Energy Levels of Pr³⁺ in the Modulated Incommensurate Structure of ThCl₄

C. KHAN MALEK, J. C. KRUPA and M. GENET

Laboratoire de Radiochimie, Institut de Physique Nucléaire, BP 1, 91406 Orsay, France Received November 14, 1985

Abstract

The matrix β -ThCl₄ which presents an incommensurate modulated structure at low temperature is doped with the lanthanide ion Pr³⁺. The strong features in the absorption and the laser-excited fluorescence spectra have been interpreted as arising from levels of D_a3+ in the site of *D_a* symmetry as arising from some fit calculation, the best parameters are detersquares fit calculation, the best parameters are deter-
mined.

Introduction and Review of some Results Obtained on the Matrix ThCl,,

Recently there has been great interest in studying the optical spectra of U^{4+} (5f²) in the ThBr₄ [1-3] and ThCl₄ [4] matrices. β -ThBr₄ and β -ThCl₄ both undergo a second order structural phase transition at ϵ and 70 K respectively. At low temperature, R_{max} \sim R_{max} respectively. At low temperature, anian [5], hucical quadrupolal resolutive [6], and tetragonal structure is incommensurate, resulting tetragonal structure is incommensurate, resulting in a loss of periodicity along the c axis. At room temperature, the matrix β -ThCl_a has a tetragonal striporature, the matrix p -riferial has a tetragonal $T_{\rm b}$ Br, The thorium ion is at a site of relatively β -ThBr₄. The thorium ion is at a site of relatively high symmetry D_{2d} . At low temperature the site symmetry of the thorium ion or of its substitute is reduced. For β -ThCl₄ that is presently being studied
by neutron diffraction experiments, those symmetries are *C₁*, *D₁* and S₄^[8] as a consequence of the continuous \mathcal{Q}_2 , \mathcal{D}_2 and \mathcal{Q}_4 [o] as a consequence of the continuous modulation of the distance halogenmetal. Then the crystal field perceived by the optically active ion varies continuously. It was shown
that in this case the crystal field transitions give rise to absorpt in a state of the can be quite and the property which can be quite the quite can be quite the can be quite th σ absorption and characterized which can be quite broad and are characterized by edge singularities [3] reflecting the effect of the crystal field changes on the energy levels of U^{4+} . Given those interesting $\frac{1}{2}$ characteristics in $\frac{1}{2}$ spectra in T₁₄₊ $\frac{1}{2}$ particular interest to spectra in THA₄, it seemed of particular interest to study the spectra of the Pr^{3+} ion $(4f^2)$ isoelectronic with the actinide ion U^{4+}
(5f²), to see whether the existence of the incommensurate structure can be seen with a lanthanide probe. Indeed the optical spectra of $Pr³⁺$ in β -ThBr₄

[10] were analyzed at a time when the low temperature structure of the β -ThBr₄ matrix was not yet known. This article reports a tentative assignment of the energy levels of Pr^{3+} in β -ThCl_a.

Symmetry Considerations

The Th^{4+} ions in the crystal are assumed to be substituted for by the Pr^{3+} ions. Pr^{3+} is a tripositive 3+ impurity in the tetravalent matrix. The missing charge distorts the site and brings up new symmetries due to charge compensation. Thus additional lines appear in the spectra. Following the work on ThB r_4 : $Pr³⁺$ [10] and as was proved by a careful study on the line and satellites of the ${}^{3}H_{4} \rightarrow {}^{3}P_{0}$ transition [11], we assumed that the strongest lines in the spectra are the signature of the Pr^{3+} ions in the high temperature D_{2d} site symmetry which transforms into S_4 - C_2-D_2 symmetries at low temperature.

Because of the weak effect of the modulation which suggests that the environment of the actinide ions in the different symmetries are close together, its in the directive symmetries are cross together, was not possion to distinguish between the D_2 , C_2 and S_4 sites inside the bands of absorption and emission spectra. Moreover, a contribution from the S_4 symmetry is expected in the intense lines of the spectra, as will be seen later. α , as will be seen face.

If can be noticed that the selection fulles for the ectronic upole transitions in the D_{2d} and D_4 (sub- $\frac{\partial u}{\partial t}$ or $\frac{\partial u}{\partial t}$ groups are university for the transitions (Tables I and II) $\Gamma_3 \rightarrow \Gamma_1$ and $\Gamma_2 \rightarrow \Gamma_4$ that are forbidden in the D_{2d} symmetry and allowed with a π polarization in the S_4 symmetry. The other selection rules are the same.

In the S_4 symmetry, the loss of symmetry elements results in the introduction of imaginary terms in the Hamiltonian: im B44 and *im* B46, where μ is the constal field parameters in the D_4 , whereas all the crystal field parameters in the D_{2d} symmetry are real. Interpreting the data in the D_{2d} symmetry instead of the S_4 symmetry amounts to neglecting those imaginary terms in the even rank crystal field components that are used for the calculations of the energy levels of the optically active ions, Nevertheless, the use of the *Da* symactive ions. Nevertheless, the use of the D_{2d} symmetry should give the

	Set 1	Set 2
F^2	67947(112)	67866(180)
\boldsymbol{F}^4	50576(304)	50219(574)
F^6	33468(161)	33322(311)
	742(3)	742(6)
α^a	21(1)	19(2)
$\beta/12^a$	$-39(4)$	$-43(6)$
$\gamma^{\mathbf{a}}$	1343	1343
B_0^2	545(37)	20(76)
B_0^4 B_4^4	$-657(90)$	292(155)
	876(58)	$-964(95)$
B_0^6	1398(115)	$-1525(199)$
B_4^6	508(97)	52(188)
Number of levels	52	52
$r.m.s.: \sigma^b$	34	66

TABLE I. 'Spectroscopic Best Fit Parameters from Fitting Pr^{3+} in β -ThCl₄. Set 1 Corresponds to a Γ_5 Ground State and Set 2 to a Γ_4 Ground State

 μ_{∞} is fixed at the value for aqueous solution $[14] \cdot \alpha$ and R were varied and then fixed. $b_{\mathbf{r},m,s,\alpha} = (\nabla \cdot (F_{\alpha,\alpha})$ $E_{\rm obs}$)²/(n_{obs} - n_{par})^{1/2}, where $E_{\rm calc}$ and $E_{\rm obs}$ are the calculated and observed energy respectively; n_{obs} and n_{part} are the number of observed energy levels and the number of varying parameters.

main features of the spectra. Esterowitz et *al.* [12] had already noticed with Pr^{3+} doped in LiYF₄ at a site of S_4 symmetry that the D_{2d} selection rules have been useful in identifying the energy levels of Pr^{3+} .

Thus we shall interpret the spectra of Pr^{3+} in β - ΓhCl_4 in the D_{24} symmetry. The crystal field eigentates are the \overline{P} , \overline{P} , \overline{P} , \overline{P} , and \overline{P} , point group representations associated with the D_{2d} symmetry. Only the Γ_5 representation is doubly degenerate, the other ones being non-degenerate.

Analysis of the Spectra

 β -ThCl₄:Pr³⁺ single crystals were grown by the Bridgeman method [13]. The doping material was Pr_6O_{11} or $PrCl_3$ using approximately 1% by weight. The absorption and fluorescence spectra were recorded with a one-meter monochromator Jobin Yvon 'HR 1000' equipped for the visible region with a 1200 lines/mm grating and a photomultiplier, and with a 600 lines/mm grating and a PbS photocell for the IR region. Fluorescence of the crystal was excited with Sopra nitrogen pumped dye laser tuned in the ${}^{3}P_{0}$ region (around 20.500 cm^{-1}) with a minimal bandwidth of 0.75 Å (3 cm^{-1}) .

Because of the charge compensation, many more lines appeared and we could not get polarized spectra.

TABLE II. Energy Levels of Pr^{3+} in ThCl₄ (52 observed energies). Set 1 corresponds to a Γ_5 ground state. Set 2 corresponds to a Γ_4 ground state

$L-S$ state	Observed	Set 1		Set 2		
	$\text{(cm}^{-1})$	Calculated $\text{(cm}^{-1})$	Irreducible representation in D_{2d} symmetry	Calculated $\text{(cm}^{-1})$	Irreducible representation in D_{2d} symmetry	
$^{3}H_{4}$	$\bf{0}$	33	Γ_5	43	Γ_4	
	172^a	198	Γ_1	185	Γ_1	
		206	Γ_2	196	Γ_5	
	317 ^a	255	Γ_3	244	Γ_2	
	318 ^a	357	Γ_1	312	Γ_3	
	497 ^a	434	Γ_5	446	Γ_1	
	557 ^a	572	Γ_4	486	Γ_5	
$^{3}H_{5}$	2123 ^a	2159	Γ_2	2225	Γ_3	
	2153 ^a	2180	Γ_1	2252	Γ_5	
	2288^{a}	2265	Γ_5	2322	Γ_5	
	2307 ^a	2332	Γ_5	2343	Γ_2	
	2340 ^a	2353	Γ_4	2405	Γ_4	
	2423 ^a	2476	Γ_2	2474	Γ_5	
	2475 ^a	2514	Γ_5	2476	Γ_1	
	2612 ^a	2616	Γ_3	2578	Γ_2	
$^{3}H_{6}$	4250	4215	Γ_5	4286		
	4422	4400	Γ_1	4325	Γ_4	
	4445	4459		4412	Γ_5	
	4477	4494	Γ_3 Γ_5	4435	Γ_3 Γ_4	

(continued on facing page)

Energy Levels of Pr3+

TABLE II. *(continued)*

(continued overleafl

TABLE II. *(continued)* I

^aCorresponds to the lines observed in fluorescence spectra.

We overcame the difficulty by comparing the spectra $\frac{1}{2}$ of P₃₊ in T₁ $\frac{1}{2}$ in T₁ μ is a polarized σ . The similar two sets that similar those two sets in the similar two sets in were polarized $[10]$. The similarity of those two sets of spectra encouraged us to follow their analysis. In Specific Chequing Cu is to follow their dilarysis. if $\lim_{x \to 0}$ if $\lim_{x \to 0}$ (3 $\lim_{x \to 0}$ (3 $\lim_{x \to 0}$ ground state) σ polarization, thus leading to a (³H₄) Γ ₅ ground state in the D_{2d} symmetry.

The selection rules for the zero phonon electric dipole transitions in the *Dw are the following* the symmetry are the following ϵ is ansierous in the ν_{2d} symmetry

 $\Gamma_5 \longrightarrow \Gamma_5$ polarization π

 $\Gamma_5 \longrightarrow \Gamma_1, \Gamma_2, \Gamma_3$ and Γ_4 polarization σ

In the most intense lines, a contribution due to provide the *most* intense thes, a contribution due to Pr^{3+} ions in the D_{2d} symmetry is expected. Indeed, the intensity of electric dipole transition in the same configuration and regardless of the symmetry of the ion site is proportional to a matrix element involving the crystal field parameters of odd rank $(B^k \xi)$. The D_2 symmetry is close to the D_{2d} symmetry at low temperature. Thus the additional parameter B^{5*}_{4} to be added to the odd rank parameters for the D_2 $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2$ ymmetry D_2 and D_2 - common with the D_{2d} symmetry $-$ can be supposed to be weak. Therefore the intensity of the lines corresponding to ions in the *Dw and the state will follow the state will follow the same tree* \mathcal{D}_{2d} and \mathcal{D}_2 symmetries will follow the same tiend Another argument is in favour of this hypothesis:

 $\frac{1}{2}$ $\frac{1}{2}$ the most intense lines of the spectrum at 4.2 K still exist at 80 K, above the phase transition temperature where the symmetry to be considered is the initial D_{2d} symmetry. The weak lines were systematically excluded from our analysis whether they are due to charge compensation and thus correspond to other sites of symmetry or whether they come from transitions with weak intensity in D_{2d} (e.g., some transitions towards the $^{1}I_{6}$ Stark levels) or transitions

allowed in D_2 symmetry. So we tried to sort out the lit correspond to Propose the correspondence that contains P_2 symmetry, so we then to solve the the studies correspond to be L_{2d} symmetry, though the selection rules seem to be somewhat relaxed because more transitions can be seen than
are expected.

The absorption and fluorescence data obtained by exciting the ${}^{3}P_0$ were used in the fitting program which adjusted the various spectroscopic parameters of *a* little control intervalstions spectroscopic parameters $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. (i) interefectionic repulsition $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, while $\kappa =$ field characteristic of the *Dzd* symmetry: *Bo2, Bo4,* Figure in a distribution the D_{2d} symmetry. D_0 , D_0 B_4^4 , B_0^6 , B_4^6 . In addition to these major contributions the configuration interaction parameters α , β and γ were used. $T_{\rm H}$ were used, $T_{\rm H}$ in ThBr4+ in

 $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are absorption data absorpt 10], and in the first step only the absorption data vere integrative reasonable values for D_q were obtained, the calculated values were compared to the lines determined from fluorescence experiments. These fluorescence lines were assigned in the order derived from the fit, and the calculation was continued. The final set of best fit parameters values is listed in Table I. In the last step, the configuration interaction parameters α and β were varied, but not γ , whose value depends on the position of both the ${}^{3}P_{0}$ and ¹S₀ levels. The starting values of α and β and γ were fixed at the values in aqueous solution $[16]$.

The values of the experimental and calculated energies with their irreducible representations and the L-S states from which they are derived are given
in Table II.

Conclusion

We already stressed the similarity between β -ThCl₄:Pr³⁺ and β -ThBr₄:Pr³⁺ [10]. Assuming that the $\frac{1}{2}$ and $\frac{1}{2}$ -ThBr4.Fr $\frac{1}{2}$ to $\frac{1}{2}$, Assuming that the T_{u} and T_{u} and T_{u} are T_{u} and T_{u} and T_{u} are T_{u} and T_{u} a 1, Tables I and II) results in a calculated set of ener-
gy and parameters very close to those of ThBr₄: $Pr³⁺$,

	$ThCl_4:Pr^{3+}$		ThBr ₄ :Pr ³⁺ [10] LuPO ₄ :Pr ³⁺ [17] YPO ₄ :Pr ³⁺ [17] ThBr ₄ :U ⁴⁺ [1] ThCl ₄ :U ⁴⁺ [4]				
	Set 1	Set 2					
F^2	67947	67866	68354	67688	677779	42253	42752
F^4	50576	50219	50310	48633	49603	40458	39925
F^6	33468	33322	33799	32151	32413	25881	24519
ξ	742	742	739	744	739	1783	1808
$\pmb{\alpha}$	21	19	21	21	21	31	30
$\beta/12$	-39	-43	-67	-55	-55	-54	-41
$\pmb{\gamma}$	1343	1343	1343	1534	1534	1200	1200
B_0^2 B_0^4	545	20	260	21	78	-1096	-1054
	-657	292	-644	280	321	1316	1146
B_4^4	876	-964	929	-808	-849	-2230	-2767
B_0^6		$1398 - 1525$	1089	-1658	-1377	-3170	-2135
B_4^6	508	52	241	291	35	686	$-(312)$
Number of levels	52	52	42	18	35	26	25
σ (cm ⁻¹)	34	66	61	27	15	36	46

TABLE III. Spectroscopic Parameters of Pr^{3+} in the D_2 symmetry and of U^{4+} for comparison

 b ut with crystal field parameters $B^{\bm{k}}$ different in $\frac{1}{2}$ from those found in LuPO \cdot Pr³⁺ [17] and ThX \cdot U^{4+} (X = Br [1]; X = Cl [4]) [Table III]. This difference seemed somewhat surprising in view of the s in the coordination polyhedron of \mathbb{H}^{4+} or \mathbb{P}^{3+} in the D_{2d} symmetry in all those compounds.

Following the calculation of the energy levels of Pr^{3+} in LUPO₁ and YPO₁ [17] and of U^{4+} in ThY₄ [1, 4], we repeated the calculation with a Γ_4 ground state (set 2 in Tables I and III). The starting values for the B^k_q were taken with the same sign as in those compounds. We concluded upon a fitting with a somewhat larger discrepancy between calculated and experimental levels but whose consistency according to the other studies is more satisfactory.

In the crystal that was studied, the effects of the structure modulation of the matrix are not clear in absorption. In fluorescence, the emission spectra showed some differences when the *3Po* line was scanned. Unfortunately the laser used in our experiments did not have a bandwidth small enough to permit us to clearly relate the effect of the modulation on the emission spectra. Moreover, the crystals were too concentrated for that type of study. But the effect of the modulation with Pr^{3+} in ThCl₄ has been observed when studying the fluorescence of the *3Po* line in less concentrated crystals (0.01%) and using a laser with a better definition [ill.

Acknowledgements

The authors of the article wish to thank Dr. R. C. Naik for his collaboration on the work and Dr. P. Delamoye for helpful discussion concerning the theoretical aspects of the problem. Dr. N. Edelstein is thanked for providing the matrix elements and the fitting program.

References

- P. Delamoye, K. Rajnak, M. Genet and N. Edelstein, Phys. *Rev. B,* 28, 9,4923 (1983).
- P. Delamoye, J. C. Krupa, J. G. Conway and N. Edelstein, *Phys. Rev. B, 28, 9,* 4913 (1983).
- P. Delamoye and R. Currat, J. *Phys., 43, L655* (1982).
- C. Khan Malek, J. C. Krupa, P. Delamoye and M. Genet, to be published.
- S. Hubert, P. Delamoye, S. Lefrant, M. LeposteIlec and M. Hussonnois, J. *Solid State Chem., 36, 36* (1981).
- C. Khan Malek, A. Peneau, L. Guibe, P. Delamoye and M. Hussonnois, J. Molec. *Strut., 83, 201* (1982). L. Bernard. R. Currat. P. Delamoye. C. M. E. Zeyen.
- S. Hubert and R. de Kouchkovsky; j. *Phys. C, 16,433* (1983).
- 8 P. Delamoye, L. Bernard, R. Currat, J. C. Krupa and G. Petitgrant, Journée de l'Etat Solide, Bordeaux, 1984, (conference presentation). R. C. L. Mooney, *Acta Crystallogr., 2,* 189 (1949).
- 9 α J. G. Conway, J. C. Krupa, P. DeIamoye and M. Genet,
- *J. Chem. Phys., 74, 2,849* (1981).
- 11 R. C. Naik, J. C. Krupa, C. Khan Malek, The International Symposium on Rare Earth Spectroscopy, Wroohw, 1984 (Conference presentation).
- 120 Computed providences,
2 L. Esterowitz, J. E. Bartoli, D. E. Allen, D. E. Wortman C. A. Morrison and R. P. Leavitt, *Phys. Rev., B, 19, 6442* (1979).
- 13 M. Hussonnois, J. C. Krupa, M. Genet, L. BriIIard and R. Carlier, J. *Cryst. Growth, 51,* 11 (1981).
- 14 G. F. Koster, J. 0. Dimmock, R. G. Wheeler and H. S. Statz, 'Properties of the Thirtytwo Point Groups', MIT Cambridge, Mass. 1963.
- 15 S. Hufner, 'Optical Spectra of Trar sparent Rare Earth Compounds', Academic Press, 1978.
- 16 W. T. Carnal& P. R. Fields and K. Rajnak, *J. Chem. Phys., 49, 4424 (1968).*
- 17 T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner and M. M. Abraham, *J. Chem. Phys., 76, 8,396O* (1982).