Energy Levels of Pr³⁺ in the Modulated Incommensurate Structure of ThCl₄

C. KHAN MALEK, J. C. KRUPA and M. GENET

Laboratoire de Radiochimie, Institut de Physique Nucléaire, BP 1, 91406 Orsay, France Received November 14, 1985

Abstract

The matrix β -ThCl₄ which presents an incommensurate modulated structure at low temperature is doped with the lanthanide ion Pr^{3+} . The strong features in the absorption and the laser-excited fluorescence spectra have been interpreted as arising from levels of Pr^{3+} in the site of D_{2d} symmetry. In a leastsquares fit calculation, the best parameters are determined.

Introduction and Review of some Results Obtained on the Matrix ThCl₄

Recently there has been great interest in studying the optical spectra of U^{4+} (5f²) in the ThBr₄ [1-3] and ThCl₄ [4] matrices. β -ThBr₄ and β -ThCl₄ both undergo a second order structural phase transition at 95 and 70 K respectively. At low temperature, Raman [5], nuclear quadrupolar resonance [6], and neutron diffraction experiments [7, 8] reveal that the tetragonal structure is incommensurate, resulting in a loss of periodicity along the c axis. At room temperature, the matrix β -ThCl₄ has a tetragonal structure $(I4_1/amd)$ [9] and is isostructural with β -ThBr₄. The thorium ion is at a site of relatively high symmetry D_{2d} . At low temperature the site symmetry of the thorium ion or of its substitute is reduced. For β -ThCl₄ that is presently being studied by neutron diffraction experiments, those symmetries are C_2 , D_2 and S_4 [8] as a consequence of the continuous modulation of the distance halogenmetal. Then the crystal field perceived by the optically active ion varies continuously. It was shown that in this case the crystal field transitions give rise to absorption and emission lines which can be quite broad and are characterized by edge singularities [3] reflecting the effect of the crystal field changes on the energy levels of U⁴⁺. Given those interesting characteristics in the U^{4+} spectra in ThX₄, it seemed of particular interest to study the spectra of the Pr³⁺ ion $(4f^2)$ isoelectronic with the actinide ion U^{4+} $(5f^2)$, to see whether the existence of the incommensurate structure can be seen with a lanthanide probe. Indeed the optical spectra of Pr^{3+} in β -ThBr₄ [10] were analyzed at a time when the low temperature structure of the β -ThBr₄ matrix was not yet known. This article reports a tentative assignment of the energy levels of Pr³⁺ in β -ThCl₄.

Symmetry Considerations

The Th⁴⁺ ions in the crystal are assumed to be substituted for by the Pr^{3+} ions. Pr^{3+} is a tripositive 3+ impurity in the tetravalent matrix. The missing charge distorts the site and brings up new symmetries due to charge compensation. Thus additional lines appear in the spectra. Following the work on ThBr₄: Pr^{3+} [10] and as was proved by a careful study on the line and satellites of the ${}^{3}H_{4} \rightarrow {}^{3}P_{0}$ transition [11], we assumed that the strongest lines in the spectra are the signature of the Pr^{3+} ions in the high temperature D_{2d} site symmetry which transforms into S_{4} - C_{2} - D_{2} symmetries at low temperature.

Because of the weak effect of the modulation which suggests that the environment of the actinide ions in the different symmetries are close together, it was not possible to distinguish between the D_2 , C_2 and S_4 sites inside the bands of absorption and emission spectra. Moreover, a contribution from the S_4 symmetry is expected in the intense lines of the spectra, as will be seen later.

It can be noticed that the selection rules for the electronic dipole transitions in the D_{2d} and S_4 (subgroup of D_{2d}) groups are different only for the transitions (Tables I and II) $\Gamma_3 \rightarrow \Gamma_1$ and $\Gamma_2 \rightarrow \Gamma_4$ that are forbidden in the D_{2d} symmetry and allowed with a π polarization in the S_4 symmetry. The other selection rules are the same.

In the S_4 symmetry, the loss of symmetry elements results in the introduction of imaginary terms in the Hamiltonian: im B_4^4 and im B_4^6 , whereas all the crystal field parameters in the D_{2d} symmetry are real. Interpreting the data in the D_{2d} symmetry instead of the S_4 symmetry amounts to neglecting those imaginary terms in the even rank crystal field components that are used for the calculations of the energy levels of the optically active ions. Nevertheless, the use of the D_{2d} symmetry instead of the S_4 symmetry should give the

	Set 1	Set 2
$\overline{F^2}$	67947(112)	67866(180)
F^4	50576(304)	50219(574)
F ⁶	33468(161)	33322(311)
	742(3)	742(6)
α ^a	21(1)	19(2)
$\beta/12^{a}$	39(4)	-43(6)
γ^{a}	1343	1343
B_0^2	545(37)	20(76)
B_0^4	-657(90)	292(155)
B_4^4	876(58)	-964(95)
B ₀ ⁶	1398(115)	-1525(199)
B ₄ ⁶	508(97)	52(188)
Number of levels	52	52
r.m.s.: σ ^b	34	66

TABLE I. Spectroscopic Best Fit Parameters from Fitting Pr^{3+} in β -ThCl₄. Set 1 Corresponds to a Γ_5 Ground State and Set 2 to a Γ_4 Ground State

 ${}^{a}\gamma$ is fixed at the value for aqueous solution [14]; α and β were varied and then fixed. ${}^{b}r.m.s.$: $\sigma = (\Sigma (E_{calc} - E_{obs})^2/(n_{obs} - n_{par}))^{1/2}$, where E_{calc} and E_{obs} are the calculated and observed energy respectively; n_{obs} and n_{par} are the number of observed energy levels and the number of varying parameters.

main features of the spectra. Esterowitz *et al.* [12] had already noticed with Pr^{3+} doped in LiYF₄ at a site of S_4 symmetry that the D_{2d} selection rules have been useful in identifying the energy levels of Pr^{3+} .

Thus we shall interpret the spectra of Pr^{3+} in β -ThCl₄ in the D_{2d} symmetry. The crystal field eigenstates are the Γ_1 , Γ_2 , Γ_3 , Γ_4 and Γ_5 point group representations associated with the D_{2d} symmetry. Only the Γ_5 representation is doubly degenerate, the other ones being non-degenerate.

Analysis of the Spectra

 β -ThCl₄:Pr³⁺ single crystals were grown by the Bridgeman method [13]. The doping material was Pr₆O₁₁ or PrCl₃ using approximately 1% by weight. The absorption and fluorescence spectra were recorded with a one-meter monochromator Jobin Yvon 'HR 1000' equipped for the visible region with a 1200 lines/mm grating and a photomultiplier, and with a 600 lines/mm grating and a PbS photocell for the IR region. Fluorescence of the crystal was excited with a Sopra nitrogen pumped dye laser tuned in the ³P₀ region (around 20 500 cm⁻¹) with a minimal bandwidth of 0.75 Å (3 cm⁻¹).

Because of the charge compensation, many more lines appeared and we could not get polarized spectra.

TABLE II. Energy Levels of Pr^{3+} in ThCl₄ (52 observed energies). Set 1 corresponds to a Γ_5 ground state. Set 2 corresponds to a Γ_4 ground state

L-S state	Observed (cm ⁻¹)	Set 1		Set 2		
		Calculated (cm ⁻¹)	Irreducible representation in D_{2d} symmetry	Calculated (cm ⁻¹)	Irreducible representation in D_{2d} symmetry	
³ H ₄	0	33	Γ5	43	Γ4	
	172 ^a	198	Γ_1	185	Γ_1	
		206	Γ_2	196	Γ5	
	317 ^a	255	Γ3	244	Γ2	
	318 ^a	357	Γ ₁	312	Гз	
	497 ^a	434	Γ5	446	Γ_1	
	557 ^a	572	Г <mark>4</mark>	486	Γ_5	
³ H ₅	2123 ^a	2159	Га	2225	Γa	
5	2153 ^a	2180	Γ1	2252	- 3 Γε	
	2288 ^a	2265	Γ ₅	2322	- 3 Γε	
	2307 ^a	2332	- 3 Γε	2343	Γ ₂	
	2340 ^a	2353	Γ.	2405	Γ.	
	2423 ^a	2476	- -	2474	Γε	
	2475 ^a	2514	- 2 Гs	2476	- 3 Г1	
	2612 ^a	2616	Γ_3	2578	Γ ₂	
³ H6	4250	4215	Γc	4286	Γ.	
0	4422	4400	г <u>э</u> Г.	4325	14	
	4445	4459	Г. Га	4412	г.5 Га	
	4477	4494	Γ ₅	4435	Г3 Г4	

(continued on facing page)

Energy Levels of Pr³⁺

TABLE II. (continued)

$ \frac{(cm^{-1})}{(cm^{-1})} = \frac{1}{10} \frac{D_{2d} symmetry}{D_{2d} symmetry} = \frac{1}{(cm^{-1})} = \frac{1}{10} \frac{D_{2d} symmetry}{10} = \frac{1}{10} D_{$	L-S state	Observed	Set 1		Set 2		
		(cm ⁻¹)	Calculated (cm^{-1})	Irreducible representation in D_{2d} symmetry	Calculated (cm ⁻¹)	Irreducible representation in D_{2d} symmetry	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4504	4497	Γ4	4455	Γ ₁	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4522	4500	Га	4561	Га	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		4539	4530	Γ_2	4580	Γ2	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		4629	4638		4640	Γ.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4784	4756	Γe	4730	- 3 Г1	
${}^{3}F_{2} = \begin{cases} 4976 & 5042 & \Gamma_{1} & 5051 & \Gamma_{4} \\ 5039 & 5048 & \Gamma_{5} & 5076 & \Gamma_{5} \\ 5100 & 5153 & \Gamma_{4} & 5119 & \Gamma_{1} \\ 5100 & 5153 & \Gamma_{4} & 5119 & \Gamma_{1} \\ 6435 & 6412 & \Gamma_{2} & 6338 & \Gamma_{2} \\ 6444 & 6438 & \Gamma_{2} & 6446 & \Gamma_{5} \\ 6444 & 6438 & \Gamma_{2} & 6446 & \Gamma_{5} \\ 6446 & 6486 & \Gamma_{5} & 6449 & \Gamma_{4} \\ 6533 & 6498 & \Gamma_{4} & 6538 & \Gamma_{5} \\ \end{cases}$		4833	4789	Γ ₄	4812	Γ ₅	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{3}F_{2}$	4976	5042	Γ.	5051	Γ.	
	- 2	5030	5042	F_	5076	14	
		5100	5104	15	5102	15	
${}^{3}F_{3} = \begin{pmatrix} 5160 & 5153 & F_{4} & 5119 & F_{3} \\ 6475 & 6377 & 6328 & F_{5} & 6338 & F_{2} \\ 6405 & 6412 & F_{3} & 6392 & F_{3} \\ 6444 & 6458 & F_{2} & 6446 & F_{5} \\ 6486 & 6486 & F_{5} & 6449 & F_{4} \\ 6533 & 6498 & F_{4} & 6538 & F_{5} \\ \hline {}^{6}6229 & 6912 & F_{1} & 6929 & F_{4} \\ 6929 & 6912 & F_{1} & 6929 & F_{4} \\ 6929 & 6912 & F_{1} & 6929 & F_{4} \\ 6967 & 6995 & F_{2} & 6947 & F_{2} \\ 7023 & 7010 & F_{4} & 7018 & F_{1} \\ 7044 & 7057 & F_{5} & 7040 & F_{5} \\ 7066 & 7070 & F_{1} & 7099 & F_{3} \\ \hline {}^{7}G_{4} & & & & & & & & & & & & & & & & & & &$		5100	5100	13	5105		
$ {}^{3}F_{3} = 6377 + 6328 + r_{5} = 6338 + r_{2} \\ {}^{6405 + 6412 + r_{3} + 6446 + r_{5} + 6444 + 6458 + r_{2} + 6446 + r_{5} + 6444 + r_{4} + 6453 + r_{2} + 6533 + 6446 + r_{5} + 6449 + r_{4} + 6533 + 6498 + r_{4} + 6533 + r_{5} + 6890 + r_{5} + 6929 + 6912 + r_{1} + 6929 + r_{4} + 6929 + 6912 + r_{1} + 6929 + r_{4} + 6967 + 6995 + r_{2} + 6947 + r_{2} + 7023 + 7010 + r_{4} + 7018 + r_{1} + 7044 + 7057 + r_{5} + 7004 + 75 + 7066 + 7070 + r_{1} + 7099 + r_{3} + 7066 + 7070 + r_{1} + 7099 + r_{3} + 9800 + r_{4} + 9800 + r_{4} + 9721 + r_{5} + 9800 + r_{4} + 9800 + r_{4} + 9721 + r_{5} + 9805 + r_{5} + 10001 + r_{1} + 9800 + r_{4} + 9721 + r_{5} + 9805 + r_{5} + 10001 + r_{1} + 9809 + r_{5} + 10001 + r_{1} + 9809 + r_{5} + 10001 + r_{4} + 10012 + r_{4} + 10122 + 7110 + 75 + 100372 + r_{3} + 100372 + r_{3} + 10372 + r_{3} + 10012 + r_{4} + 16861 + r_{5} + 16921 + 17122 + 71120 + r_{3} + 10372 + r$		5160	5153	Γ ₄	5119	ľ3	
	³ F ₃	6377	6328	Γ5	6338	Γ_2	
		6405	6412	Г3	6392	Гз	
		6444	6458	Γ_2	6446	Γ_5	
		6486	6486	Γ ₅	6449	Га	
${}^{3}F_{4} = 6818 = 6819 = \Gamma_{3} = 6843 = \Gamma_{1} = 6894 = 6886 = \Gamma_{5} = 6929 = \Gamma_{4} = 6927 = \Gamma_{2} = 6947 = \Gamma_{2} = 7023 = 7010 = \Gamma_{4} = 7018 = \Gamma_{1} = 7044 = 7057 = \Gamma_{5} = 7040 = \Gamma_{5} = 7066 = 7070 = \Gamma_{1} = 7099 = \Gamma_{3} = 7040 = \Gamma_{5} = 7066 = 7070 = \Gamma_{1} = 7099 = \Gamma_{3} = 7040 = \Gamma_{5} = 9800 = \Gamma_{4} = 9947 = \Gamma_{2} = 9800 = \Gamma_{4} = 9947 = \Gamma_{2} = 9885 = \Gamma_{5} = 10001 = \Gamma_{1} = 9885 = \Gamma_{5} = 10001 = \Gamma_{1} = 9947 = \Gamma_{2} = 10012 = \Gamma_{4} = 10132 = \Gamma_{5} = 10012 = \Gamma_{4} = 10132 = \Gamma_{5} = 10012 = \Gamma_{4} = 10142 = \Gamma_{5} = 10142 = \Gamma_{5} = 10012 = \Gamma_{4} = 10142 = \Gamma_{5} = 10144 = \Gamma_{$		6533	6498	Γ ₄	6538	Γ ₅	
	³ F ₄	6818	6819	Г ₃	6843	Г1	
		6894	6886	Γs	6890	Γε	
		6929	6912	-з Г1	6929	- 3 Fa	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6967	6995	- 1 Га	6947		
${}^{1044} \begin{array}{c} 7037 \\ 7066 \end{array} \begin{array}{c} r_{4} \\ 7057 \\ 7066 \end{array} \begin{array}{c} r_{5} \\ 7070 \end{array} \begin{array}{c} r_{1} \\ r_{1} \end{array} \begin{array}{c} 7040 \\ 7099 \end{array} \begin{array}{c} r_{5} \\ r_{3} \\ r_{3} \end{array}$		7023	7010	- 2 Га	7018	- 2 Г:	
${}^{1}G_{4} = \begin{array}{ccccccccccccccccccccccccccccccccccc$		7044	7057	Γ	7040		
${}^{1}G_{4} \qquad \qquad \begin{array}{ccccccccccccccccccccccccccccccccc$		7066	7070	Γ_1	7099	Г3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ C.		0634	T.	0654	P	
${}^{3600} \qquad {}^{14} \qquad {}^{9721} \qquad {}^{15} \qquad {}^{15} \qquad {}^{9825} \qquad {}^{11} \qquad {}^{9947} \qquad {}^{72} \qquad {}^{2} \qquad {}^{9885} \qquad {}^{15} \qquad {}^{10001} \qquad {}^{71} \qquad {}^{9947} \qquad {}^{72} \qquad {}^{16710} \qquad {}^{9969} \qquad {}^{72} \qquad {}^{10012} \qquad {}^{74} \qquad {}^{10142} \qquad {}^{75} \qquad {}^{10035} \qquad {}^{75} \qquad {}^{10035} \qquad {}^{75} \qquad {}^{100372} \qquad {}^{73} \qquad {}^{1022} \qquad {}^{16734} \qquad {}^{16781} \qquad {}^{74} \qquad {}^{16861} \qquad {}^{75} \qquad {}^{16921} \qquad {}^{16899} \qquad {}^{75} \qquad {}^{16911} \qquad {}^{71} \qquad {}^{17122} \qquad {}^{17120} \qquad {}^{73} \qquad {}^{17063} \qquad {}^{74} \qquad {}^{3}P_0 \qquad {}^{20517} \qquad {}^{20459} \qquad {}^{71} \qquad {}^{20457} \qquad {}^{71} \qquad {}^{20457} \qquad {}^{71} \qquad {}^{3}P_1 \qquad {}^{20994} \qquad {}^{21026} \qquad {}^{75} \qquad {}^{21082} \qquad {}^{75} \qquad {}^{21082} \qquad {}^{75} \qquad {}^{21235} \qquad {}^{16e11} \qquad {}^{71} \qquad {}^{20935} \qquad {}^{73} \qquad {}^{21168} \qquad {}^{75} \qquad {}^{21325} \qquad {}^{176} \qquad {}^{20935} \qquad {}^{73} \qquad {}^{21168} \qquad {}^{75} \qquad {}^{21348} \qquad {}^{75} \qquad {}^{21371} \qquad {}^{71} \qquad {}^{21339} \qquad {}^{75} \qquad {}^{21406} \qquad {}^{21392} \qquad {}^{71} \qquad {}^{21376} \qquad {}^{72} \qquad {}^{21406} \qquad {}^{21392} \qquad {}^{71} \qquad {}^{21376} \qquad {}^{72} \qquad {}^{71} \qquad {$	04		9034	13	9034		
${}^{9625} \qquad {}^{1}_{1} \qquad {}^{9947} \qquad {}^{1}_{2} \\ {}^{9885} \qquad {}^{5}_{5} \qquad 10001 \qquad {}^{7}_{1} \\ {}^{9999} \qquad {}^{9999} \qquad {}^{2}_{2} \qquad 10012 \qquad {}^{7}_{4} \\ {}^{10142} \qquad {}^{7}_{5} \qquad 10035 \qquad {}^{7}_{5} \\ {}^{10378} \qquad {}^{7}_{1} \qquad 10372 \qquad {}^{7}_{3} \end{array}$			9000	14	9721	15	
${}^{9883} \qquad \Gamma_{5} \qquad 10001 \qquad \Gamma_{1} \\ {}^{9969} \qquad \Gamma_{2} \qquad 10012 \qquad \Gamma_{4} \\ {}^{10142} \qquad \Gamma_{5} \qquad 10035 \qquad \Gamma_{5} \\ {}^{10378} \qquad \Gamma_{1} \qquad 10372 \qquad \Gamma_{3} \\ {}^{1}D_{2} \qquad 16710 \qquad 16679 \qquad \Gamma_{1} \qquad 16656 \qquad \Gamma_{3} \\ {}^{16734} \qquad 16781 \qquad \Gamma_{4} \qquad 16861 \qquad \Gamma_{5} \\ {}^{16921} \qquad 16899 \qquad \Gamma_{5} \qquad 16911 \qquad \Gamma_{1} \\ {}^{17122} \qquad 17120 \qquad \Gamma_{3} \qquad 17063 \qquad \Gamma_{4} \\ {}^{3}P_{0} \qquad 20517 \qquad 20459 \qquad \Gamma_{1} \qquad 20457 \qquad \Gamma_{1} \\ {}^{3}P_{1} \qquad 20994 \qquad 21026 \qquad \Gamma_{5} \qquad 21082 \qquad \Gamma_{5} \\ {}^{21235} (\text{Set 1}) \qquad 21204 \qquad \Gamma_{2} \qquad 21090 \qquad \Gamma_{2} \\ {}^{17}_{6} \qquad 21235 (\text{Set 2}) \qquad 20934 \qquad \Gamma_{4} \\ {}^{20935} \qquad \Gamma_{3} \qquad 21161 \qquad \Gamma_{1} \\ {}^{21371} \qquad \Gamma_{4} \qquad 21339 \qquad \Gamma_{5} \\ {}^{21371} \qquad \Gamma_{4} \qquad 21376 \qquad \Gamma_{2} \\ {}^{10012} \qquad \Gamma_{1} \qquad 21376 \qquad \Gamma_{2} \\ {}^{10012} \qquad \Gamma_{1} \qquad 21376 \qquad \Gamma_{2} \\ {}^{1001} \qquad \Gamma_{1} \qquad 21376 \qquad \Gamma_{2} \\ {}^{1001} \qquad \Gamma_{1} \qquad \Gamma_{1} \\ {}^{1001} \qquad \Gamma_{1} \qquad \Gamma_{1} \\ {}^{1001} \qquad \Gamma_{1} \qquad \Gamma_{1} \\ {}^{1001} \qquad \Gamma_{1} \\ {}^{1001} \qquad \Gamma_{2} \\ {}^{1001} \qquad$			9823		9947	Γ_2	
${}^{9969} \qquad {}^{\Gamma_2} \qquad 10012 \qquad {}^{\Gamma_4} \\ 10142 \qquad {}^{\Gamma_5} \qquad 10035 \qquad {}^{\Gamma_5} \\ 100378 \qquad {}^{\Gamma_1} \qquad 100372 \qquad {}^{\Gamma_3} \\ 100372 \qquad {}^{\Gamma_3} \\ {}^{1}D_2 \qquad {}^{1}6710 \qquad {}^{1}6679 \qquad {}^{\Gamma_1} \qquad {}^{\Gamma_4} \qquad {}^{1}6656 \qquad {}^{\Gamma_3} \\ {}^{1}6734 \qquad {}^{1}6781 \qquad {}^{\Gamma_4} \qquad {}^{1}6861 \qquad {}^{\Gamma_5} \\ {}^{1}6921 \qquad {}^{1}6899 \qquad {}^{\Gamma_5} \qquad {}^{1}6911 \qquad {}^{\Gamma_1} \\ {}^{1}7122 \qquad {}^{1}7120 \qquad {}^{\Gamma_3} \qquad {}^{1}7063 \qquad {}^{\Gamma_4} \\ {}^{3}P_0 \qquad {}^{2}0517 \qquad {}^{2}0459 \qquad {}^{\Gamma_1} \qquad {}^{2}0457 \qquad {}^{\Gamma_1} \\ {}^{3}P_1 \qquad {}^{2}0994 \qquad {}^{2}1026 \qquad {}^{\Gamma_5} \qquad {}^{2}1082 \qquad {}^{\Gamma_5} \\ {}^{2}1235 (Set 1) \qquad {}^{2}1204 \qquad {}^{\Gamma_2} \qquad {}^{2}1090 \qquad {}^{\Gamma_2} \\ {}^{1}I_6 \qquad {}^{2}1235 (Set 2) \qquad {}^{2}0934 \qquad {}^{\Gamma_4} \qquad {}^{2}1161 \qquad {}^{\Gamma_1} \\ {}^{2}0935 \qquad {}^{\Gamma_3} \qquad {}^{2}1168 \qquad {}^{\Gamma_5} \\ {}^{2}1348 \qquad {}^{\Gamma_5} \qquad {}^{2}1265 \qquad {}^{\Gamma_3} \\ {}^{2}1371 \qquad {}^{\Gamma_4} \qquad {}^{2}1339 \qquad {}^{\Gamma_5} \\ {}^{2}1406 \qquad {}^{2}1392 \qquad {}^{\Gamma_1} \qquad {}^{2}1376 \qquad {}^{\Gamma_2} \end{array}$			9885	Γs	10001	Γ_1	
${}^{10142} \qquad \Gamma_{5} \qquad 10035 \qquad \Gamma_{5} \\ 10378 \qquad \Gamma_{1} \qquad 10372 \qquad \Gamma_{3} \\ 1037 \qquad \Gamma_{3} \\$			9969	Γ_2	10012	Γ_4	
${}^{1}D_{2} = \begin{array}{ccccccccccccccccccccccccccccccccccc$			10142	Γ_5	10035	Γ ₅	
${}^{1}D_{2} = \begin{bmatrix} 16710 & 16679 & \Gamma_{1} & 16656 & \Gamma_{3} \\ 16734 & 16781 & \Gamma_{4} & 16861 & \Gamma_{5} \\ 16921 & 16899 & \Gamma_{5} & 16911 & \Gamma_{1} \\ 17122 & 17120 & \Gamma_{3} & 17063 & \Gamma_{4} \end{bmatrix}$			10378	Γ_1	10372	Г3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{1}D_{2}$	16710	16679	Γ_1	16656	Г3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16734	16781	Γ4	16861	Γ5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16921	16899	Гя	16911	Γι	
$ {}^{3}P_{0} 20517 20459 \Gamma_{1} 20457 \Gamma_{1} $		17122	17120	Г3	17063	Γ ₄	
${}^{3}P_{1} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	³ P ₀	20517	20459	Γ1	20457	Γ ₁	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	³ P ₁	20994	21026	Γε	21082	Γe	
${}^{1}I_{6} = {}^{1}I_{2} = $	•	21235 (Set 1)	21204	- 5 Го	21090	- 3 Га	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21200 (600 1)	21204	12	21090	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ I ₆	21235 (Set 2)	20934	Г4	21161	Γ ₁	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			20935	13	21168	15	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			21348	Γ ₅	21265	Г3	
21406 21392 Γ_1 21376 Γ_2			21371	Γ4	21339	Γ ₅	
A. /		21406	21392	Γ_1	21376	Γ_2	
21457 r ₅ 21463 r ₄			21457	Γ5	21463	Γ4	
21522 21535 Γ ₂ 21506 Γ ₃		21522	21535	Γ2	21506	Г3	
21787 r ₅ 21634 r ₁			21787	Γ ₅	21634	Γ_1	

(continued overleaf)

TABLE II. (continued)

I

<i>L-S</i> state	Observed (cm ⁻¹)	Set 1		Set 2		
		Calculated (cm ⁻¹)	Irreducible representation in D_{2d} symmetry	Calculated (cm^{-1})	Irreducible representation in D _{2d} symmetry	
		21799		21653	Γ5	
		21800	Γ_3	21693	Γ ₄	
³ P ₂	22179	22226	Γ.	22310	Γ2	
- 2	22427 (Set 2)	22312	Γ ₅	22313	- 3 Γs	
	22427 (Set 1)	22415	Γ	22333	Γ_1	
	22483	22517	Γ_3	22402	Γ4	
¹ S ₀		46660	Г1	46570	Γ_1	

^aCorresponds to the lines observed in fluorescence spectra.

We overcame the difficulty by comparing the spectra of Pr^{3+} in ThCl₄ with those of Pr^{3+} in ThBr₄ that were polarized [10]. The similarity of those two sets of spectra encouraged us to follow their analysis. In ThBr₄:Pr³⁺, the (³P₀) Γ_1 line clearly showed a σ polarization, thus leading to a (³H₄) Γ_5 ground state in the D_{2d} symmetry.

The selection rules for the zero phonon electric dipole transitions in the D_{2d} symmetry are the following (notation of Koster *et al.* [14]):

 $\Gamma_5 \longrightarrow \Gamma_5$ polarization π

 $\Gamma_5 \longrightarrow \Gamma_1, \Gamma_2, \Gamma_3$ and Γ_4 polarization σ

In the most intense lines, a contribution due to Pr^{3+} ions in the D_{2d} symmetry is expected. Indeed, the intensity of electric dipole transition in the same configuration and regardless of the symmetry of the ion site is proportional to a matrix element involving the crystal field parameters of odd rank $(B^{k} t_{4})$. The D_{2} symmetry is close to the D_{2d} symmetry at low temperature. Thus the additional parameter $B^{5} t_{4}$ to be added to the odd rank parameters for the D_{2} symmetry $B^{3} t_{2}$ and $B^{5} t_{2}$ – common with the D_{2d} symmetry – can be supposed to be weak. Therefore the intensity of the lines corresponding to ions in the D_{2d} and D_{2} symmetries will follow the same trend as was observed on ThBr:U⁴⁺ [1] and ThCl₄:U⁴⁺ [4].

Another argument is in favour of this hypothesis: the most intense lines of the spectrum at 4.2 K still exist at 80 K, above the phase transition temperature where the symmetry to be considered is the initial D_{2d} symmetry. The weak lines were systematically excluded from our analysis whether they are due to charge compensation and thus correspond to other sites of symmetry or whether they come from transitions with weak intensity in D_{2d} (e.g., some transitions towards the ${}^{1}I_{6}$ Stark levels) or transitions allowed in D_2 symmetry. So we tried to sort out the lines that correspond to Pr^{3+} in D_{2d} symmetry, though the selection rules seem to be somewhat relaxed because more transitions can be seen than are expected.

The absorption and fluorescence data obtained by exciting the ${}^{3}P_{0}$ were used in the fitting program which adjusted the various spectroscopic parameters of [15]: (i) interelectronic repulsion F^{k} , with k =0.2,4,6. (ii) spin-orbit coupling ξ . (iii) crystal field characteristic of the D_{2d} symmetry: B_{0}^{2} , B_{0}^{4} , B_{4}^{4} , B_{0}^{6} , B_{4}^{6} . In addition to these major contributions the configuration interaction parameters α , β and γ were used.

The starting values were those of Pr^{3+} in ThBr₄ [10], and in the first step only the absorption data were fitted. Once reasonable values for B_q^k were obtained, the calculated values were compared to the lines determined from fluorescence experiments. These fluorescence lines were assigned in the order derived from the fit, and the calculation was continued. The final set of best fit parameters values is listed in Table I. In the last step, the configuration interaction parameters α and β were varied, but not γ , whose value depends on the position of both the ${}^{3}P_{0}$ and ${}^{1}S_{0}$ levels. The starting values of α and β and γ were fixed at the values in aqueous solution [16].

The values of the experimental and calculated energies with their irreducible representations and the L-S states from which they are derived are given in Table II.

Conclusion

We already stressed the similarity between β -ThCl₄:Pr³⁺ and β -ThBr₄:Pr³⁺ [10]. Assuming that the ground state is Γ_5 as in β -ThBr₄:Pr³⁺, the fitting (set 1, Tables I and II) results in a calculated set of energy and parameters very close to those of ThBr₄:Pr³⁺,

	ThCl ₄ :Pr ³⁺		ThBr ₄ :Pr ³⁺ [10] LuPO ₄ :Pr ³⁺ [17]		YPO4:Pr ³⁺ [17]	ThBr ₄ :U ⁴⁺ [1]	ThCl ₄ :U ⁴⁺ [4]
	Set 1	Set 2					
F^2	67947	67866	68354	67688	677779	42253	42752
F^4	50576	50219	50310	48633	49603	40458	39925
F^{6}	33468	33322	33799	32151	32413	25881	24519
ξ	742	742	739	744	739	1783	1808
α	21	19	21	21	21	31	30
β/12	-39	-43	-67	-55	-55	-54	-41
γ	1343	1343	1343	1534	1534	1200	1200
B_{0}^{2}	545	20	260	21	78	-1096	-1054
B_{0}^{4}	-657	292	-644	280	321	1316	1146
B4	876	-964	929	-808	-849	-2230	-2767
B ₀ ⁶	1398	-1525	1089	-1658	-1377	-3170	-2135
B 4	508	52	241	291	35	686	-(312)
Number of levels	52	52	42	18	35	26	25
σ (cm ⁻¹)	34	66	61	27	15	36	46

TABLE III. Spectroscopic Parameters of Pr^{3+} in the D_{2d} symmetry and of U^{4+} for comparison

but with crystal field parameters B^{k}_{q} different in sign from those found in LuPO₄:Pr³⁺ [17] and ThX₄: U⁴⁺ (X = Br [1]; X = Cl [4]) [Table III]. This difference seemed somewhat surprising in view of the similar coordination polyhedron of U⁴⁺ or Pr³⁺ in the D_{2d} symmetry in all those compounds.

Following the calculation of the energy levels of Pr^{3+} in LUPO₄ and YPO₄ [17] and of U⁴⁺ in ThX₄ [1, 4], we repeated the calculation with a Γ_4 ground state (set 2 in Tables I and III). The starting values for the B^{k}_{q} were taken with the same sign as in those compounds. We concluded upon a fitting with a somewhat larger discrepancy between calculated and experimental levels but whose consistency according to the other studies is more satisfactory.

In the crystal that was studied, the effects of the structure modulation of the matrix are not clear in absorption. In fluorescence, the emission spectra showed some differences when the ${}^{3}P_{0}$ line was scanned. Unfortunately the laser used in our experiments did not have a bandwidth small enough to permit us to clearly relate the effect of the modulation on the emission spectra. Moreover, the crystals were too concentrated for that type of study. But the effect of the modulation with Pr^{3+} in ThCl₄ has been observed when studying the fluorescence of the ${}^{3}P_{0}$ line in less concentrated crystals (0.01%) and using a laser with a better definition [11].

Acknowledgements

The authors of the article wish to thank Dr. R. C. Naik for his collaboration on the work and Dr. P. Delamoye for helpful discussion concerning the theoretical aspects of the problem. Dr. N. Edelstein is thanked for providing the matrix elements and the fitting program.

References

- 1 P. Delamoye, K. Rajnak, M. Genet and N. Edelstein, *Phys. Rev. B*, 28, 9, 4923 (1983).
- 2 P. Delamoye, J. C. Krupa, J. G. Conway and N. Edelstein, *Phys. Rev. B*, 28, 9, 4913 (1983).
- 3 P. Delamoye and R. Currat, J. Phys., 43, L655 (1982).
- 4 C. Khan Malek, J. C. Krupa, P. Delamoye and M. Genet, to be published.
- 5 S. Hubert, P. Delamoye, S. Lefrant, M. Lepostellec and M. Hussonnois, J. Solid State Chem., 36, 36 (1981).
- 6 C. Khan Malek, A. Peneau, L. Guibe, P. Delamoye and M. Hussonnois, J. Molec. Struct., 83, 201 (1982).
- 7 L. Bernard, R. Currat, P. Delamoye, C. M. E. Zeyen, S. Hubert and R. de Kouchkovsky, J. Phys. C, 16, 433 (1983).
- 8 P. Delamoye, L. Bernard, R. Currat, J. C. Krupa and G. Petitgrant, *Journée de l'Etat Solide*, Bordeaux, 1984, (conference presentation).
- 9 R. C. L. Mooney, Acta Crystallogr., 2, 189 (1949). 10 J. G. Conway, J. C. Krupa, P. Delamoye and M. Genet,
- 10 J. G. Conway, J. C. Krupa, P. Delamoye and M. Genet, J. Chem. Phys., 74, 2, 849 (1981).
- 11 R. C. Naik, J. C. Krupa, C. Khan Malek, The International Symposium on Rare Earth Spectroscopy, Wrocław, 1984 (Conference presentation).
- 12 L. Esterowitz, J. F. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison and R. P. Leavitt, *Phys. Rev.*, *B*, 19, 6442 (1979).
- 13 M. Hussonnois, J. C. Krupa, M. Genet, L. Brillard and R. Carlier, J. Cryst. Growth, 51, 11 (1981).
- 14 G. F. Koster, J. O. Dimmock, R. G. Wheeler and H. S. Statz, 'Properties of the Thirtytwo Point Groups', MIT Cambridge, Mass. 1963.
- 15 S. Hufner, 'Optical Spectra of Trai sparent Rare Earth Compounds', Academic Press, 1978.
- 16 W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 49, 4424 (1968).
- 17 T. Hayhurst, G. Shalimoff, J. G. Conway, N. Edelstein, L. A. Boatner and M. M. Abraham, J. Chem. Phys., 76, 8, 3960 (1982).