Gold(III) and Rhodium(III) Chloride Adducts with Adenine*

CHESTER M. MIKULSKI, DOMENICK BRACCIA, DAVID DELACATO, JAMES FLEMING, DEBORAH FLEMING

Department of Chemistry & Physics, Beaver College, Glenside, Pa. 19038, U.S.A.

and NICHOLAS M. KARAYANNIS

Amoco Chemicals Corporation, P.O. Box 400, Naperville, III. 60566, U.S.A.

Received September 20, 1984

Earlier work in these laboratories has resulted in the development of a general method of preparation of metal complexes of adenine (adH; I) and other purines (purine, guanine, xanthine, hypoxanthine,

theophylline, threobromine, caffeine) from nonaqueous media [2-9]. The method consists of refluxing mixtures of the ligand and a metal salt perchlorate, nitrate, tetrafluoroborate, (halide. thiocyanate, sulfide, acetate, etc.; metal ions studied: Al³⁺, V³⁺, Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Dy³⁺, Th⁴⁺, U⁴⁺) in a mixture of absolute ethanol and triethyl orthoformate (teof; HC(OC2- H_{5}) for several days (until a quantity of solid metal complex, sufficient for characterization work, is obtained) [2-9]. Most recently, we extended our synthetic work to include the complexes formed by interacting adH with various precious metal chlorides, under our preparative conditions [1], and have already reported on the preparation and characterization of Pd(adH)Cl₂ and Pt(adH)₂Cl₄ polymeric adducts [10]. Subjects of the present communication are the adducts of adH with AuCl₃ and RhCl₃, prepared by the same synthetic method. It should be mentioned here that, in view of their potential antitumor activity and other medicinal applications, there has been significant interest in complexes of gold and rhodium with nucleobases, nucleosides and nucleotides [11-29]. Interactions of nucleosides with HAuCl₄ in non-aqueous media leads to the formation of AuL_2Cl_3 complexes (L = nucleoside), while the corresponding interactions in aqueous solutions result in the isolation of AuLCl3 complexes, which can also be obtained by suspending the AuL₂Cl₃ species in water [11, 12]. Au(III) is reduced to Au(I) in aqueous solutions of HAuCl₄ and nucleoside, containing HCl and 1-ascorbic acid; during these reactions, white precipitates of AuL₂-Cl are formed [11]. HAuBr₄ reactions with uridine and cytosine reportedly lead to bromination of the pyrimidine at C(5) with concomitant reduction of Au(III) to Au(I) [13, 14]. Several studies dealing with the interactions of Au(III) [15-18], Au(I) [19] and Rh(III) [20] with DNA were reported. Both Au^{3+} and Rh^{3+} appear to bind to the nucleobase and phosphate fragments of DNA [16, 20]. Raman studies of the reaction products of mixtures of adenosine, guanosine, uridine and cytidine 5'monophosphates with (CH₃)₂AuClO₄ and Rh₂- $(OOCCH_3)_4$ indicated that Au³⁺ reacts directly with the purine and pyrimidine ring nitrogens, while the dimeric cluster of the Rh²⁺ compound remains intact and causes almost not measurable perturbation of the electron-density of the nucleotides, although the presence of axial (probably nitrogen) ligands is suggested by color changes [21]. Adducts of the $Rh_2(OOCCH_3)_4L_2$ type (L = adenine, adenosine [22], theophylline, caffeine [23]) have been prepared [22, 23], and the crystal structure determinations of the theophylline and caffeine adducts established that these axial ligands are N(9)-bonded to the Rh²⁺ ions [23]. On the other hand, coordination of adenine to Rh²⁺ may be occurring through N(7), owing to H-bonding interactions between the exocyclic NH₂ group of this ligand and carboxylate oxygens [22, 23]. Several solid adducts of RhCl₃, including Rh(adH)₂Cl₃·MeOH [24], Rh-(ado)Cl₃·2MeOH, $[Rh(ado)(NH_3)_4Cl]Cl_2 \cdot H_2O$, $[Rh(xno)(OH_2)_3Cl_2]Cl_2$ $[Rh(xno)_2(NH_3)_2Cl_2]Cl$ $2H_2O$ (ado = adenosine; xno = xanthosine) [25], two complexes with adenosine triphosphate [26] and RhL_3Cl_3 (L = 6-methyl-2-thiouracil) [27], have been prepared and characterized. Finally, a number of adducts and complexes of Rh(I) carbonyls with nucleobases and nucleosides were also reported [28, 29].

The new complexes herein reported were prepared by mixing 0.8 mmol anhydrous MCl_3 (M = Au, Rh), 2.4 mmol adH, 35 ml absolute ethanol and 15 ml teof, and refluxing for five days. Following the refluxive step, the supernatant was reduced to about one-half its original volume, by heating under

^{*}Presented in part at the 186th National Meeting of the American Chemical Society, Washington, D.C., 1983, see ref. [1].

reduced pressure, and the solid complexes were separated by filtration, washed with anhydrous diethyl ether, and stored *in vacuo* over anhydrous CaCl₂. The complexes obtained were of the Au-(adH)₂Cl₃ (golden brown) and Rh(adH)Cl₃·EtOH (mustard yellow) types. The Au³⁺ complex dissolves in some organic solvents, including N,N-dimethylformamide (dmf), in which it shows a molar conductivity of 70 Ω^{-1} cm² mol⁻¹ (10⁻³ M solution at 25 °C). In contrast, the Rh³⁺ complex is insoluble in organic media.

The UV-visible spectra of the free ligand and the new complexes are as follows (solid-state spectra on Nujol mulls), nm: adH: 185vvs, 208vvs, 260vvs,vb; 199vvs,sh, 237vvs,sh, $Au(adH)_2Cl_3$: 252vs,b, 285vs,sh, 299s,sh, 322s, 346s, 370ms,sh, 392m,sh, 431m,sh, 493mw,sh, 537w, vb; Rh(adH)Cl3. EtOH: 191vvs,sh, 235vvs,sh, 254vvs,b, 283vs,sh, 306s,b, 328ms,b, 353ms, 396ms, 420m,sh, 496m,vb, 557w,sh. As was the case with other adH metal complexes [2, 6, 10], the $\pi \to \pi^*$ transitions of the ligand [30] undergo shifts and excessive splittings upon adduct formation with AuCl₃ or RhCl₃, while the $n \rightarrow \pi^*$ transition, which is masked in the spectrum of free adH [30], appears at 299-306 nm in the spectra of the new complexes. The strong to medium intensity maxima observed at 320-560 nm in the spectra of the complexes are mostly of the charge-transfer type, although contributions from d-d transitions $({}^{1}A_{1g} \rightarrow {}^{1}T_{1g} \text{ and } {}^{1}T_{2g})$ are likely for the bands at 328-420 nm in the spectrum of the Rh³⁺ complex [31]. Both of the complexes are diamagnetic, as is usual for 5d⁸ or 4d⁶ compounds, which have the tendency to assume their low-spin arrangements.

The infrared spectra of both complexes at 4000-1000 cm⁻¹ are characterized by strong $v_{\rm NH}$ bands at 2900, 2800, 2680 and 2590 cm⁻¹ (corresponding maxima in free adH: 2900, 2800, 2690, 2600 cm⁻¹), as expected for adducts of neutral adH (2.32). The $\nu_{\rm NH_2}$, $\delta_{\rm NH_2}$ and $\rho_{\rm NH_2}$ bands of adH at 3350, 3295, 3118, at 1675 and at 1025 cm⁻¹, respectively, are only slightly shifted in the spectra of the complexes (M = Au: 3340, 3300, 3125 1672, 1022; M = Rh:3360, 3300, 3120, 1666, 1019 cm⁻¹), so that binding of the ligand through the exocyclic NH₂ group nitrogen can be ruled out [2, 10, 24, 33, 34]. On the other hand, some of the $\nu_{C=C}$, $\nu_{C=N}$ and ring vibrations of adH at 1600-1300 cm⁻¹ (occurring at 1600, 1565, 1508, 1449, 1419, 1390, 1369, 1334, 1308 cm⁻¹) undergo larger shifts and occasional splittings in the spectra of the new adducts, *viz.*, cm^{-1} : M = Au: 1640, 1597, 1559, 1525, 1509, 1470, 1438, 1423, 1389, 1327, 1302; M = Rh: 1633, 1606, 1588, 1560, 1537, 1518, 1460, 1430, 1402, 1381, 1332, 1309. These features are consistent with coordination of adH through ring nitrogens [2, 10, 32-34].

Bioinorganic Chemistry Letters

Au(adH)₂Cl₃ is an analog of the AuL₂Cl₃ complexes with various nucleosides (guanosine, inosine and triacetyl derivatives) previously reported [11]. It has a similar molar conductivity (*vide supra*) to these complexes, and shows Au-ligand bands of the same type, *i.e.*, ν_{Au-Cl} at 362 and ν_{Au-N} at 285 cm⁻¹ [11] (ligand bands in this region: free adH 330, 267; gold complex 330, 269 cm⁻¹). These features are consistent with a *trans*-square planar configuration for the complex (structure II) [11, 35, 36], with two terminal adH and two terminal

chloro ligands and an anionic Cl⁻ group. It should be noted, however, that when the AuL₂Cl₃ nucleoside complexes [11] were studied by ¹⁹⁷Au-Mössbauer spectroscopy, lower isomer shifts and quadrupole splittings than those expected for a structure similar to II were observed, and the possibility of a hexacoordinated polymeric structure (similar to that of $Au(phen)Cl_3$ (phen = 1,10-phenanthroline) [37]), in which each Cl⁻ counterion is situated between two stacked [AuL₂Cl₂]^{*} cations, and forms a long bond to Au³⁺, so that an octahedron elongated along the z-axis (structure III) is produced, was advanced [12]. Such a structure is not inconsistent with the observation of v_{Au-Cl} at 362 cm⁻¹. In fact, Au(phen)Cl₃, which of necessity involves a cis-AuN₂Cl₄ absorbing species [37], exhibits Au-Cl IR bands at 378, 370 and 360 cm⁻¹ [38]; a single v_{Au-Cl} band would be expected in the same region for a trans-AuN₂Cl₄ species of type III [39].

Rh(adH)Cl₃·EtOH differs from the previously reported Rh(adH)₂Cl₃·MeOH [24] in that it is a 1:1 rather than 2:1 adduct of adH with the Rh³⁺ salt. This complex, unlike the new Au³⁺ compound, is insoluble in organic media and probably polymeric [2-10]. Three ν_{Rh-Cl} bands were detected at 357, 322 and 301 [39], along with one $\nu_{\rm Rh-O}$ -(EtOH) band at 477 [39, 40] and two v_{Rb-N} absorptions at 260 and 240 cm^{-1} [39] (adH bands in the complex at 450, 330, 270 cm⁻¹). The complex exhibits also a band at 540 cm⁻¹, which is present in several adH metal complexes (including the new Au³⁺ complex) [2, 7, 9, 10] and probably due to a ligand mode (in the past v_{Rh-N} was assigned at 575-490 cm⁻¹ in adH, ado or xno complexes [24, 25]). The v_{OH} (EtOH) mode appears at 3420 cm⁻¹ in the spectrum of the Rh³⁺ complex [41]. In view of the presumably polymeric structure of this complex, the terminal character of the chloro ligands in this hexacoordinated species [39], and the pronounced tendency of adH to function as a bidentate bridging ligand [42], structural type IV is considered as most probable.

The most likely binding site for terminal adH in $Au(adH)_2Cl_3$ (structure II or III (L = adH)) is the N(9) imidazole nitrogen. In fact, N(9) is the protonation site of free adH, and, therefore, the preferred site of bonding when this ligand acts as terminal unidentate [42]; in addition, the presence of the exocyclic NH_2 substituent at C(6) of adenine blocks the N(1) site sterically, while increasing the electrondensity at N(9) (relative to purine), so that binding through the latter site becomes favorable [43]. N(9) would also be one of the binding sites of bridging bidentate adH in the Rh³⁺ complex [2, 7, 9, 10, 42, 43]. As far as the second binding site of the bridging ligand is concerned, N(7) is considered as most likely, since coordination of bridging bidentate adH or purine through N(7) and N(9) has been demonstrated in metal complexes with single ligand bridges [44, 45]. The other possible combination is binding through N(3) and N(9), but this seems to be common only in magnetically subnormal Cu²⁺ complexes with multiple ligand bridges between adjacent copper(II) ions [46, 47].

References

- 1 C. M. Mikulski, D. Delacato, D. Braccia and N. M. Karayannis, Abstracts, the 186th Nat. Meeting., Am. Chem. Soc., Washington, D.C., Aug. 28-Sept. 2, 1983, No. **INOR 146.**
- 2 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, J. Inorg. Nucl. Chem., 43, 2771 (1981).
- 3 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, Inorg. Chim. Acta, 46, 235 (1980); *Inorg. Chem., 19,* 3491 (1980). 4 C. M. Mikulski, L. Mattucci, Y. Smith, T. B. Tran and
- N. M. Karayannis, *Inorg. Chim. Acta*, 80, 127 (1983).
 S. M. Mikulski, T. B. Tran, L. Mattucci and N. M. Karayannis, *Inorg. Chim. Acta*, 78, 211, 269 (1983).
- 6 C. M. Mikulski, S. Cocco, N. DeFranco and N. M. Karayannis, Inorg. Chim. Acta, 67, 61 (1982); 78, L25 (1983); 80, L23, L61, L71 (1983).
- 7 C. M. Mikulski, S. Cocco, L. Mattucci, N. DeFranco, L. Weiss and N. M. Karayannis, Inorg. Chim. Acta, 67, 173 (1982).
- 8 C. M. Mikulski, L. Mattucci, L. Weiss and N. M. Karayannis, Inorg. Chim. Acta, 92, L29, 181, 275 (1984).
- A. N. Speca, L. L. Pytlewski, C. M. Mikulski and N. M. Karayannis, Inorg. Chim. Acta, 66, L53 (1982).
- 10 C. M. Mikulski, D. Delacato, D. Braccia and N. M. Karayannis, Inorg. Chim. Acta, 93, L19 (1984).
- 11 N. Hadjiliadis, G. Pneumatikakis and R. Basosi, J. Inorg. Biochem., 14, 115 (1981).

- 13 R. Ettore, J. Chem. Soc., Dalton Trans., 2329 (1983).
- 14 M. Bressan, R. Ettore and P. Rigo, J. Magn. Reson., 26, 43 (1977).
- 15 D. W. Gibson, M. Beer and R. J. Barrnett, Biochemistry, 10, 3669 (1971).
- 16 C. K. S. Pillai and U. S. Nandi, Biopolymers, 12, 1431 (1972).
- 17 C. Mandal and U. S. Nandi, Ind. J. Biochem. Biophys., 15, 159 (1978); Proc. Ind. Acad. Sci., Sect. A, 88, 263 (1979).
- 18 D. Chatterji, U. S. Nandi and S. K. Podder, Biopolymers, 16, 1863 (1977);
- D. Chatterji and S. K. Podder, Ind. J. Chem., 17A, 456 (1979).
- 19 C. E. Blank and J. C. Dabrowiak, J. Inorg. Biochem., 21, 21 (1984).
- 20 R. Sasi and U. S. Nandi, Curr. Sci., 47, 761 (1978).
- 21 M. R. Moller, M. A. Bruck, T. O'Connor, F. J. Armatis, Jr., E. A. Knolinski, N. Kottmair and R. S. Tobias, J. Am. Chem. Soc., 102, 4589 (1980).
- 22 N. Farrell, J. Inorg. Biochem., 14, 26 (1981).
- 25 K. Aoki and H. Yamazaki, Chem. Commun., 186 (1980).
- 24 B. T. Khan and A. Mehmood, J. Inorg. Nucl. Chem., 40, 1938 (1978).
- 25 B. T. Khan, M. R. Somayajulu and M. M. Taqui Khan, J. Inorg. Nucl. Chem., 40, 1251 (1978).
- 26 B. T. Khan, M. R. Somayajulu and M. M. Taqui Khan, Ind. J. Chem., 17A, 359 (1979).
- 27 J. R. Lusty, J. Peeling and M. A. Abdel-Aal, Inorg. Chim. Acta, 56, 21 (1981).
- 28 W. Beck and N. Kottmair, Chem. Ber., 109, 970 (1976); M. M. Singh, Y. Rosopulos and W. Beck, Chem. Ber., 116, 1364 (1983).
- 29 D. W. Abbott and C. Woods, Inorg. Chem., 22, 597 (1983).
- 30 L. B. Clark and I. Tinoco, Jr., J. Am. Chem. Soc., 87, 11 (1965).
- 31 J. K. Kouinis, P. T. Veltsistas and J. M. Tsangaris, Monatsh. Chem., 113, 155 (1982).
- 32 A. Lautié and A. Novak, J. Chim. Phys. Phys. Chim. Biol., 65, 1359 (1968); 68, 1492 (1971).
- 33 R. Savoie, J.-J. Jutier, L. Prizant and A. L. Beauchamp, Spectrochim. Acta, Part A:, 38, 561 (1982).
- 34 S. Shirotake, Chem. Pharm. Bull., 28, 1673 (1980).
- 35 L. Cattalini, R. J. H. Clark, A. Orio and C. K. Poon, Inorg. Chim. Acta, 2, 62 (1968).
- 36 M. A. S. Goher, Bull. Soc. Chim. Fr., Sect. I:, 262 (1982).
- 37 M. Katada, Y. Uchida, K. Sato, H. Sano, H. Saki and Y. Maeda, Bull. Chem. Soc. Jpn., 55, 444 (1982).
- 38 A. A. McConnell, D. H. Brown and W. E. Smith, Spectrochim. Acta, Part A:, 38, 265 (1982).
- 39 R. J. H. Clark and C. S. Williams, Inorg. Chem., 4, 350 (1965).
- 40 I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20, 429 (1964).
- 41 V. Imhof and R. S. Drago, Inorg. Chem., 4, 427 (1965).
- 42 D. J. Hodgson, Prog. Inorg. Chem., 23, 211 (1977).
- 43 J. Arpalahti, Finn. Chem. Lett., 111 (1983).
- 44 L. Prizant, M. J. Olivier, R. Rivest and A. L. Beauchamp, J. Am. Chem. Soc., 101, 2765 (1979).
- 45 P. I. Vestues and E. Sletten, Inorg. Chim. Acta, 52, 269 (1981).
- 46 E. Sletten, Acta Crystallogr., Sect. B:, 25, 1480 (1969).
- 47 P. de Meester and A. C. Skapski, J. Chem. Soc. A:, 2167 (1971);
- A. Terzis, A. L. Beauchamp and R. Rivest, Inorg. Chem., 12, 1166 (1973).