A room temperature luminescent cyclometallated ruthenium(II) complex of 6-phenyl-2,2'-bipyridine

Jean-Paul Collin, Marc Beley, Jean-Pierre Sauvage

Laboratoire de Chimie Organo-Minérale, UA au CNRS 422, Institut de Chimie, 1 rue Blaise Pascal, F 67008 Strasbourg (France)

and Francesco Barigelletti

Istituto FRAE-CNR, I-40126 Bologna (Italy)

(Received January 2, 1991; revised March 4, 1991)

Abstract

The cyclometallated complex Ru(tt)(phbp)⁺ (tt=4'-tolyl-2,2':6'2"-terpyridine, phbp=6-phenyl-2,2'-bipyridine) with a (N,N,N)(C,N,N) coordination, has been synthesized and characterized by ¹H NMR, UV, FAB-MS spectral techniques and by elemental analysis. We have compared its electrochemical and photophysical properties with those of the non-orthometallated analogues Ru(tt)₂²⁺ and Ru(terpy)₂²⁺ (terpy=2,2':6',2"-terpyridine). The most remarkable feature of Ru(tt)(phbp)⁺ is its ability to luminesce at room temperature in alcoholic and nitrile solvents. The lifetime of its ³MLCT excited state is 60 ns in CH₃CN.

Introduction

 $Ru(terpy)_2^{2+}$ (terpy = 2,2':6',2"-terpyridine) is nonluminescent at room temperature, its metal-to-ligand charge transfer (MLCT) excited state being very short lived [1-3]. In order to circumvent this weakness, a promising approach is to increase the ligand field (LF) or to diminish the MLCT energy level so that the MLCT and the LF states become well separated [4, 5]. Cyclometallating ligands represent an interesting possibility in order to increase ligand field effects [6]. 2-Phenylpyridine has been used as an orthometallating analogue of bpy (bpy=2,2'-bipyridine) [7]. Recently, 6-phenyl-2,2'-bipyridine (phbpH) has been proposed as a C-N-N coordinating molecule with geometrical properties very similar to those of terpy [8, 9] when associated to Rh(III), Pd(II), Pt(II), Au(III) or Hg(II).

We now report the synthesis of a ruthenium(II) cyclometallated complex of phbp⁻ and we compare its electrochemical and photophysical properties with those of the non-orthometallated analogues $Ru(tt)_2^{2+}$ or $Ru(terpy)_2^{2+}$. The most remarkable feature of $Ru(tt)(phbp)^+$ is its ability to luminesce at room temperature in alcoholic and nitrile solvents. The ligands used are represented in Scheme 1.

Experimental

Preparation of $Ru(tt)(phbp)(PF_6)$

A solution of Ru(tt)Cl₃ in acetone was heated to reflux, under argon, for 30 min with 3 equivalents of AgBF₄. After filtration and evaporation of the solvent, the residue was treated with a stoichiometric amount of 6-phenyl-2,2' bipyridine in n-butanol. The mixture was heated to reflux, under argon for 6 h, after which the solvent was evaporated. The solid was dissolved in CH₃CN and treated with an excess of NH₄PF₆ in water. The brown precipitate was collected by filtration and subjected to chromatography on silica (acetone-aqueous KNO₃ as eluent). The purple band led to [Ru(tt)(phbp)⁺][PF₆⁻] after anion exchange (17% yield). ¹H NMR (CD₃CN): δ (ppm) versus TMS: 8.86 (2H, s), 8.55 (2H, d, 7.3 Hz), 8.42 (2H, m), 8.25 (2H, d, 8 Hz), 8.07 (3H, m), 7.80 (4H, m), 7.50 (5H, m), 7.05 (3H, m), 6.74 (1H, t, 7.5 Hz), 6.52 (1H, t, 7.5 Hz), 5.79 (1H, d, 7.5 Hz), 2.5 (3H, s). FAB-MS: *m*/z 656 [Ru(tt)(phbp)]⁺. *Anal.* Calc. for Ru(tt)-(phbp)(PF₆): C, 56.99; H, 3.52; N, 8.74. Found: C, 56.80; H, 3.69; N, 8.43%.

Physical measurements

Absorption spectra were recorded with a Perkin-Elmer Lamda 5 spectrophotometer. Corrected emission spectra were obtained with a Spex Fuorolog-2 fluorimeter by using software supplied by the firm. The luminescence lifetimes were measured by using an Applied Photophysics single photon counting instrument employing a nitrogen or deuterium excitation lamp and equipped with an Epson PC. Analyses of the decay profiles were performed with programs based on least-squares iterative non-linear procedures [10].

Results and discussion

phbpH was obtained as a by-product in the course of the synthesis of 6,6'-diphenyl-2,2'-bipyridine [11].

Fig. 1. Absorption (A) and emission spectra ($\lambda_{exc} = 500$ nm) (B) of Ru(tt)(phbp)⁺ in ethanol-methanol (4:1 vol./ vol.) at room temperature.

TABLE	1.	Emission	properties*
-------	----	----------	-------------

It was reacted with $Ru(tt)Cl_3$ [12] to afford $[Ru(tt)(phbp)^+][PF_6^-]$ in 17% yield.

The redox potential of the Ru(tt)(phbp)⁺ couple (Ru^{III/II}: $E^0 = 0.54$ V versus SCE in CH₃CN) is drastically less positive than that of Ru(tt)₂²⁺ (Ru^{III/II}: $E^0 = 1.24$ V versus SCE in DMSO) [13]. This is clear evidence for the strong σ -donating character of the anionic ligand phbp⁻ as compared to a terpy type molecule.

The absorption and emission spectra of $Ru(tt)(phbp)^+$ are shown in Fig. 1.

The intense low energy absorption band ($\lambda_{max} = 523$ nm, $\epsilon = 9960 \text{ M}^{-1} \text{ cm}^{-1}$ in ethanol-methanol (4:1 vol./vol.)) corresponds to a MLCT transition. Its bathochromic shift as compared to $Ru(terpy)_2^{2+}$ $(\lambda_{max} = 473 \text{ nm})$ or Ru(tt)_2^{2+} ($\lambda_{max} = 490 \text{ nm}$) is in agreement with the higher electron density of the metal centre. A weak emission band can also be observed, whose excitation spectrum (400-700 nm) in ethanol-methanol (4:1 vol./vol.) or propionitrile-butyronitrile (4:5 vol./vol.) is similar to the absorption spectrum. The emission data are collected in Table 1 together with the corresponding data for $Ru(tt)_2^{2+}$ and $Ru(terpy)_2^{2+}$. The emission properties are consistent with the following picture. With respect to $Ru(tt)_2^{2+}$ or $Ru(terpy)_2^{2+}$, ortho-metallation results in stronger σ -donation by phbp⁻ so that in Ru(tt)(phbp)⁺ the luminescent ³MLCT levels move to low energy and the ³MC levels move to high energy, as qualitatively depicted in Fig. 2.

As a consequence, the distorted ³MC excited state (doorway to photochemistry and radiationless paths [15]) becomes thermally less accessible from the ³MLCT excited states and the complex Ru(tt)(phbp)⁺ is luminescent at room temperature. However, the ³MLCT levels move to very low energy (see Table 1) and according to the 'energy gap law' [16], this causes a dramatic increase of non-radiative processes directly from the luminescent level. Emission is thus weak compared to that of the complexes of the Ru–polypyridine family [15].

	298 K ^b			77 K°		
	λ (nm)	τ (μs)	$\Phi_{em}{}^{d}$	λ (nm)	τ (μs)	${\pmb{\varPhi}_{em}}^{d}$
$Ru(tt)(phbp)^+$ $Ru(terpy)_2^{2+e}$ $Ru(tt)_2^{2+f}$	808	0.06	5×10 ⁻⁶	792 598 609	0.9 11.0 9.1	2×10 ⁻⁴ 0.48

^aThe errors on the various experimental data are as follows: $\pm 30\%$ on Φ_{em} and $\pm 25\%$ on τ . ^bCH₃CN as solvent ^cPropionitrile-butyronitrile (4:5 vol./vol.) solvent unless otherwise stated. ^dRelative to Ru(bpy)₃²⁺ as a standard, deaerated CH₃CN: $\Phi_{em} = 0.062$; ref. 14. ^cMeOH/EtOH (4:1 vol./vol.) solvent, from ref. 3. ^fAt 90 K; $\lambda_{em} = 628$ nm.

Fig. 2. Qualitative energy level diagram for $Ru(terpy)_2^{2+}$ and $Ru(tt)(phbp)^+$.

In conclusion, replacing one neutral terpy-type ligand with an anionic C–N–N coordinating structure leads to a luminescent complex analogous to $Ru(terpy)_2^{2+}$. Although relatively short lived and of little energy content, the ³MLCT state of $Ru(tt)(phbp)^+$ should turn to be of photochemical use.

Acknowledgements

Dr C.O. Dietrich-Buchecker is thanked for the gift of phbpH ligand. Johnson Mathey is also gratefuly acknowledged for a generous gift of RuCl₃ and the CNRS for financial support.

References

- 1 C. T. Lin, W. Böttcher, M. Chou, C. Creutz and N. Sutin, J. Am. Chem. Soc., 98 (1976) 6536.
- 2 R. C. Young, J. K. Nagle, T. J. Meyer and D. G. Whitten, J. Am. Chem. Soc., 100 (1978) 4773.
- 3 M. L. Stone and G. A. Crosby, Chem. Phys. Lett., 79 (1981) 169.
- 4 J. V. Caspar and T. J. Meyer, Inorg. Chem., 22 (1983) 2444.
- 5 G. H. Allen, R. P. White, D. P. Rillema and T. J. Meyer, J. Am. Chem. Soc., 106 (1984) 2613.
- 6 P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Fronczek and J.Selbin, *Inorg. Chem.*, 24 (1985) 4078.
- 7 E. C. Constable and J. M. Holmes, J. Organomet. Chem., 301 (1986) 203.
- 8 E. C. Constable, R. P. G. Henney, T. A. Leese and D. A. Tocher, J. Chem. Soc., Chem. Commun., (1990) 513.
- 9 E. C. Constable, R. P. G. Henney, T. A. Leese and D. A. Tocher, J. Chem. Soc., Dalton Trans., (1990) 443.
- 10 P. R. Bevington, Data Reduction and Error Analysis for Physical Sciences, McGraw-Hill, New York, 1969.
- 11 C. O. Dietrich-Buchecker, P. A. Marnot and J. P. Sauvage, *Tetrahedron Lett.*, 23 (1982) 5291.
- 12 B. P. Sullivan, J. M. Calvert and T. J. Meyer, Inorg. Chem., 19 (1980) 1404.
- 13 R. P. Thummel, V. Hegde and Y. Jahng, *Inorg. Chem.*, 28 (1989) 3264.
- 14 J. M. Calvert, J. V. Caspar, R. A. Binstead, T. D. Westmoreland and T. J. Meyer, J. Am. Chem. Soc., 104 (1982) 6620.
- 15 A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, *Coord. Chem. Rev.*, 84 (1988) 85.
- 16 T. J. Meyer, Pure Appl. Chem., 58 (1986) 1193.