rightarrow b₁) and ${}^{1}B_{1} \leftarrow {}^{1}A_{1}$ (b₁ \rightarrow a₁). We assign these transitions to strong bands observed in the vicinity of 336, 371, 390 (often poorly-resolved) and 420 nm, respectively. In addition, the lowest-energy d-d transition is observed near 565 nm. The $[(\text{tmpa})Cr(\mu-O)(\mu RCO₂)Cr (tmpa)³⁺$ dimers reversibly protonate to give $[(\text{tmpa})Cr(\mu\text{-}OH)(\mu\text{-}RCO_2)Cr(\text{tmpa})]^{4+}$ conjugate acids having p K_a s between 0.46 (R=CHCl₂) and 2.21 $(R = Ph-4-OH)$ (Table 3). Consistent with our previous findings, electronic spectra of the μ -OH - complexes

TABLE 2 Electronic and IR spectroscopy of $[(\text{tmpa})Cr(\mu-O)(\mu-RCO_2)Cr(\text{tmpa})]^3$ ⁺ dimers^a

147

TABLE 2. (contmued)

"Spectra of CrOCr dimers and Cr(OH)Cr protonation products recorded in acetonitrile and water, respectively, at ambient temperature. $\frac{E_{\text{v}}}{\text{E}_{\text{v}}}\text{E}_{\text{v$ not bridgma 'R = 1-adamantyl. "N-O stretch observed at 1345 cm⁻¹ 'C=N stretch observed at 2228 cm⁻¹

(Table 2) feature the two lowest-energy d-d bands dimers, its ${}^1B_1 \leftarrow {}^1A_1$ transition is red-shifted to 437 nm of the d³ configuration (blue-shifted from the μ -O²⁻ and the ¹B₂ + ¹A₁ (336 nm) band is significantly weaker. spectra). The third d-d band is obscured by a strong Furthermore, the μ -O²⁻ group of the trichloroacetate pyridyl $\pi-\pi^*$ transition. Although the spectrum of complex is more basic than those of other dimers which $[(OH)(tmpa)Cr(\mu-O)Cr(tmpa)(CCl₃CO₂)]3+}$ bears a contain both oxo and carboxylate ligands by 4 to 6 superficial resemblance to those of the RCO_2 ⁻-bridged orders of magnitude.

Fig 1. Correlations of $\nu_{as}(CO_2^-)$ (Table 2) with $pK_a s$ for $[(\text{tmpa})Cr(\mu-O)(\mu-RCO_2)Cr(\text{tmpa})]^3+$ dimers with aliphatic (O) and aromatic $($ **e** $)$ carboxylate substituents. Low-lying point for $R = CCl₃$ excluded from the least-squares fit Data for $R = H$, $CH₃$ and $C₆H₅$ from ref. 20.

A plot of μ -OH⁻ pK_a versus Hammett σ_p [23] is linear (correlation coefficient = 0.998) for all aromatic R groups considered, yielding a slope (ρ) of -0.81 ± 0.02

only slightly different from that characteristic of the parent benzoic acids (-1.00) . Inductive effects of phenyl *para* substituents are transmitted effectively to the μ -O²⁻ group in $[(\text{tmpa})Cr(\mu$ -O $)(\mu$ -4-X-PhCO₂)Cr-(tmpa)]³⁺ dimers, implying that p π -donation from μ - RCO_2^- to Cr(III) occurs at the expense of Cr(d π)- $O(p\pi)$ -Cr(d π) bonding [20]. Analogous synergism between M-L and M-M bond strengths has been reported for $M_2(RCO_2)_4L_2$ dimers $(M=Cr, Rh)$ [24].

Half-wave Cr(III,IV/III,III) reduction potentials based on quasi-reversible ($\Delta E_p = 70-90$ mV) one-electron oxidation waves are summarized in Table 3 along with magnetic parameters derived from fits of magnetic susceptibility temperature dependences to the Heisenberg exchange model for $S=3/2$ centers. Figure 2 presents an updated plot of Cr(III,IV/III,III) $E_{1/2}$ versus $pK_a(Cr(\mu\text{-}OH)Cr)$, including all (tmpa)CrOCr(tmpa) dimers for which both of these parameters are available. The revised least-squares relationship: $E_{1/2}$ $2₂= 1.41 - 0.10(pK_a)$ V (correlation coefficient = 0.992) is in excellent agreement with that reported previously [21], and a fit including only the RCO_2^- complexes $(E_{1/2} = 1.39 - 0.092(pK_a)$ V) is identical to within experimental uncertainty. Thus, for both singly- and doubly-bridged dimers in this series, the energy of the highest occupied molecular orbital $(b_{2g}(D_{4h})$ or $b_1(C_{2h})$ correlates extremely well with CrOCr π -bonding

TABLE 3. Magnetic susceptibility, spectrophotometric titration and cyclic voltammetric data for $[(\text{tmpa})Cr(\mu-O)(\mu-RCO_2)Cr(\text{tmpa})]^3+$ dimers"

$\mathbf R$	g	J (cm^{-1})	zJ' (cm^{-1})	TIP (cgsu)	Impurity $(\%)$	pK_a^b	$E_{1/2}$ (V) vs. NHE ^c
Н	2.16	-93.0	$\bf{0}$	66×10^{-4}	0.25	169	1.21
CH ₃	2.00	-503	$\bf{0}$	6.5×10^{-5}	2.54	2.20	1.17
CH ₂ Cl	2.00	-76.5	267	23×10^{-3}	0.82	1.56(3)	1.25
CHCl ₂	2.00	-98.2	38.8	2.6×10^{-4}	0.50	0.46(7)	1.33
CCl_3^d	2.00	-30.7	-6.9	5.3×10^{-4}	0.00	595(3)	0.83
C(CH ₃) ₃						124(9)	1 2 6
$C(C_6H_5)_3$							1 3 4
$C_{10}H_{15}^{\text{ e}}$						1.41(6)	1.25
Ph	2.11	-75.4	$\bf{0}$	11×10^{-3}	0.21	1.88	1.22
$Ph-4-NMe2$	2.00	-66.0	6.5	1.4×10^{-3}	1.30		1.13 ^f
$Ph-4-OCH3$	2.00	-66.3	2.5	1.1×10^{-3}	105	2.11(4)	1.21
$Ph-4-CH3$	2.00	-68.3	6.3	1.2×10^{-3}	0.82	198(5)	1.23
$Ph-4-Cl$	2.00	-69.0	7.6	1.5×10^{-3}	1.08	1.68(5)	1 2 3
$Ph-4-F$	2.00	-72.0	7.2	1.5×10^{-3}	0.91	182(3)	1.25
$Ph-4-CF3$	2.00	-88.9	19.8	13×10^{-3}	0.59	146(5)	1.25
Ph-4-CN	2.00	-83.4	63	5.2×10^{-3}	256		1 2 8
Ph-4-OH						221(4)	1.23
$Ph-4-NO2$						126(8)	1 28

"Magnetic, electrochemical and spectrophotometric titration data for $R=H$, CH₃ and Ph from ref. 20. ^bCorresponds to μ -OH⁻to- μ - O^2 acid ionization, 25.0 °C, $I = 0.1$ M (NaNO₃). Standard deviations derived from non-linear least-squares fits of spectrophotometric itration data are shown in parentheses. "Half-wave reduction potential for $[(\text{tmpa})Cr(\mu-Q)(\mu-RCO_2)Cr(\text{tmpa})]^{4+\beta+}$ couple at 25.0 C in CH₃CN with 0.1 M N(n-C₄H₉)₄ClO₄ supporting electrolyte. Uncertainty estimated at ± 0.01 V. ^d[(OH)(tmpa)C $O(C(\text{trpa})(CCl_3CO_2))^3$ ⁺ complex; carboxylate group is not bridging. $R = 1$ -adamantyl group. 'Irreversible anodic wave also observed at 1.28 V.

Fig. 2. Linear free energy relationship between one-electron oxidation and protonation reactions of (tmpa)Cr dimers with oxo and carboxylato hgands (\odot , Table 3), $[Cr(tmpa)L]_2O^{2+}$ dimers $(A, L=NCS^{-}, NCO^{-}, N_{3}^{-}, Cl^{-}, CN^{-})$ and $[(tmpa)Cr (0, 1, 0)$ and $(0, 0, 0)$ dramers (0, Linux Linux Low- $C_1(L)C_1(\text{unp}a)$ differs $(\bullet, L-\text{O11}, L)$, $L\text{ow-lying } L-\text{O11}$ CN⁻ point excluded from the least-squares fit. All data not reported in this work from ref 21 Conditions: 25 0 °C, $I=0.1$ M for both reactions. Half-wave potentials and μ -OH⁻ ionization constants measured in acetonitrile and water, respectively

strength, as measured by $pK_s(Cr(\mu\text{-}OH)Cr)$. It should be noted that the trichloroacetate complex falls close to the correlation line defined by the bridging carboxylate species, even though its $E_{1/2}$ and pK_a values separately diverge considerably from the norm for μ -RCO₂⁻ donors. Assuming that HOMO destabilization originates primarily from configuration interaction with the $b_1 \pi$ donor orbitals of both bridging and non-bridging ligands, a scale of increasing π -donor effectiveness may be established according to decreasing $E_{1/2}$. The generality of this linear free energy relationship between oneelectron oxidation and protonation reactions over seven orders of magnitude in μ -OH $^-$ group acidity lends considerable support to a unified molecular orbital interpretation of physical properties for both linear and bent CrOCr dimers. Furthermore, the $E_{1/2}$ -p K_a correlation offers quantitative evidence for cooperativity among bridging 0x0, complementary bridging and nonbridging ligands with regard to π -donation towards the Cr(II1) centers. Of particular significance is the placement of bridging carboxylate ligands at the low end of the π -donor effectiveness ranking, regardless of R group.

Spiccia *et al.* recently reviewed the magnetochemistry of oxo- and hydroxo-bridged dinuclear chromium(II1) complexes, concluding that antiferromagnetic coupling constants increase with decreasing $Cr \cdots Cr$ distance (especially below 2.8 \AA), increasing Cr-O-Cr bond angle and decreasing Cr-bridging 0 bond length [25]. Having successfully accounted for both spectroscopic and electrochemical characteristics of CrOCr dimers in molecular orbital terms [20, 26, 271, we are inclined to relate antiferromagnetic coupling constants to the $HOMO(b₁)-LUMO(a₂)$ singlet-triplet energy gap, i.e. $-2J=E(a_2)-E(b_1)$. Provided that the a_2 LUMO is truly non-bonding [20] and given no significant variation in the CrOCr bond angle, it is anticipated that the singlet-triplet gap will be particularly sensitive to the configuration interaction between ligand- and metalcentered b, symmetry orbitals whose marked influence on the HOMO energy has already been discussed. In fact, $-2J$ generally increases with electron-withdrawing capacity of the carboxylate substituent and decreasing π -donor effectiveness of the μ -RCO₂⁻ ligand, as expected on the basis of our configuration interaction criterion. To be specific, a comparison of magnetic parameters within the series: $R = CH_3$, CH_2Cl , $CHCl_2$ and R = Ph-NMe₂ (σ_p = -0.83), Ph-H (σ_p = 0), Ph-CF₃ $(\sigma_{\rm p} = +0.54)$ is instructive. Finally, the failure of the $CCl₃CO₂$ complex to follow the magnetochemical pattern established by the μ -CH₃CO₂⁻, μ -CH₂ClCO₂⁻ and μ -CHCl₂CO₂⁻ dimers (more negative *J* with increasing methyl chlorination) provides yet another indication that trichloroacetate is not a bridging ligand, allowing greater flexibility in the CrOCr angle; J for $[(OH)(tmpa)Cr(O)Cr(tmpa)(CCl₃CO₂)](ClO₄)₂$ falls between those of $[Cr(tmpa)(OH)]_2(CIO_4)_4 \cdot 4H_2O$ (-15.7 cm^{-1}) and $[(\text{tmpa})Cr(O)(OH)Cr(\text{tmpa})]$ $(CIO₄)₃·H₂O$ (-68.5 cm⁻¹) [26].

Acknowledgement

R A.H. thanks the Welch Foundation (Grant D-735) for generous support of research at Texas Tech University

References

- 1 D.M Kurtz, Jr., Chem *Rev,* 90 (1990) 585
- 2 S.J. Lrppard, Angew *Chem,* Int *Ed Engl, 27 (1988) 344.*
- *3* K. Wreghardt, Angew *Chem, Int* Ed *Engl,* 28 (1989) 1153
- 4 H. Toftlund, E. Srmonsen and E Pedersen, *Acta Chem Stand,* 44 (1990) 676
- 5 J. Springborg and H. Toftlund, *Acta Chem Scand*, Ser A, 33 (1979) 31.
- C Reber, H.U Gudel, M Buys, K Wreghardt and P. Chaudhuri, *Inorg. Chem*, 27 (1988) 2115.
- P. Chaudhuri, M. Winter, H.J. Kuppers, K. Wieghardt, B. Nuber and J Wetss, Inorg *Chem,* 26 (1987) 3302
- 8 1.M Arafa, H M. Goff, S S David, B P Murch and L. Que, Jr , Inorg **Chem ,** 26 (1987) 2779
- 9 R.E. Norman, R.C. Holz, S. Menage, C.J. O'Connor, J.H Zhang and L. Que, Jr., *Inorg Chem*, 29 (1990) 4629
- 10 R E. Norman, S. Yan, L Que, Jr., G Backes, J. Lmg, J Sanders-Loehr, J.H. Zhang and C.J. O'Connor, J Am. *Chem. sot, I12 (1990) 1554.*
- 11 R.H. Beer, W.B. Tolman, S.G. Bott and S.J Lippard, Inorg *Chem, 30 (1991) 2082*
- 12 S M. Gorun and S.J. Lippard, *Inorg. Chem., 30* (1991) 1625.
- 13 D.W. Low, D.M. Eichhorn, A. Draganescu and W.H. Armstrong, *Inorg. Chem*, 30 (1991) 877.
- 14 K.J Oberhausen, J.F. Richardson, R.J. O'Brien, R.M Buchanan, J.K. McCusker, R.J. Web and D.N. Hendrickson, R.J. D.N. Hendrickson, R.J. D.N. Hendrickson, R. Znorg *Chem., 31 (1992) 1123. 15* K. Wreghardt, U. Bossek, A. Neves, B Nuber and J. Wetss,
- Znorg Chem, 28 (1989) 432. 16.6 M. Koppen, M. K. K. K. H. H. R.M. Llusar, B. N. Lusar, B. A. Lusar, B. A. Lusar, B. A. Lusar, B. N. Lusar, B.
- and J. Weiss, *Znorg* Chem, 27 (1988) 721.
- 17 P. Knopp and K. Wieghardt, *Znorg. Chem, 30* (1991) 4061.
- 18 P. Neubold, K. Wieghardt, B. Nuber and J. Weiss, Inorg *Chem, 28 (1989) 459*
- 19 B.K. Das and A R. Chakravarty, *Inorg. Chem.*, 29 (1990) 2078. *20* B.G. Gafford, R.E. Marsh, W P. Schaefer, J.H. Zhang, C.J. O'Connor and R.A. Holwerda, Inorg. *Chem., 29* (1990) *4562.*
- *21* T.F. Tekut, C.J. O'Connor and R.A Holwerda, Inorg *Chem,* 21 T.F. Tekut, C.J. O'Connor and R.A Holwerda, *Inorg Chem*, 32 (1993) 324.
- *22* B.G. Gafford and R.A. Holwerda, Znorg *Chem., 28* (1989) $\tilde{\Omega}$ *23* P.R. Wells, *Chem. Rev., 63* (1963) 171.
- 24 R S. Drago and C.J. Brlgrren, *Polyhedron, 7 (1988) 1453.*
- 24 R S. Drago and C.J. Bilgrien, Polyhedron, 7 (1988) 1453.
- 25 L. Spiccia, G.D Fallon, A. Markiewicz, K.S. Murray and H. Riesen, *Inorg. Chem.*, 31 (1992) 1066. *26* B.G. Gafford, C. O'Rear, J.H. Zhang, C.J. O'Connor and
- R.A. Galloru, C. O Real, J.H. Ellang, C.J. O 27 R.A. Holwerda, T.F Tekut, B.G. Gafford, J.H. Zhang and
- C.J. O'Connor, .Z. *Chem. Sot., Dalton Truns,* (1991) 1051.