Tris(pentafluorophenyl)gold(III) Complexes with O-, N- or S-donor Ligands

RAFAEL USÓN, ANTONIO LAGUNA, MARIANO LAGUNA, JOSEFINA JIMÉNEZ and M. EUGENIA DURANA Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Saragossa (Spain)

(Received August 4, 1989)

Abstract

Au(C₆F₅)₃(OEt₂) is a better intermediate complex than Au(C₆F₅)₃·tht (tht = tetrahydrothiophen). The former compound can be prepared from (NBu₄)-[Au(C₆F₅)₃Br] and AgClO₄ in diethylether and the ether ligand can be easily displaced by neutral ligands [L = THF, OCMe₂, diox, EtOH, SPPh₃, SPPh₂Me, OPPh₃, OAsPh₃, NCMe, NCPh, NCPr, NCCH=CH₂, o·(NC)₂C₆H₄] as well as cationic ones [(X)PPh₂CH₂-PPh₂R]⁺ [X = S, R = Me, CH₂C₆F₅, COOMe, CH₂Ph; X = O, R = CH₂Ph] to give the corresponding neutral or cationic tris(pentafluorophenyl)gold(III) complexes most of which were hitherto unaccessible.

Introduction

Gold(I) or gold(III) complexes containing thioether ligands R₂S are useful preparative intermediates since R_2S is easily displaced by other good ligands for gold(I). In particular, we have used $C_6F_5Au(tht)$ (tht = tetrahydrothiophen) where tht can readily be displaced by a variety of ligands both neutral or anionic [1-3]. In the gold(III) complex Au(C₆F₅)₃-(tht) the Au-S bond is stronger: though tht can be displaced by NH_3 , NC_5H_5 or phosphines [4], other $O(OPR_3)$, $S(SPR_3)$ or N(NC-R) donors are unable to do so. Thus, tht is a good ligand for Au(III) and we need to search for others strong enough to stabilize the AuR₃ moiety, however, weak enough to be readily displaced by almost any one we choose. The candidate to perform this role is $Au(C_6F_5)_3(OEt_2)$ whose preparation and reactivity against neutral or cationic O, S and N-donors is discussed in the following.

Experimental

Instrumentation and general experimental techniques were as described earlier [4]. Nuclear magnetic resonance spectra were recorded on a Varian XL 200 spectrometer in CDCl₃. Chemical shifts are quoted relative to SiMe₄ (¹H), 85% H₃PO₄ (external, ³¹P) and

0020-1693/90/\$3.50

CFCl₃ (external, ¹⁹F). The yields, C, H, N and Au analyses and molecular weights of the novel complexes are listed in Table 1.

Preparation of the Complexes

$Au(C_6F_5)_3(OEt_2)(1)$

To a solution of $(NBu_4)[Au(C_6F_5)_3Br]$ [1] (1.021 g, 1 mmol) in 50 ml of diethyl ether was added AgClO₄ (0.207 g, 1 mmol) and the mixture was stirred for 1.5 h at room temperature. The precipitated AgBr and $(NBu_4)ClO_4$ were filtered off and the solution was concentrated to c. 2 ml. Addition of n-hexane (15 ml) precipitated 1 as a white solid. ¹H NMR (in CDCl₃) δ 1.43 (t, 6H, CH₃) and 3.98 [q, 4H, CH₂, J(H–H) 6.99 Hz] ppm.

$Au(C_6F_5)_3(S) [S = THF(2), OCMe_2(3), diox(4))$ or EtOH(5)]

Complex 1 (0.773 g, 1 mmol) was dissolved in tetrahydrofuran (THF), acetone, 1,4-dioxan (diox) or ethanol (15 ml) and the mixture was stirred for 30 min at room temperature. The solution was concentrated to c. 2 ml and n-hexane (10 ml) was added. By cooling to -20 °C complexes 2–5 were obtained as white crystals. ¹H NMR (in CDCl₃) δ 2: 4.00(m) and 2.00(m) ppm; 3: 2.59(s) ppm; 4: 3.68(s) ppm; 5: 0.99 (t, 3H, CH₃, J(H–H) 6.9 Hz) and 1.49 (m, 2H, CH₂) ppm.

$Au(C_6F_5)_3L[L = SPPh_3(6), SPPh_2Me(7), OPPh_3(8) or OAsPh_3(9)]$

To a solution of complex 1 (0.773 g, 1 mmol) in dichloromethane (20 ml) was added L [L = SPPh₃ (0.294 g, 1 mmol), SPPh₂Me (0.232 g, 1 mmol), OPPh₃ (0.278 g, 1 mmol), OAsPh₃ (0.322 g, 1 mmol)] and the mixture was stirred for 1 h at room temperature. The solution was concentrated to c. 2 ml and addition of n-hexane (20 ml) gave complexes 6–9. 6: melting point (m.p.) 162 °C, ³¹P NMR (in CDCl₃) δ 44.66(s) ppm, 7: m.p. 196(d) °C, ³¹P NMR (in CDCl₃) δ 42.23(s) ppm, 8: m.p. 159 °C. 9: m.p. 157 °C.

© Elsevier Sequoia/Printed in Switzerland

_			

90

TABLE 1. Analytical	data	of	complexes	
---------------------	------	----	-----------	--

Complex	Yield (%)	Analysis: found (calc.) (%)				Molecular weight:	
		C	Н	N	Au	found (calc.)	
1 $Au(C_6F_5)_3(OEt_2)$	80	33.95 (34.3)	1.15 (1.3)		25.5 (25.15)	772 (773)	
2 Au(C_6F_5) ₃ (THF)	72	34.15 (34.3)	1.05 (1.05)		25.65 (25.55)	713 (770)	
3 Au(C_6F_5) ₃ (OCMe ₂)	62	32.95 (33.35)	0.9 (0.8)		26.7 (26.05)	721 (756)	
4 Au(C_6F_5) ₃ (diox)	84	33.85 (33.6)	1.3 (1.05)		25.0 (25.05)		
5 $Au(C_6F_5)_3(EtOH)$	67	32.6 (32.3)	0.95 (0.8)		25.75 (26.45)	746 (744)	
6 Au(C_6F_5) ₃ (SPPh ₃)	87	43.55 (43.55)	1.6 (1.5)		20.75 (19.85)	927 (993)	
7 $Au(C_6F_5)_3(SPPh_2Me)$	86	40.2 (40.0)	1.45 (1.4)		21.35 (21.15)	871 (931)	
8 $Au(C_6\Gamma_5)_3(OPPh_3)$	86	44.65 (44.3)	1.65 (1.55)		20.35 (20.15)	957 (977)	
9 $\operatorname{Au}(C_6F_5)_3(\operatorname{OAsPh}_3)$	70	42.35 (42.4)	1.5 (1.5)		19.6 (19.3)	913 (1020)	
10 $\operatorname{Au}(C_6F_5)_3(\operatorname{NCMe})$	90	32.55 (32.5)	0.55 (0.4)	1.95 (1.9)	26.6 (26.65)		
11 $\operatorname{Au}(C_6F_5)_3(\operatorname{NCPh})$	85	37.6 (37.5)	0.85 (0.65)	2.05 (1.75)	24.65 (24.6)	680 (801)	
12 $\operatorname{Au}(C_6F_5)_3(\operatorname{NCPr})$	88	34.2 (34.15)	0.8 (0.9)	2.0 (1.85)	25.0 (25.65)	724 (767)	
13 $Au(C_6F_5)_3(NCCH=CH_2)$	80	33.6 (33.6)	0.4 (0.4)	1.9 (1.85)	24.9 (26.2)	744 (751)	
14 Au(C ₆ F ₅) ₃ {(NC) ₂ C ₆ H ₄ }	90	37.75 (37.8)	0.6 (0.5)	3.5 (3.4)	22.9 (23.85)	651 (826)	
15 $[Au(C_6F_5)_3{(S)PPh_2CH_2PPh_2Me}]ClO_4$	91	43.8 (43.0)	2.4 (2.05)		15.45 (16.05)		
16 $[Au(C_6F_5)_3{(S)PPh_2CH_2PPh_2(CH_2C_6F_5)}]ClO_4$	89	42.75 (43.05)	1.7 (1.75)		14.6 (14.1)		
17 $[Au(C_6F_5)_3{(S)PPh_2CH_2PPh_2(CH_2COOMe)}]ClO_4$	75	42.65 (42.95)	2.4 (2.1)		15.9 (15.3)		
18 $[Au(C_6F_5)_3{(S)PPh_2CH_2PPh_2(CH_2Ph)}]ClO_4$	87	45.55 (46.0)	2.25 (2.25)		15.9 (15.1)		
19 $[Au(C_6F_5)_3{(O)PPh_2CH_2PPh_2(CH_2Ph)}]ClO_4$	95	46.75 (46.6)	2.35		14.65 (15.3)		

 $Au(C_6F_5)_3NCR [R = Me(10), Ph(11), Pr(12), CH=CH_2(13) or o-(NC)C_6H_4(14)]$

To a suspension of 1 (0.154 g, 0.2 mmol) in n-hexane (20 ml) was added NCR [R = Me (0.3 ml, 6 mmol), Ph (0.3 ml, 3 mmol), Pr (0.3 ml, 3.5 mmol), CH=CH₂ (0.3 ml, 4.5 mmol), o-(NC)C₆H₄ (0.026 g, 0.2 mmol)]. The mixture was stirred for 1 h at room temperature. The white complexes 10--14 were filtered off and washed with n-hexane (2 × 5 ml). **10**: ¹H NMR (in CDCl₃) δ 2.52(s) ppm. **11**: ¹H NMR (in CDCl₃) δ 7.50(m) ppm; ¹⁹F NMR (in CDCl₃) δ -122.78 (m, *o*-F C₆F₅ trans to NCR), -124.11 (m, *o*-F C₆F₅ cis), -156.47 (t, *p*-F C₆F₅ cis), -156.63 (t, *p*-F C₆F₅ trans), -161.62 (m, *m*-F C₆F₅ trans) and -162.15 (m, *m*-F C₆F₅ cis). **12**: ¹H NMR (in CDCl₃) δ 1.05 [t, CH₃ J(H–H) 7.3 Hz], 1.84 (m, -CH₂-) and 2.75 [t, NC–CH₂, J(H–H) 7.0 Hz] ppm. **13**: ¹H NMR (in CDCl₃) AMX system J(AM) 0,

δ 6.00 [dd, H_x, J(AX) 18.1, J(MX) 12.4 Hz] and 6.74 (m, H_A and H_M) ppm. 14: ¹H NMR (in CDCl₃ δ 8.0(m) ppm; ¹⁹F NMR (in CDCl₃) δ –122.69 and -124.07 (m, o-F C₆F₅ trans and cis respectively), -156.30 and -156.40 (t, p-F C₆F₅ cis and trans respectively) and -161.50 and -162.01 (m, m-F C₆F₅ trans and cis, respectively) ppm.

$[Au(C_6F_5)_3[(X)PPh_2CH_2PPh_2R]/ClO_4 [X = S, R = Me (15), CH_2C_6F_5 (16), CH_2COOMe (17) or CH_2Ph (18); X = O, R = CH_2Ph (19)]$

To a solution of complex 1 (0.773 g, 1 mmol) in dichloromethane (20 ml) was added [(X)PPh₂CH₂-PPh₂R]ClO₄ [1 mmol; X = S, R = Me (0.531 g), CH₂C₆F₅ (0.697 g), CH₂COOMe (0.589 g) or CH₂Ph (0.607 g); X = O, R = CH₂Ph (0.591 g)]. The mixture was stirred for 1 h at room temperature and the solution was concentrated to c. 2 ml. Addition of n-hexane (20 ml) precipitated complexes 15–19 as white solids. 15: m.p. 138 °C, $\Lambda_{\rm M}$ 141 ohm⁻¹ cm² mol⁻¹. 16: m.p. 125 °C, $\Lambda_{\rm M}$ 148 ohm⁻¹ cm² mol⁻¹. 17: m.p. 145 °C, $\Lambda_{\rm M}$ 115 ohm⁻¹ cm² mol⁻¹. 18: m.p. 195(d) °C, $\Lambda_{\rm M}$ 140 ohm⁻¹ cm² mol⁻¹. 19: m.p. 106(d) °C, $\Lambda_{\rm M}$ 140 ohm⁻¹ cm² mol⁻¹.

Results and Discussion

Addition of an equimolecular amount of solid $AgClO_4$ to a diethylether solution of $(NBu_4)[Au-(C_6F_5)_3Br]$ (eqn. (1)) gives a precipitate of AgBr and $(NBu_4)ClO_4$. From the filtrate $Au(C_6F_5)_3$ - (OEt_2) (1) can easily be isolated.

$$(NBu_4)[Au(C_6F_5)_3Br] + AgClO_4 \xrightarrow{OEt_2} Au(C_6F_5)_3(OEt_2) + AgBr + (NBu_4)ClO_4 \qquad (1)$$

The white complex 1 is unstable at room temperature, metallic gold being formed within 60 min, but can safely be stocked for 2–3 weeks at -20 °C. It is possible, however, to take its IR spectrum, where two bands at 820(s) and 800(s,br) cm⁻¹, characteristic for tris(pentafluorophenyl) complexes [4], are detected. It is non-conducting in acetone solution, the solute probably being $[Au(C_6F_5)_3(OCMe_2)]$ (see below).

If the same reaction (eqn. (1)) is carried out in other solvents [tetrahydrofuran (THF), acetone OCMe₂, ethanol EtOH, or dioxane (diox)], only AgBr precipitates and evaporation to dryness of the filtrated solution affords mixtures of $Au(C_6F_5)_3$ -(solvent) and (NBu₄)ClO₄. Extraction with diethyl ether and evaporation of the filtrate affords complex 1. In the corresponding solvent, by addition of n-hexane and cooling to -20 °C, the complexes 2-5 can be isolated (by displacing the equilibrium (eqn. (2)) to the right). $Au(C_6F_5)_3(OEt_2) + S \Longrightarrow$

$$Au(C_6F_5)_3(S) + OEt_2$$
 (2)

where S = THF (2), $OCMe_2$ (3), dioxane (4), EtOH (5).

Complexes 2–5 are white stable solids at -20 °C but unstable at room temperature. They are monomeric (chloroform) and non-conducting (acetone). Complex 4 is too unstable in CHCl₃ solution and its molecular weight could not be measured. In the IR spectra of complexes 2–5 (Nujol mulls) the ν (C–O) vibration of the S ligands appears at 1010(m), 1650(s), 1100(s) and 1042(m) cm⁻¹, i.e. at lower frequencies than in the free ligand (1076, 1710, 1120 and 1080 cm⁻¹, respectively [5]).

It is possible to take advantage of the easy displacement of OEt_2 in complex 1 to prepare a variety of complexes which cannot be synthesised starting from $Au(C_6F_5)_3(tht)$ owing to the poor donor characteristics of some ligands. For instance, addition of L [L = SPPh₃ (6), SPPh₂Me (7), OPPh₃ (8), OAsPh₃ (9), NCMe (10), NCPh (11), NCPr (12), $NC(CH=CH_2)$ (13) or $o(NC)_2C_6H_4$ (14)] gives complexes $Au(C_6F_5)_3L$ (6–14) as white solids, some of them (6-9) stable, others (10-14) unstable at room temperature, though all of them can be stocked at -20 °C. Complexes 6–14 are non-conducting in acetone. Molecular weights (in chloroform solution) of the stable ones at room temperature (6-9) are in agreement with the monomeric nature of the solutes whilst the others give lower molecular weights probably due to partial dissociation of the L ligand [4]. Their IR spectra show two bands at 820(s) and 800(s,br) cm⁻¹, which are characteristic for trifluorophenylgold(III) complexes [4].

Moreover, the attachment of the neutral ligand L shifts the ν (P-O), ν (P-S) or ν (As-S) frequencies towards lower energies: 6, 590(vs) (620, free ligand); 7, 750(vs) (680); 8, 1145(s) (1195); 9, 860(vs) (880) cm⁻¹. On the contrary ν (C=N) is shifted towards higher energies in the nitrile complexes: 10, 2315(s) and 2335(m) (2220 and 2270, free ligand); 11, 2290(s) (2240); 12, 2320(s) (2220); 13, 2292(s) (2240); 14, 2290(s) (2170) cm⁻¹ [6].

Finally, even cationic ligands of the type $[(X)PPh_2CH_2PPh_2R]^+$ with X = S or O, displace the OEt₂ molecule in complex 1 to give cationic complexes $[Au(C_6F_5)_3\{(X)PPh_2CH_2PPh_2R\}]ClO_4$ [X = S, R = Me (15), $CH_2C_6F_5$ (16), CH_2COOMe (17) or $CH_2C_6H_5$ (18); X = O, R = $CH_2C_6H_5$ (19)] which are air and moisture stable white solids at room temperature. Their acetone solutions are conducting with $\Lambda_M = 115-140$ ohm⁻¹ cm² mol⁻¹ as expected for 1:1 electrolytes. Their IR spectra show the two absorptions characteristic for tris(pentafluorophenyl)gold-(III) complexes and two bands at 1100(s,br) and

625(m) cm⁻¹ due to the ClO₄⁻ anion [7]. The ν (P-S) vibration appears at c. 590 cm⁻¹ in complexes 15-18 and ν (P-O) at 1198 cm⁻¹ in 19.

References

- 1 R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 131 (1977) 471.
- 2 R. Usón and A. Laguna, Coord. Chem. Rev., 70 (1987) 1.

- 3 R. Usón, A. Laguna, M. Laguna, I. Lázaro, P. G. Jones and C. Fittschen, J. Chem. Soc., Dalton Trans., (1988) 2323.
- 4 R. Usón, A. Laguna, M. Laguna, E. Fernández, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., (1982) 1971.
- 5 L. J. Bellamy, The Infrared Spectra of Complex Molecules, Vol. 1, Chapman and Hall, London, 1975.
- 6 J. G. Grasselli and W. M. Ritchey (eds.), Atlas of Spectral Data and Physical Constants for Organic Compounds, CRC Press, Cleveland, 2nd edn., 1975. 7 B. J. Hathaway and A. E. Underhill, J. Chem. Soc.,
- (1961) 3091.