The Formation of Unsymmetric Diarsines from the Reaction of Aminoarsines and Secondary Organoarsines

VIRENDRA K. GUPTA, LARRY K. KRANNICH* and CHARLES L. WATKINS

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Ala. 35294, U.S.A. (Received March 3, 1988)

Abstract

The reaction of $Me₂ AsNMe₂$ with $Ph₂ AsH$ yields $Ph₂ AsAsMe₂$, $Me₂ AsAsMe₂$, $Ph₂ AsAsPh₂$ and Me,NH. The course of the reaction was studied over a range of temperatures and concentrations in toluene-d₈ solution using ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy. The NMR data indicate the initial formation of $Me₂NH$ and $Ph₂AsAsMe₂$. The diarsine subsequently undergoes symmetrization to give a mixture of the unsymmetric diarsine and the two symmetric diarsines. All attempts to isolate Ph_2 -AsAsMe₂ were unsuccessful. Exchange processes involving the $>\text{AsN}\ll\llbracket >\text{AsM}\ll\llbracket >\text{AsAs}\ll\ll\llbracket >\text{AsAs}\ll\ll\ll\llbracket >\text{AsA}$ systems are very influential in determining the overall rate of reaction. Equilibrium constants were determined for the $Me₂AsAsMe₂/Ph₂AsAsPh₂$ and $Et₂AsAsEt₂/Ph₂AsAsPh₂$ systems. The results are compared with those of the analogous $Me₂ AsH/$ Me₂AsNMe₂ system.

Introduction

Our studies on the $Me₂ AsNMe₂/Me₂ AsH [1],$ $Me₂ AsNMe₂/MeAsH₂$ [2] and $Me₂ AsNMe₂/Et₂As AsEt₂$ [3] systems demonstrated that the lability of the $As-N$, $As-As$ and $As-H$ bonds leads to exchange reactions involving H_{-} , Me₂As-, Me₂Nand/or MeAs< units. These exchange processes influence the overall rate of reaction and/or the equilibrium product distribution. These investigations led to new and convenient synthetic routes to symmetric diarsines [l] and cyclic polyarsines $[4]$.

Previous reports concerning the characterization of unsymmetric diarsines are limited to those for $(CF_3)_2$ AsAsMe₂ [5, 6]. Recently, we noted that the reaction of $Me₂ AsNMe₂$ with $Et₂ AsASEt₂$ yields the unsymmetric diarsine, $Me₂ As AsEt₂$, in solution [3]. Thus, we have undertaken a detailed study of several reaction systems, which lead to the formation of unsymmetric diarsines in solution via R_2As exchange processes to gain an understanding of the influence that various substituents may have on the lability of the As-As bond and the potential isolation of unsymmetric diarsines.

In this paper, we describe our results related to the formation of $Ph₂ As AsMe₂$ from the reaction of $Me₂ AsNMe₂$ with $Ph₂ AsH$. The course of the reaction was studied by ¹H and ¹³C NMR spectroscopy as a function of reactant concentration, temperature and time. Those factors that significantly influence the rate of formation of $Ph₂As AsMe₂$ and its equilibrium concentration are discussed. We also describe NMR studies of potential exchange reactions involving the $>AsNNH$, >AsN</>AsH, >AsN</>AsAs<, >AsAs</>AsH, and >AsAs</>AsAs<systems.

Experimental

Standard high-vacuum-line techniques and a Vacuum Atmospheres Model HE-43 Dri-lab equipped with a Model HE-493 Dri-Train were used for storing and handling of all compounds. Toluene-d₈ and Me4Si were purchased from Aldrich Chemical Company and were stored over molecular sieves. Me₂NH (Matheson Gas Products) was dried over sodium metal and was distilled on the vacuum line prior to use. $Me₂ AsAsMe₂$ (60 °C/25 torr) [1], Et₂AsAsEt₂ (185 °C) [1,7], Ph₂AsAsPh₂ (melting point (m.p.) 129-130 °C) [8], Me₂AsCl (106 °C) [9], Et₂AsCl (73-76 °C/73 torr) [10], Me₂AsH (36°C) [11], Ph₂AsH (160°C/10 torr) [12] and $Me₂ AsNMe₂$ (108 °C) [13] were synthesized by previously reported methods. $Ph₂ AsNMe₂$ (111-114 \degree C/1.0 torr) was synthesized by the reaction of $Ph₂AsCl$ with Me₂NH using a procedure [13] analogous to that reported for $Me₂ AsNMe₂$. The purity of all compounds was checked by NMR spectroscopy. The reaction mixtures were protected from exposure to light. The NMR tubes were carefully washed in a non-acid medium to prevent any possible acid-catalyzed exchange.

 $\rm ^1H$ and $\rm ^{13}C$ NMR spectra were recorded on a Nicolet 300 MHz multinuclear FT NMR spectrometer operating at 300.1 and 75.4 MHz, respectively, using tetramethylsilane as an internal reference.

0020-1693/88/\$3.50 0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

The ¹H NMR peaks were integrated with respect to a constant integration value for the TMS signal throughout a study. Reactant concentrations as a function of time in the $Me₂ AsNMe₂/Ph₂ AsH$ and Me₂AsNMe₂/Me₂AsH systems were determined by the integration of the ¹H NMR Ph₂AsH and Me₂AsH resonances, respectively. The overall rate of reaction k_2 (1 mol⁻¹ min⁻¹) was determined from the slope of a plot of the reciprocal of the reactant concentration *versus* time $(1:1$ stoichiometry) and the corresponding correlation coefficients, r , are given in the text. See spectral data below for all NMR assignments.

Synthesis of Me₂AsAsMe₂ and Ph₂AsAsPh₂ from the Reaction of $Me₂ AsNMe₂ with Ph₂ AsH$

A 20.0 mmol (4.60 g) sample of $Ph₂AsH$ was condensed onto approximately 20 ml of a toluene solution containing 20.0 mmol (2.98 g) of Me₂As-NMe₂ at -196° C by using standard vacuum line techniques. The mixture was warmed slowly to -25 °C and stirred for 2 days. The toluene and dimethylamine were removed under reduced pressure in the vacuum line. The resulting white solid was washed with pet-ether $(40-60 \degree C)$ and recrystallized from a chloroform-pet-ether mixture [yield] 3.2 g (69%); Ph_2AsASH_2 , m.p. 129-130 °C [8]. Vacuum distillation of the filtrate gave 1.5 g $Me₂As$. AsMe₂ (71%) at 60 °C/25 torr [1]. The diarsines were characterized by ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy $[1]$.

Reactions of Me₂AsNMe₂ with $Ph₂AsH$ and Me₂AsH; $Me₂ AsAsMe₂ with Ph₂ AsH; and Ph₂ AsAsPh₂ with$ $Me₂AsH, Me₂AsAsMe₂$ and $Me₂AsNMe₂$

The reactions of Me₂AsNMe₂ with equimolar amounts of $Ph₂AsH$ (1.32, 0.75 or 0.50 mmol) and Me₂AsH (0.75 or 0.50 mmol); Me₂AsAsMe₂ (0.50 mmol) with $Ph₂AsH$ (0.50 mmol); and $Ph₂AsAsPh₂$ (0.25 mmol) with Me₂AsH (0.25 mmol) , Me₂As-AsMe₂ (0.25 mmol) and Me₂AsNMe₂ (0.25 mmol) were carried out in toluene-d₈ using the following procedure. The appropriate amount of the less volatile compound and a drop of TMS were dissolved in enough toluene- $d_{\rm B}$ in an NMR tube (10 mm \times 22.5 cm, Pyrex) equipped with a greaseless vacuum stopcock. The tube was degassed using standard vacuum line techniques. At liquid nitrogen temperatures, an equimolar amount of the more volatile compound was condensed into the NMR tube. The total volume of the solution was maintained at 4.0 ml. The tube was sealed, agitated gently at -95° C (toluene slush), and inserted into the precooled $(-90 \degree C)$ probe of the NMR spectrometer. The reaction was then followed at selected temperatures by recording the ¹H and ¹³C NMR spectra as a function of time. We restricted our study to a maximum temperature of -10 °C due to the low boiling Me₂.

NH. The reaction of Me₂AsNMe₂ with Ph₂AsH carried out with more than 0.75 mmol of each reactant resulted in the precipitation of Ph₂As- $AsPh₂$.

Reactions of Ph_2AsAh_2 with R_2AsAsR_2

Equimolar amounts of $Ph_2AsAsPh_2$ and R_2As - $AsR₂$ (R = Me, Et) (0.50 mmol of each reactant) were dissolved in enough toluene-d_a at room temperature to give a total solution volume of 4.0 ml. The reaction was monitored by H NMR spectroscopy until equilibrium had been reached. The equilibrium constant, K_{eq} , was calculated for the reaction $Ph_4As_2 + R_4As_2 = 2Ph_2AsAsR_2$ by using the ¹H NMR peak intensities for the reactants and the products.

NMR Data

The following is a list of ${}^{1}H$ and ${}^{13}C$ NMR spectral data $[\delta, ppm (TMS)]$ in toluene-d₈ solution at -10 °C that were determined independently on synthesized compounds. The unsymmetric diarsine data were obtained from the solution equilibria studies.

¹H NMR Data

 $Me₂ AsNMe₂: 0.79 (Me₂ As), 2.42 (Me₂N). Ph₂$ AsH: [14] 4.84 (AsH), 6.97-7.01 (C-3, 5; C-4; m), 7.32-7.35 (C-2,6; m). $Ph_2AsAsMe_2$: 0.94 (MeAs), 6.94–7.09 (C-3,5; C-4; m), 7.51 (C-2,6; m). Ph_2 -AsAsPh₂: $6.95-6.99$ (C-3,5; C-4; m), 7.40-7.44 $(C-2,6; m)$. Me₂AsAsMe₂: 0.96. Me₂NH: 2.17 $(Me₂N)$, 0.21 (NH). Me₂AsH: 0.77 (Me₂As, d, ³J_{HH} = 7.0 Hz), 2.39 (AsH, septet, ${}^{3}J_{HH} = 6.9$ Hz). Et₂. AsAsEt₂: 1.16 (CH₃CH₂As, t), 1.54 (CH₃CH₂As, m). Me₂AsAsEt₂: [3] 1.02 (Me₂As), 1.16 (CH₃- $CH₂As$, t), 1.53 (CH₃CH₂As, m). Ph₂AsAsEt₂: 1.05 (CH_3CH_2As, t) , 1.53 (CH_3CH_2As, m) . 6.92–7.12 $(C-3,5; C-4; m)$, 7.59 $(C-2,6; m)$. Ph₂AsNMe₂: 2.50 (Me₂N), 7.10-7.16 (C-3,5; C-4 m), 7.44-7.47 (C-2, 6; m).

¹³C NMR Data

Me₂AsNMe₂: 9.70 (Me₂As, ¹J_{CH} = 130.6 Hz),
41.92 (Me₂N, ¹J_{CH} = 132.7 Hz). Ph₂AsH: [14] 128.2 (C4), 128.9 (C-3,5), 134.9 (C-2,6), 136.9 (C-1). Ph₂AsAsMe₂: 7.0 (Me₂As), 128.3 (C-4), 128.8 $(C-3,5)$, 134.4 $(C-2,6)$, 139.6 $(C-1)$. Ph₂AsAsPh₂: 128.4 (C-4), 128.8 (C-3,5), 134.9 (C-2,6), 139.1 (C-1). Me₂AsAsMe₂: 5.94 ($^{1}J_{CH}$ = 132.6 Hz). Me₂-NH: 38.87 (V_{CH} = 131.9 Hz). Me₂AsH: 1.43 (V_{CH} = 132.5 Hz). Et₂AsAsEt₂: 12.80 (CH₃CH₂As, ¹J_{CH} = 125.8 Hz), 14.63 (CH₃CH₂As, $^{1}J_{CH} = 132.4$ Hz).
Me₂AsAsEt₂: [3] 6.16 (MeAs, $^{1}J_{CH} = 132.7$ Hz), 12.61 (CH₃CH₂As, $^{1}J_{CH}$ = 125.6 Hz), 15.28 (CH₃-CH₂As, ${}^{1}J_{CH} = 132.3$ Hz). Ph₂AsAsEt₂: 12.41 (CH_3CH_2As) , 15.96 (CH₃CH₂As), 128.3 (C4), 128.8 $(C-3,5)$, 134.7 $(C-2,6)$, 139.5 $(C-1)$). $Ph₂ AsNMe₂: 43.40 (Me₂N), 140.8 (C-1), 133.2$ $(C-2, 6)$, 128.9 $(C-3, 5)$, 128.2 $(C-6)$.

Results and Discussion

The reaction of an equimolar mixture of $Me₂As NMe₂$ and $Ph₂AsH$ (0.125 M) in toluene-d_a was monitored by ¹H and ¹³C NMR spectroscopy as a function of temperature and time. The ¹H NMR spectra at -80° C consist of very low intensity peaks assignable to Ph₂AsAsMe₂, Ph₂AsAsPh₂, $Me₂ AsAsMe₂$ and $Me₂NH$ and high intensity resonances corresponding to the reactants. After raising the temperature to -60° C, the peaks associated with Ph₂AsAsMe₂ and Me₂NH increased, peaks assigned to Me₂ AsNMe₂ and Ph₂AsH decreased, and peaks attributed to Me₂AsAsMe₂ and Ph₂As-AsPh₂ increased slightly in intensity. At -40° C, the $Me₂N$ -signals (2.4 and 2.17 ppm) broadened because of slow $Me₂N$ exchange between $Me₂As$. NMe₂ and Me₂NH [1, 15]. Increased conversion of $Me₂ AsNMe₂$ and $Ph₂ AsH$ to $Ph₂ AsAsMe₂$, $Me₂ As-H$ $AsMe₂$, $Ph₂ AsAsPh₂$ and $Me₂NH$ occurred upon raising the temperature to -25 °C (CCl₄ slush). As more $Me₂ AsNMe₂$ was consumed, the $Me₂N-¹H$ NMR peaks narrowed. After 3 days at -25 °C the ¹H NMR intensity data indicated complete consumption of the reactants and a resulting equilibrium mixture containing 32% Ph₂AsAsMe₂, 9% Me₂As-AsMe₂, 9% $Ph_2AsAsPh_2$ and 50% Me₂NH and a trace amount of Me₂AsH.

These results suggest that Me₂AsNMe₂ reacts completely with $Ph₂AsH$ to yield $Ph₂AsAsMe₂$ and $Me₂NH$ (eqn. (1)). Me₂NH undergoes Me₂N– moiety

 $Me₂ AsNMe₂ + Ph₂ AsH \longrightarrow$

 $Ph₂ AsAsMe₂ + Me₂NH$ (1)

exchange with $Me₂ AsNMe₂$ (eqn. (2)). This exchange

 $Me₂ AsNMe₂ + Me₂NH \rightleftharpoons$

$$
Me2 AsNMe2 + Me2NH (2)
$$

process has been shown to be both temperature and concentration dependent $[1, 15]$ and is important in influencing the overall reaction kinetics (discussed below).

The $Ph₂ AsAsMe₂$ produced via eqn. (1) undergoes symmetrization to $Me₂ AsAsMe₂$ and $Ph₂ AsAsPh₂$ (eqn. (3)). This reaction is important in influencing

$$
2Ph2 AsAsMe2 \rightleftharpoons Me2 AsAsMe2 + Ph2 AsAsPh2 (3)
$$

both the overall reaction kinetics as well as yield of unsymmetric diarsine (discussed below).

The observation of a trace amount of Me₂AsH in the Ph_2AsH/Me_2AsNMe_2 equilibrium mixture suggests that >AsAs</>AsH exchange reactions

(eqns. (4) and (5)) could occur. Because of the previously established lability of the As-N. As-As, and As-H bonds, other reactions are also possible $[1-4]$ (eqns. (6) and (7)).

 $Ph₂ AsAsMe₂ + Ph₂ AsH \implies$

$$
Ph2AsAsPh2 + Me2 AsH (4)
$$

$$
Me2 AsAsMe2 + Ph2 AsH \rightleftharpoons
$$

$$
Ph2 AsAsMe2 + Me2 AsH (5)
$$

$$
Me2 AsH + Me2 AsNMe2 -
$$

$$
Me2 AsAsMe2 + Me2NH (6)
$$

 $Ph_2AsAsPh_2 + Me_2AsNMe_2 \rightleftharpoons$

$$
Ph2AsAsMe2 + Ph2AsNMe2 (7)
$$

The relative importance of the reactions represented by eqns. (3) - (7) was investigated independently to determine the relative rate and extent of these as they influence the course of the initial Ph₂AsH/Me₂AsNMe₂ reaction.

The symmetrization process (eqn. (3)) was investigated by following the reaction of $Me₂ AsAsMe₂$ with Ph₂AsAsPh₂. The NMR data of an equimolar mixture of Me₂AsAsMe₂ and Ph₂AsAsPh₂ in toluene d_{8} (0.125 M) at -25 °C indicated a facile exchange to vield within 50 min an equilibrium mixture containing 64% Ph₂AsAsMe₂, 18% Me₂AsAsMe₂ and 18% Ph₂AsAsPh₂. To determine the influence that the organic group on arsenic has on the equilibrium composition, we also studied the exchange reactions of $Et_2AsAsEt_2$ with $Ph_2AsAsPh_2$ and $Me₂ AsAsMe₂$ in toluene-d₈ at 24 °C. All exchange reactions reached equilibrium within 30 min of mixing. The equilibrium constants are 4.0 (50% $Me₂ AsAsEt₂$ ^{*}, 12.6, and 13.8 (65% Ph₂AsAsEt₂) for the $Me₂ AsAsMe₂/Et₂ AsAsEt₂, Ph₂AsAsPh₂/$ $Me₂ AsAsMe₂$, and $Ph₂ AsAsPh₂/Et₂ AsAsEt₂ systems,$ respectively at 24° (see 'Experimental' for NMR
data and K_{eq} definition). An equilibrium constant of 4.0 is predicted based on probability considerations. However, substitution of a phenyl group for a methyl or ethyl group shifts the equilibrium towards the unsymmetric diarsine. These data are consistent with those from previous studies on exchange reactions involving similar $P-As [16, 17]$, As-Sb $[16]$, and As-N $[3]$ systems.

The reaction represented by eqn. (4) was studied by following the reaction of $Me₂ AsH$ with $Ph₂ As-H$ AsPh₂ at -10° C, because Ph₂AsAsMe₂ cannot be isolated from solution. The reaction could only be studied at a lower concentration (0.0625 M in each reactant) because of the low solubility of Ph₂As-AsPh₂. The NMR spectra indicated facile exchange

^{*}The K_{ea} value should have been listed as 4.0 in ref. 3.

with only a limited formation of $Ph₂ AsAsMe₂$ and $Ph₂ AsH.$ At equilibrium, 5% $Ph₂ AsAsMe₂$, 5% Ph₂AsH, 45% Ph₂AsAsPh₂ and 45% Me₂AsH were detected in the reaction mixture.

The NMR spectra of the $Ph₂ AsH/Me₂ AsAsMe₂$ reaction mixture (eqn. (5)) indicated no reaction at -80 °C. However, at -25 °C, very low intensity peaks corresponding to Ph₂AsAsMe₂ and Me₂AsH were noted. After 30 min, resonances due to Ph₂As-AsMe₂ were also noted. The reaction reached equilibrium after 27 days at -25 °C with 34% Ph₂AsAs-Me₂, 21% Me₂AsAsMe₂, 7% Ph₂AsAsPh₂, 24% $Me₂ AsH$ and 14% $Ph₂ AsH$ in the reaction mixture.

The reaction represented by eqn. (6) has been previously reported [1]. Me₂AsH reacts with Me₂- $AsNMe₂$ to yield $Me₂ AsAsMe₂$ and $Me₂NH$ over the temperature and concentration conditions of this study.

The possibility of reaction between Ph₂AsAsPh₂ and Me₂AsNMe₂ (eqn. (7)) was studied at -10 °C. The NMR spectral data of an equimolar mixture indicated no reaction after 7 h. A slow reaction did occur at 24 °C to yield after 15 days a mixture containing 6% Ph₂AsAsMe₂, 6% Ph₂AsNMe₂, 44% $Me₂ AsNMe₂$ and 44% $Ph₂ AsAsPh₂$.

Although the reactions represented by eqns. (4) - (6) appear to be of minor importance in the $Me₂ AsNMe₂/Ph₂ AsH system at -25 °C, they are$ of slightly greater importance at higher reactant concentrations and temperatures. For example, an investigation of the Ph₂AsH/Me₂AsNMe₂ reaction at 0.330 M concentration and -10 °C indicated the initial formation and then consumption of Me₂AsH as proposed in eqns. (4)–(6). At –10 °C, resonances were observed initially due to $Ph₂ AsAsMe₂$, Me₂As- AsMe_2 , $\text{Ph}_2\text{AsAsPh}_2$ and Me_2NH . The ¹H NMR peaks assigned to the $Me₂N-$ moieties of $Me₂ AsNMe₂$ and Me₂NH were considerably broadened due to $Me₂N$ exchange. After 5 min, low intensity peaks attributed to Me₂AsH appeared. With time, the intensities of the Me₂AsH, Ph₂AsAsMe₂, Me₂As- AsMe_2 and $\text{Ph}_2\text{AsAsPh}_2$ peaks (eqns. (1) and (3)) increased, the widths of the $Me₂N-$ ¹H NMR lines narrowed, and the intensities of the Ph₂AsH peaks decreased. After 4 h, a trace amount of $Ph₂ AsAs$. $Ph₂$ had precipitated in the NMR tube. Although all the Ph₂AsH had been consumed within 18 h. some $Me₂ AsNMe₂$ remained. After 48 h, all the Me₂AsH, as well as the Me₂AsNMe₂, was consumed to give a mixture of Ph₂AsAsMe₂, Ph₂AsAsPh₂, $Me₂ AsAsMe₂$ and $Me₂NH$.

The relatively rapid consumption of Ph₂AsH and observed formation of Me₂AsH at -10 °C, as compared to -25 °C, can be attributed to the greater significance of the reactions represented by eqns. (4) and (5) at higher temperature and concentration. This is followed by the irreversible reaction of Me₂As- $NMe₂$ with Me₂AsH (eqn. (6)).

The synthesis of Ph₂AsAsMe₂ was attempted by reacting equimolar amounts of Me₂AsNMe₂ with Ph₂AsH at -25 °C in toluene. All attempts to isolate Ph₂AsAsMe₂ by removal of solvent and Me₂NH under reduced pressure resulted in the complete conversion to Ph₂AsAsPh₂ and Me₂AsAsMe₂.

The kinetics of the $Me₂ AsNMe₂/Ph₂ AsH reaction$ were studied at -10 and -25 °C and 0.125 and 0.188 M initial reactant concentrations (1:1 stoichiometry). Although the linearity of the plots of $[Ph_2AsH]^{-1}$ versus time at a given temperature and concentration indicates that the reaction is second order, the rate constant appears to be an averaged value for the combined reactions (eqns. (1) , (2) and (3)) rather than being specific for the initial step (eqn. (1)). As expected, the rate constant increases with increasing temperature. However, at a given temperature the apparent second order rate constant decreases with increasing initial reactant concentration although the $[Ph₂ AsH]^{-1}$ versus time plots are linear. For example, at -25 °C, k_2 $(1 \text{ mol}^{-1} \text{ min}^{-1}) = 0.012$ $(r = 0.992)$ at 0.188 M, while $k_2 = 0.020$ ($r = 0.093$) at 0.125 M. Similarly at -10° C, $k_2 = 0.035$ ($r = 0.997$) at 0.188 M and 0.040 $(r = 0.997)$ at 0.125 M. This variation of rate constant with concentration suggests that when the competing symmetrization (eqn. (2)) and transamination (eqn. (3)) reactions are considered, the overall rate of the reaction is more complex than second order.

In an attempt to establish the relative importance of the competing transamination and symmetrization reactions, the Me₂AsNMe₂/Me₂AsH system [1] was studied at the same concentrations and temperatures as those for the $Me₂ AsNMe₂/Ph₂ AsH$ system. Significant curvature in the second order rate constant plot of $[Me₂ AsH]^{-1}$ versus time was observed after one half-life. Therefore, the transamination process is very significant in slowing down the overall rate of reaction in the $Me₂ AsNMe₂/$ Me₂AsH system when there is no possibility of a symmetrization reaction. However, in the $Me₂As NMe₂/Ph₂ AsH system, the transmission reaction$ becomes less significant in slowing down the initial step, because the symmetrization process (eqn. (3)) promotes the initial step of the reaction (eqn. (1)) which involves consumption of $Ph₂AsH$.

Thus, the reaction of Me₂AsNMe₂ with Ph₂AsH to yield Ph₂AsAsMe₂ involves competing facile exchange equilibria, primarily transamination (eqn. (2)) and symmetrization (eqn. (3)), and these processes contribute significantly to the overall rate of reaction. The reactions represented by eqns. (4) - (7) appear to be of minor importance in influencing the rate of formation and overall vield of the unsymmetric diarsine at -25 °C. This can be substantiated by the fact that the ratio of the percentage distributions of Ph₂AsAsMe₂, Me₂AsAsMe₂ and $Ph_2AsAsPh_2$ at equilibrium in the $Ph_2AsH/$ $Me₂ AsNMe₂ system (eqn. (1))$ is the same as the ratio observed for the independently studied $Ph₂As$ - $AsPh_2/Me_2AsAsMe_2$ system (eqn. (3)). These exchange reactions are assumed to involve the formation of a concerted, four-centered activated intermediate that undergoes bond dissociation and formation processes to give the various exchange products observed in the reaction mixture [181.

Preliminary investigations of analogous reactions involving >AsN< and >PH bonded compounds indicate the formation of phosphinoarsines. The reaction of $Me₂ AsNMe₂$ with $Ph₂PH$ in toluene-d₈ solution yields Ph_2PAsMe_2 and Me_2NH . Ph_2PAsMe_2 then undergoes symmetrization to yield Ph_2PPPh_2 and $Me₂ AsAsMe₂$. The $>AsN\>PH$ and $>AsAs\>$ >PP< systems are currently being studied to obtain kinetic and thermodynamic data and to relate these data with those obtained from the $>AsN$ \leq and >AsAs</></>>>AsAs<</><</>systems.

Acknowledgement

This research was supported in part by a UAB Faculty Research Grant (C.L.W.).

- 1 V. K. Gupta, L. K. Krannich and C. L. Watkins, Znorg. *Chem., 25.* 2553 (1986). V. K. Gupta, L. K. Krannich and C. L. Watkins, Znorg.
- *2 3* V. K. Gupta, L. K. Krannich and C. L. Watkins, *Poly-Chim. Acta, 126, 173* (1987).
- *hedron,* 6, 1229 (1987).
- *4 5* V. K. Gupta, L. K. Krannich and C. L. Watkins, Inorg. v. K. Oupta, L. K. Kia
Chem.. 26, 1638 (1987). R. G. Cave11 and R. C. Dobbie, J. *Chem. Sot. A, 1406*
- *6* W. R. CuIlen, *Can. J. Chem., 41, 322* (1963). N. U. .
61069).
-
- *I B. W. Bullsch, Liebigs Anni, Chem., 72, 17 (1072).*
8 *K. W. Kannich and H. H. Sisler, Lung. Chem.*, 8, 1022 R. W. Bunsen, *LiebigsAnn.* Chem., 42, 14 (1842). (1969).
- *9* W. Steinkopf and W. Mieg, *Chem. Ber., 53,* 1013 (1920).
- 2 M. Stellinopt allu M. Mieg, Chem. Der., 33, 1013 (1220).
10 M. C. Kharasch, E. V. Jensen and C. Weinhouse, J. Org. *Chem., 14,429* (1949).
- 11 W. M. Dehn and B. B. Wilcox, *Am. Chem. J., 35,* 1 12 E. Wiberg and K. Modritzer, 2. *Naturforsch. Anorg.* W. M.
(1006).
- 13 K. Modritzer, *Chem. Ber.. 92, 2637* (1959). Chem., 126, 127 (1957).
-
- 15 **K.** MOUIRECI, CHEM. DEL., 72, 2051 (1757).
14 D. Batchelor and T. Birchall, J. Am. Chem. Soc., 104 15 0. Alder and F. Kober, *Chem. Ztg.. 100, 235* (1976). *674* (1982).
- 15 U. **Aluci and F. Nobel**, Chem. *Lig.*, 100, 233 (1770).
16 A. J. Ashe, III and E. G. Ludwig, Jr., J. Owenomet
- 17 A. Belforte, F. Calderazzo, A. Morvillo, G. Pelizzi and *Chem.. 303,* 197 (1986).
- 18 J. C. Lockhart, *Redistribution Reactions', Academic \mathbf{A} . Denone, I. Caluerazzo, A. Morving.
D. Vitali, Lassa Chem., 22, 1504 (1094).
- Press, New York, 1970, p. 158.