Reactions of VCl₃, VCl₄ and TiX₄ (X = Cl, Br) with Benzofuroxan and its 5-Methyl-, 5-Chloro- and 5-Methoxi-derivatives. I.

CARMEN MURO and VICENTE FERNANDEZ*

Departamento de Química (Inorgánica), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain (Received March 3, 1987)

Abstract

By means of the reaction between VCl₃ and benzofuroxan the compound VCl₃·2C₆H₄N₂O₂ was obtained, while in reaction with TiX₄ (X = Cl, Br) the compounds with stoichiometry TiX₄·C₆H₄N₂O₂ (X = Cl, Br) were obtained.

Furthermore, with some benzofuroxan derivatives (5-methyl, 5-chloro and 5-methoxi) the complexes $MCl_4 \cdot 2Y - C_6H_3N_2O_2$ (M = Ti, V; Y = CH₃O, Cl, CH₃), TiCl₄ $\cdot Y - C_6H_3N_2O_2$ (Y = CH₃O, CH₃) and TiBr₄ $\cdot Y - C_6H_3N_2O_2$ (Y = CH₃O, Cl, CH₃) have been isolated.

The compounds were characterized by elementary analysis, cryoscopic molecular weight determination in nitrobenzene, magnetic measurements and IR, Vis and EPR spectroscopy.

Introduction

In a previous work [1] we communicated the study of the reactions between $TiCl_4$, VCl_4 and

^{*}Author to whom correspondence should be addressed.

TABLE I. Analytical Data ^a and Melting Point for the Comp
--

ZrCl₄ with benzofuroxan (1:2), which led to the formation of addition compounds with stoichiometry $MCl_4 \cdot 2C_6H_4N_2O_2$. For the two former compounds with M = Ti, V, a *trans*-symmetry had been postulated, while for the zirconium compound a *cis*symmetry was considered. More recent and detailed IR and EPR studies have obliged us to consider a *cis* molecular structure ($C_{2\nu}$) in every case.

Varying the reactions stoichiometry and using also the 5-methyl-, 5-chloro- and 5-methoxi-benzofuroxan derivatives, we have obtained a larger number of compounds which are listed in Table I.

The difficult systematization of these reactions reflects a very complicated chemical behaviour of the indicated ligands.

Results and Discussion

As previously described for the complexes of the tin tetrahalides with benzofuroxan derivatives [2], the bands assigned in the free ligands to the N-O stretching vibrations, present small shifts after the formation of the complexes, as a consequence of the weak donor ability of the benzofuroxan ligands.

Compound	Colour	%C	%N	Metal	X = Cl, Br	Melting point (°C)
TiCl ₄ •2CH ₃ O-C ₆ H ₃ N ₂ O ₂	orange	30.97(32.22)	10.54(10.73)	9.55(9.18)	28.05(27.17)	105 dec.
TiCl ₄ ·2CH ₃ -C ₆ H ₃ N ₂ O ₂	yellow	33.98(34.32)	11.50(11.43)	9.78(9.77)	28.62(28.94)	105 dec.
$TiCl_4 \cdot 2Cl - C_6H_3N_2O_2$	yellow	27.13(27.16)	10.50(10.55)	9.12(8.93)	26.53(26.72)	103 dec.
TiCl ₄ ·C ₆ H ₄ N ₂ O ₂	yellow	22.14(22.12)	8.65(8.59)	14.03(14.70)	41.77(43.53)	132-135 dec.
TiCl ₄ ·CH ₃ O-C ₆ H ₃ N ₂ O ₂	dark red	22.90(23.63)	7.90(7.87)	13.45(13.46)	39.04(39.86)	115-116 dec.
TiCl4·CH3-C6H3N2O2	green	24.48(24.74)	7.91(8.24)	13.96(14.09)	40.56(41.73)	110 dec.
TiBra·C ₆ H ₄ N ₂ O ₂	dark brown	14.60(14.31)	5.07(5.56)	9.60(9.51)	61.44(63.47)	178 dec.
TiBr4·CH3O-C6H3N2O2	dark brown	15.31(15.75)	4.84(5.25)	9.38(8.97)	56.51(59.90)	162 dec.
TiBr4·CH3-C6H3N2O2	dark brown	15.87(16.24)	5.33(5.41)	8.76(9.29)	59.90(61.75)	168 dec.
TiBr4•Cl-C6H3N2O2	brown	13.95(13.39)	5.15(5.20)	9.72(8.90)	57.66(59.41)	172 dec.
VCl ₄ ·2CH ₃ O-C ₆ H ₃ N ₂ O ₂	brown	30.47(32.04)	9.95(10.67)	10.43(9.70)	29.62(27.02)	85 dec.
VCl ₄ ·2CH ₃ -C ₆ H ₃ N ₂ O ₂	brown	32.77(34.11)	10.99(11.36)	11.25(10.33)	29.81(28.77)	
$VC_4 \cdot 2C_1 - C_6H_3N_2O_2$	brown	27.40(27.01)	10.41(10.49)	10.38(9.55)	27.39(26.57)	
VCl ₃ •2C ₆ H ₄ N ₂ O ₂	dark brown	33.33(33.57)	12.94(13.04)	10.94(11.86)	23.41(24.77)	90-92 dec.

a% Found (calculated).

0020-1693/87/\$3.50

By reacting TiCl₄ with $Y-C_6H_3N_2O_2$ (Y = H [1], CH₃O, CH₃) it was possible to synthesize the compounds with stoichiometries 1:1 and 1:2, while for Y = Cl the only product it was possible to isolate was the 1:2 adduct.

The compounds $TiCl_4 \cdot 2Y - C_6H_3N_2O_2$ are hexacoordinated monomers such as the experimental data indicate. A detailed discussion of the IR spectra enables us to propose a *cis*-symmetry for the compounds, it being impossible to obtain the Raman spectra owing to the strong sensitivity of the complexes against the laser radiation. The assigned bands of the Ti-Cl and Ti-O stretching vibrations are given in Table II.

For the compounds of $TiCl_4 \cdot Y - C_6H_3N_2O_2$ (Y = H, CH₃O, CH₃) stoichiometry, the experimental data suggest a dimeric structure with chloro bridges between the titanium atoms, in such a way that the coordination around these titanium atoms will be octahedral. For $[TiX_4L]_2$ two symmetries, C_{2h} -trans and C_{2v} -cis for the ligands, would be possible. Although the bands corresponding to $\nu(Ti-X)$ are very strong and broad and very difficult to solve, the number of the stretching bands observed for the Ti-Cl and Ti-O bonds is very similar to those expected for C_{2h} symmetry (Table II). The relation observed between the terminal and bridged stretching vibrations lies in the expected range (0.66-0.72).

Observing the green colour of the 1:1 adduct formed between TiCl₄ and CH₃-C₆H₃N₂O₂, which is different to those observed in the rest of the synthesized compounds (yellow or red), we considered the possibility of a reduction of Ti(IV) to Ti(III) during the reaction. (A similar situation is described in the literature [3] for the complex formed by TiCl₄ with tricyclohexylphosphine, whose blue colour could suggest a reduction, but afterwards was experimentally checked as a diamagnetic compound.) To confirm this fact, we carried out magnetic susceptibility measurements. A value of 0.57 BM was obtained, which is much lower that the one expected for a d¹ system in a one octahedral ligand field. This value is interpreted as a temperature independent paramagnetism (TIP) [4–6].

By reacting TiBr₄ with the corresponding ligands, the compounds TiBr₄·Y-C₆H₃N₂O₂ (Y = H, CH₃O, CH₃, Cl) are obtained. The cryoscopic molecular weight determination of the TiBr₄·C₆H₄N₂O₂ compound, indicates a dimeric structure. We propose this same structure for the other three compounds although the experimental data were not very acceptable due to the considerable decomposition of the samples.

In Table II the stretching vibrations (IR) of the $\nu(Ti-Br)$ and $\nu(Ti-O)$ bonds are reported. The coordination number of six for the titanium atoms must also be attained here through the bridge bromine atoms (see also Table II).

By reacting VCl₄ with $Y-C_6H_3N_2O_2$ ($Y = CH_3O$, CH₃, Cl) the compounds with a 1:2 stoichiometry are obtained, and they present a big instability. The IR spectra show the presence of a very strong and broad band, clearly a multiple one, together with some other weak bands and shoulders which are assigned to the stretching vibrations of the vanadium-chlorine bonds.

It was not possible to assign more than one band to the stretching vibration of the vanadium-oxygen bond because it appears to be almost overlapped with the previously mentioned $\nu(V-Cl)$ vibration. The bands are reported in Table II.

Electronic Spectra of the Vanadium(IV) Compounds

Under the action of one octahedral ligand field, the fundamental term ²D of vanadium(IV) is split into one lower term ²T_{2g} and one higher ²E_g, but the non-equivalent nature of the ligands, introduces at least one pseudotetragonal component to the ligand field, which splits the ²T_{2g} term into two, ²B_{2g} and ²E_g, and also the term ²E_g into ²A_{1g} and ²B_{1g}. Then, two transitions in the visible region, ²E_g \leftarrow ²B_{2g} and ²B_{1g} \leftarrow ²B_{2g}, would be expected.

The reflectance spectra of the complexes VCl₄· 2Cl-C₆H₃N₂O₂, VCl₄·2CH₃-C₆H₃N₂O₂ and VCl₄· 2CH₃O-C₆H₃N₂O₂ present the bands reported below:

	$^{2}E_{g} \leftarrow ^{2}B_{2g}$ (cm ⁻¹)	$^{2}B_{1g} \leftarrow ^{2}B_{2g}$ (cm ⁻¹)
VCl ₄ • 2CH ₃ O-C ₆ H ₃ N ₂ O ₂ VCl ₄ • 2CH ₃ -C ₆ H ₃ N ₂ O ₂ VCl ₄ • 2Cl-C ₆ H ₃ N ₂ O ₂	15380 14800	20000 21740 20000

The reaction between VCl₃ and C₆H₄N₂O₂ results in the formation of the compound $VCl_3 \cdot 2C_6H_4N_2O_2$. In the IR spectrum (Nujol) two bands appear at 375(s) and 314(m) cm⁻¹ which are assigned to the terminal and bridge stretching vibrations of the vanadium-chlorine bond respectively, and one band at 426(w) cm⁻¹ which is assigned to the ν (V-O) vibration (Table II). These values can be used to establish the stereochemistry of the compound, because for hexacoordinated complexes, the vanadium-chlorine stretching vibrations are expected in the range $380-300 \text{ cm}^{-1}$, while they appear in a higher range for penta- or tetracoordinated complexes [7].

When the IR spectrum is recorded in CH_2Cl_2 solution, the band previously assigned to $\nu(V-Cl)$ in the low frequency range disappears, and a new very strong and broad band appears at 453 cm⁻¹, which is typical for a trigonal bypyramid geometry (D_{3h}) and characteristic of pentacoordinated V(III) compounds [8,9]. For this reason, we propose for the compound $VCl_3 \cdot 2C_6H_4N_2O_2$, a dimeric structure in which the

Benzofuroxan Metal Derivatives

TABLE II. IR Spectra of Complexes^a

	ν(M-O)	$\nu(M-X)_{terminal}$	$\nu(M-X)_{bridge}$	
TiCl ₄ •2CH ₃ O-C ₆ H ₃ N ₂ O ₂	446m 414s	393vs 384sh 364vs		
TiCl ₄ •2CH ₃ -C ₆ H ₃ N ₂ O ₂	443w 414s	396sh 382vvs 359sh		
TiCl ₄ •2Cl–C ₆ H ₃ N ₂ O ₂	434m 421s	396vs 392vs 356m		
TiCl4•C6H4N2O2	432vs	405 vs 390 vvs	282m	
TiCl ₄ •CH ₃ O–C ₆ H ₃ N ₂ O ₂	433s	392vs 378vs 322w 316w		
TiCl4•CH3-C6H3N2O2	431vs	397vs 380vvs	234m 254m	
TiBr4•C6H4N2O2		350vs 336vs 296vs,b	201m	
TiBr ₄ •CH ₃ O–C ₆ H ₃ N ₂ O ₂		352vs 335s 304vs 292vs	202sh	162m (8 BrTiBr)
TiBr ₄ •CH ₃ -C ₆ H ₃ N ₂ O ₂	446m	338vs 304vs 293vs	199sh	
TiBr4•Cl-C6H3N2O2	449w	350vs,s 338vs 328vs 290vs	203w	
VCl4•2CH3O-C6H3N2O2	418m	405sh 369vvs 329sh		
VCl4•2CH3–C6H3N2O2	417sh	395sh 374vvs 335sh		
VCl ₄ •2Cl–C ₆ H ₃ N ₂ O ₂	414sh	396 sh 374 vvs 339 m		
VCl ₃ ·2C ₆ H ₄ N ₂ O ₂ (solid) (CH ₂ Cl ₂ solution)	426w	375s 453vs	314m	

aIn cm⁻¹. X = Cl or Br. vvs = very strong; vs = very strong; s = strong; m = medium; w = weak; sh = shoulder, b = broad.

vanadium atom is hexacoordinated in the solid state, while in a solution of CH_2Cl_2 it has a pentacoordinated configuration (*trans*-trigonal bypyramid).

EPR Spectra

The EPR spectra of the complexes $VCl_4 \cdot 2Y - C_6H_3N_2O_2$ (Y = CH₃O, CH₃, Cl) in CH₂Cl₂ solution

	A_{iso}^{a}	giso	81	g_{\perp}	<i>A</i> ^a	$A_{\perp}{}^{\mathbf{a}}$
VCl4·2CH3O-C6H3N2O2	66.2	1.970	1.960	1.995	169.3	53
VCl ₄ ·2CH ₃ -C ₆ H ₃ N ₂ O ₂	67.4	1.980	1.940	1.987	158.5	62.1
VCl ₄ ·2Cl-C ₆ H ₃ N ₂ O ₂	68.8	1.966	1.946	1.991	154.9	60.5
$VC1_3 \cdot 2C_6H_4N_2O_2$	87.8	1.927	1.969	1.991	95.38	91.21

TABLE III. EPR Parameters of the VCl₄·2Y-C₆H₃N₂O₂ and VCl₃·2C₆H₄N₂O₂ Complexes

^aValues are $\times 10^{-4}$ cm⁻¹.

at room temperature are isotropic and present eight lines due to the coupling of the unpaired electron with the ⁵¹V (I = 7/2) nucleus.

Applying the Breit-Rabi equation [10] to our case, we obtain the values collected in Table III, which are comparable to those obtained for other V(IV) complexes [11].

The spectra of the complexes in CH₂Cl₂ solution at -160 °C are not well solved and it was not possible to distinguish the hyperfine lines; however, good spectra were obtained when the samples were diluted in KBr as polycrystalline powder and cooled to -160 °C. In this case, the spectra are anisotropic and two groups of eight lines, one for the H parallel and the other for the H perpendicular expected for one axial symmetry, are observed. The positions of the hyperfine lines can be calculated using the equations obtained by Stewart and Porte [12]. From the low temperature spectra, the values of the components of g and A tensors for the case of axial symmetry can be obtained (see Table III), and they are similar to those found for other V(IV) complexes with tetragonal distortion [11].

Substituting the values for the corresponding electronic transitions in eqn. (1):

$$g_{\parallel} = 2.0023 - \frac{8\lambda\nu}{\Delta E(b_{2g} - b_{1g})}$$

$$g_{\perp} = 2.0023 - \frac{2\lambda\nu}{\Delta E(b_{2g} - e_{g})}$$
(1)

the values $\lambda\nu$ can be calculated in the complexes: 106 cm⁻¹ (VCl₄·2CH₃O-C₆H₃N₂O₂), 144 cm⁻¹ (VCl₄·2CH₃-C₆H₃N₂O₂) and 112 cm⁻¹ (VCl₄·2Cl-C₆H₃N₂O₂), which compared with those of the isolated ion ($\lambda\nu$ = 250 cm⁻¹) indicate a considerable participation of covalent bonds in the complexes. Furthermore, from these values can be inferred the existence of a higher bond delocalization in the complexes with the ligands CH₃O-C₆H₃N₂O₂ and Cl-C₆H₃N₂O₂.

The observation of the EPR spectrum at room temperature for a d^2 system is not common, due to the small spin-orbit relaxation time; however, it can be observed if the symmetry of the complex is low, as in the case of VCl₃·2C₆H₄N₂O₂, from which relatively well solved spectra in CH_2Cl_2 solution are obtained, whose g and A parameters have the values given in Table III, comparable to those obtained for other V(III) complexes [11].

Experimental

All the reactions were carried out under anhydrous conditions, in an atmosphere of dry N_2 , and using a glove-box for all the manipulations.

The benzofuroxan and the substituted benzofuroxans were prepared and purified by the methods described in the bibliography [13, 14].

$TiCl_4 \cdot 2Y - C_6H_3N_2O_2$ (Y = CH₃O, Cl, CH₃) and $TiCl_4 \cdot Y - C_6H_3N_2O_2$ (Y = H, CH₃O, CH₃)

These complexes were prepared by addition, at room temperature, of one solution of the ligand in CCl_4 or a mixture of CCl_4 - CH_2Cl_2 , over a solution of $TiCl_4$, recently distilled, in CCl_4 . The precipitated solids were filtered off, washed with CCl_4 and hexane and dried in vacuum.

$TiBr_4 \cdot Y - C_6 H_3 N_2 O_2 (Y = H, CH_3 O, Cl, CH_3)$

TiBr₄ was synthesized by a procedure described in the literature [15]. Under similar conditions as those previously reported, some brown coloured solids were obtained, filtered off and after washing with CCl₄ or CCl_4 -hexane, dried in vacuum.

TiBr₄·C₆H₄N₂O₂: Molecular weight (cryoscopy in nitrobenzene): 959.5 g mol⁻¹, (calculated for a dimeric compound: 1007 g mol⁻¹).

$VCl_4 \cdot 2Y - C_6H_3N_2O_2$ (Y = CH₃O, Cl, CH₃)

In an analogous way to those described previously, the reactions between VCl₄ [16] and the ligands were carried out. The obtained compounds are extraordinarily sensitive to moisture and must be manipulated very carefully. It was necessary to maintain the compound VCl₄·2Cl-C₆H₃N₂O₂ at -20 °C in order to avoid its decomposition.

$VCl_3 \cdot 2C_6H_4N_2O_2$

The reaction was carried out in a dry and oxygenfree N_2 atmosphere, using the dry solvent (CH₂Cl₂) previously prepared by bubbling dry N_2 through it. The mixture was kept under reflux for 48 h, and afterwards the excess VCl₃ was filtered off. The solvent was removed from the rest of the solution in vacuum, and a very dark brown solid was isolated; this solid contained a small amount of benzofuroxan which had not reacted and which was eliminated by stirring the product with dry CCl₄. After filtering, a brown solid was finally obtained whose analysis indicated that it was VCl₃·2C₆H₄N₂O₂.

The IR spectra were recorded in a Nicolet 5DX spectrophotometer in the range $4000-200 \text{ cm}^{-1}$, using Nujol and hexachlorobutadiene, with CsI windows. The IR spectra in solution were recorded using a liquid cell with KBr windows. In the range of $500-150 \text{ cm}^{-1}$ a Nicolet 60SX spectrophotometer with polyethylene pellets was used.

The diffuse reflectance spectra were recorded on a Beckman 24500 spectrophotometer, using magnesium oxide as a reference.

The EPR spectra were recorded on a Varian E-12 spectrophotometer at a microwave frequency of 9 GHz (X-band) equipped with a HP5342A frequency meter and a Bruker NMR Gaussmeter. The samples were introduced into quartz-glasses of 4 mm diameter. The low temperature spectra were obtained using a variable temperature cell.

The susceptibility magnetic measurements were made, using Faraday's method, with a Bruker Magnet B-M4 instrument.

Acknowledgements

The authors thank Dr. Moisés Morán for the recording and interpretation of the EPR spectra,

References

- 1 V. Fernández and C. Muro, Z. Anorg. Allg. Chem., 466, 209 (1980).
- 2 D. Tudela, C. Muro, V. Fernández and J. D. Tornero, Z. Anorg. Allg. Chem., 538, 201 (1986).
- 3 F. Calderazzo, S. A. Losi and B. P. Susz, *Helv. Chim.* Acta, 54, 1156 (1971).
- 4 A. Weiss and H. Witte, 'Magnetochemie', Verlag Chemie, Weinheim, 1973.
- 5 B. N. Figgis, 'Introduction to the Ligand Fields', Interscience, New York, 1967.
- 6 R. L. Carlin and A. J. van Duyneveldt, 'Magnetic Properties of Transition Metal Compounds', Springer, Berlin, 1977.
- 7 G. W. A. Fowles, P. T. Greene and T. E. Lester, J. Inorg. Nucl. Chem., 29, 2365 (1967).
- 8 M. W. Duckworth, G. W. A. Fowles and J. Hoodless, J. Chem. Soc., 5665 (1963).
- 9 M. W. Duckworth, G. W. A. Fowles and P. T. Greene, J. Chem. Soc. A, 1592 (1967).
- 10 J. E. Wertz and J. R. Bolton, 'Electron Spin Resonance', McGraw-Hill, New York, 1972.
- 11 B. A. Goodman and J. B. Raynor, Adv. Inorg. Chem. Radiochem., 13, 135 (1970).
- 12 C. P. Stewart and A. L. Porte, J. Chem. Soc., Dalton Trans., 1661 (1972).
- 13 F. B. Mallory, Org. Synth. Coll., 4, 74 (1963).
- 14 R. J. Gaughran, J. P. Picard and J. V. R. Kaufman, J. Am. Chem. Soc., 76, 2233 (1954).
- 15 K. H. Gayer and G. Tennenhouse, Can. J. Chem., 37, 1373 (1959).
- 16 G. Brauer, 'Handbuch der Präparativen Anorganischen Chemie', 3. Aufl., F. Enke, Stuttgart, 1981, Bd. 3.