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Abstract 

[W&WWC%12 (4 reacts with one equivalent 
of tetracyanoethylene (TCNE) and tetracyano- 
quinodimethane (TCNQ) to give the compounds 
(2 [(C,Mes)Fe+(C0)2] *TCNE’-] (B)and {2[(CsMes)- 
Fe*(CO)2] *TCNQ2-} (D) respectively. The reaction 
of A with two equivalents of TCNE gives the poly- 
meric compound [(CsMes)Fe(C0)2TCNE] n (C) in 
which the TCNE2- anion is coordinated to the metal 
through nitrogen of the CN group. Electronic, IR and 
ESR spectra indicate that compounds B and D are 
formed by two one-electron steps involving the rather 
elusive [(CsMes)Fe(CO),‘] radicals. The electron 
transfer processes are discussed on the basis of the 
thermodynamic redox potentials of donor A and of 
two acceptors TCNE and TCNQ. 

Introduction 

Complexes of transition metals containing metal- 
metal bonds are remarkable for the richness of their 
chemistry [ 11. In most compounds with this type of 
bond the valence molecular orbitals accessible to 
either oxidation or reduction, are usually largely 
M-M in character [2]. In relatively simple com- 
pounds like [(CsR5)M(CO)2]2 (R = H, Me; M = Fe, 
Ru) the highest energy filled molecular orbital 
appears to be o(M-M). Electrons can be lost from 
M-M bonding which are essential to the structure 
and thus oxidation normally leads to changes in the 
primary structure [(CsR5)M(CO)2] 2 -+ 2 [(&Rs)M- 

(CO)2 ‘I. 
From these considerations and from the available 

results of rapid-scan cyclic voltammetry [3] it may be 
supposed that upon oxidation of the neutral dimer, 
two electrons are removed from the metal-metal 
bond framework giving the corresponding paramag 
netic [(CsRs)M(CO),‘] species. The expected proper- 
ties are the ability of these systems: 
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Elemental analyses were performed by Alfred 
Bernard Mikroanalytisches Laboratorium, Elbach, 
F.R.G. and by the Microanalytical Laboratory, 
University of Padova, Italy. Infrared spectra were 
obtained on a Perkin-Elmer 283 B infrared spectro- 
photometer and a Nicolet MX-1 spectrophotometer. 
UV-Vis spectra were obtained with a JASCO 
UVIDEC-650 recording spectrophotometer. ‘H NMR 
spectra were recorded on a Bruker 80 Spectrometer. 
EPR measurements were made at room temperature 
and 77 K on both powder and solution samples using 
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(i) to render feasible studies of stoichiometric elec- 
tron transfer reactions with substrates having various 
redox potentials; 

(ii) to behave catalytically in electron transfer 
processes; 

(iii) to generate thermally or photochemically [4] 
paramagnetic species (with less than 18 electrons) 
having a strong reactivity, ie. the 17e radical 
[(CSMes)Fe(CO)b] . 

The following are reported here: 
(a) Single and double electron transfer reactions of 

]GMes)Fe(CO)212 (A) with TCNE and TCNQ 
forming the TCNE-, TCNE’-, TCNQ- and TCNQ’- 
anions. 

(b) The examination of ESR, electronic and IR 
spectra of the paramagnetic intermediates formed in 
the electron transfer reaction. 

(c) The product distribution and related formation 
mechanism of (2 [(C,Mes)Fe+(CO)2] *TCNE’-}, 
[(CsMes)Fe(C0)2*TCNE]. and (2 [(CsMes)Fe+- 
(CO)2] *TCNQ2-} compounds. 

Experimental 

Chemicals 
[(CsMeS)Fe(C0)2]2 (Strem Chemicals), TCNE, 

TCNQ (Aldrich) were used without further purifica- 
tion. Where necessary solvents were dried by standard 
laboratory procedures. Solutions were degassed under 
vacuum. All experiments were carried out under an 
N2 atmosphere. 

General Procedures and Measurements 
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a Bruker ER 200D spectrometer. Mossbauer data were 
obtained with a 25 mCi 57Co-Rh source. 

Preparation of Compounds 

(2f(CsMe5)Fe’(CO)2 / -TCNE'-) (B) 
To a solution of A (0.988 g, 2 mmol) in boiling 

acetonitrile TCNE (0.256 g, 2 mmol) in hot aceto- 
nitrile (stoichiometry l/l) was added. The reaction 
mixture was stirred and refluxed for 2 h after which 
time the volume was reduced to 10 cm’. Upon cool- 
ing to room temperature complex B was obtained. 
Anal. Calc. for C3eHseFeZN404: C, 57.94; H, 4.86; 
Fe, 17.96; N, 9.06. Found: C, 58.01; H, 4.78; Fe, 
17.92;N, 8.98%. Mw: 620.88. 

I(G Me5 )Fe(CO)z TCNEJ n (C) 
TCNE and A were refluxed (2:l ratio) in hot 

acetonitrile for 2 h. Upon cooling the solution to 
room temperature complex C was obtained. The 
complex was washed with benzene and dried with a 
vacuum pump. Anal. Calc. for C1aH1sFeN402: C, 
57.62; H, 4.03; Fe, 14.88; N, 14.9. Found C, 57.15; 
H, 4.01 ; Fe, 14.68; N, 15.02%. Recrystallization was 
not possible as the product is only very sparingly 
soluble in a wide range of solvents including toluene, 
ethanol, methylene chloride and acetone. 

(2[(CsMe5)Fe+(CO)2 ]-TCNQ’-) (0) 
This complex was prepared in two ways. 
Method 1. A solution of TCNQ (64.3 mg, 0.314 

mmol) in deoxygenated acetonitrile (10 ml) was slow- 
ly added at 20 C to a suspension of A (155.7 mg, 
0.3 14 mmol) in deoxygenated acetonitrile (10 ml) 
(stoichiometry: l/l). The MeCN solution became 
green (h: 743, 760, 842 nm). The ESR spectra of the 
solution showed the hyperfine coupling (aN = 1 .Ol, 
an = 1.45 g) and the g value (8= 2.003) of the 
TCNQ’ radical anion [5]. Upon heating for 2 h at 
70 “C the solution became red and a dark solid was 
collected after solvent evaporation under vacuum. 
Recrystallization from chloroform-diethyl ether gave 
a purple solid which analysed as {2[(CsMes)Fe+- 
(CO)s] *TCNQ’-}. Anal. Calc. for Ca6HY1Fe204N4 : 
C, 61.91; H, 4.91; Fe, 15.99; N, 8.02. Mw: 698.38. 
Found: C, 61.87; H, 4.80; Fe, 15.86; N, 7.98%. 
Mw: 697.2. 

P. Bergamini et al. 

Method 2. Photolysis (h = 420 nm, 10 min) of a 
diluted (10e4 M) green solution (obtained as indicat- 
ed in Method 1) caused a sharp colour change from 
dark green to red. The physical properties (UV-Vis 
and IR spectra) of the irradiated solution indicated 
the formation of a product identical to the one 
prepared by Method 1. 

Results and Discussion 

Reaction of A with TCNE 
The red-purple complex A reacts readily in aceto- 

nitrile solution with a stoichiometric amount of 
TCNE under argon. The acetonitrile solution becomes 
green with a broad band in the visible region. The 
band shows closely spaced vibrational maxima at 
395, 400,410,419,429,438,460 and 470 nm [6]. 
Such spectra and the observed strong ESR signal of 
TCNE- radical anions is evidence for the presence 
of TCNE- in solution (eqn. (1)). 
After some hours complex B separated in 25% yield. 
The IR spectrum of B in the CN stretching region 
(v(CN) = 2160, 2098 cm-‘) is very similar to that 
reported [7] for TCNE2- coordinated via nitrogen 
to Ir in the dimeric compound [(Ph,P)2(CO)Ir- 

(NC)2CC(CN),Ir(CO)(PPh3)21. 
The IR spectrum of B exhibits CO (terminal) 

stretching bands [8] at 2005 and 1965 cm-‘. The 
absence of IR bands in the region of bridging CO 
ligands (1800-1700 cm-‘) indicates that the Fe-Fe 
bond has been oxidatively broken. Based on these 
results a charge transfer type structure for B would 
involve a sandwich arrangement with a TCNE’- layer 
lying between two [(CsMe,)Fe+(CO)2] moieties. 
This implies a complete electron transfer from A to 
TCNE. The experimentally observed diamagnetism 
for B supports this conclusion. The observed TCNE’ 
radical anion in the first stage of reactions indicates a 
radical pathway [I] probably involving the radical 

[GMGWOMf. Fragmentation of the di-iron 
radical followed by electron transfer inside the 
solvent cage yields the diamagnetic products B and in 
the presence of an excess of TCNE the product C. 

Nitrogen coordination as observed for B provides a 
reasonable mechanism by which a polymeric species 
involving a continuous chain of alternating TCNE’- 
and [(C,Mes)Fe+(CO),] groups could be formed. 

TCNE 
[GMe&WV212 fast f_KGMe)&W)212t *TCNE’} ----+ (2 [(C,Mes)Fe+(CO)s] .TCNE’-) 

I B 
TCNE 

[(CgMe5)Fe(CO)2TCNEl, 
C 

(1) 
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This is a possible structure for the intractable solid 
isolated from acetonitrile solutions containing A and 
TCNE in stoichiometry 1:2. Elemental analysis gives 
[(C5Me5)Fe(CO)?TCNE]. as the approximate stoi- 
chiometry and the IR absorptions in the C=N stretch- 
ing region (v(CN) = 2 18.5, 2100 cm-‘) are similar to 
those observed [9] for TCNE’- coordinated through 
the nitrogen atoms of the CN group to the metal. 

Reaction of A with TCNQ 
The complex A reacts instantaneously in aceto- 

nitrile solution with a stoichiometric amount of 
TCNQ at 20 “C. The acetonitrile solution becomes 
green (the colour of TCNQ- radicals in solution). 
Simultaneous monitoring by ESR showed these 
changes to be associated with TCNQ- radical anions. 

Photolysis (X = 420 nm) of the green solution 
causes a sharp colour change from dark green to red. 
Monitoring the photoreaction in the ESR cavity in 
the presence of C6H5N0 as spin-trap, a 34-line 
spectrum is obtained. This spectrum is assigned to the 

ci 

[C,H,-N -(C0)2Fe(CsMe,)] adduct for the follow- 
ing reasons: 

(i) The hyperfine splitting constants, aN = 11.75 G, 
a,,pH=3.2 G, amH= 1 G and the g = 2.0043 are 

6 

typical of phenyl nitroxide adducts Ar-N-R (R = 
[(C0)2M(C5H5)] ; M = Fe, Ru) [lo]. The similarity of 
the coupling constants and the g factor to those 
found for spin-adducts suggests that these compounds 
are best regarded as nitroxide radicals with no sub- 
stantial spin density in the d-orbitals. 

(ii) The same ESR spectrum is obtained by photol- 
ysis of A in acetonitrile solutions containing CsH5N0 
but in the absence of TCNQ. The [(C5Mes)Fe(C0)2’] 
radicals are the observed [l l] primary products in 
the photolytic process of trans-[(C,Me,)Fe(CO),12. 

(iii) In control experiments with no spin-trap 
present irradiated (X = 420 nm) solutions of the 
dimer A gave no ESR signals. These observations 
indicate a thermal ‘single electron transfer’ reaction 
through a radical cation-radical anion pair formation 

(eqn. (2)). 

[GMedWCW z + TCJJJQ - 

{[(CSMe5)Fe(CQ)21,+‘.TCNQ-} (2) 

The normal site for oxidation in compounds con- 
taining metal-metal bonds is at the M-M bond [4]. 
The W-Vis and ESR spectra indicate that the oxida- 
tion of the metal-metal bond in the dimer A occurs 
by two one-electron steps. The removal of the first 

electron gives the ra+dical cation-radical anion pair 
{ [(CSMes)Fe(CO),] 2’*TCNQ7}. Removal of a 
further electron from the Fe-Fe bond in A is photo- 
chemically induced (u + u* excitation) and gives the 
complete oxidative breaking of the Fe-Fe bond via 
[(CsMes)Fe(CO),‘] radical formation [ 121. The 
resulting radicals react with TCNQ’ to form D. The 
red solid D analyses for [(C,Me,)Fe(C0)2]TCNQ and 
exhibits absorptions at 1990 and 2030 cm-’ (termi- 
nal carbonyl bands) and at 2160 and 2190 cm-’ 
(CsN stretching vibrations [ 131 of TCNQ’-). 

The diamagnetism and ESR spectrum (which 
shows only an extremely weak signal of TCNQ’ from 
trace impurities) show the absence of significant 
amounts of TCNQ- or Fe(II1) salts in the solid 
product D. Mossbauer data (ZS = 0.42 mm/s versus 
Fe, QS= 2.10 mm/s at 293 K) suggest that the 
complex D contains formal Fe(I1) [ 131. The presence 
of Fe(I1) in D would require that it be formulated as 
a salt of TCNQ’-, (2 [(CSMeS)Fe’(CO),] *TCNQ*-}. 

The presence of C-N stretching vibrations in D at 
2160 and 2190 cm-’ is consistent with TCNQ*- 
formulation [14] where a further electron has been 
placed in the LUMO orbital, thereby weakening the 
CzN bonds. Both in solution or in the solid state D 
is extremely sensitive to oxygen as observed for both 
electrogenerated [ 151 TCNQ*- and solid state [ 141 
Li*TCNQ*THF. The large organometallic cation 
[(C5Mes)Fe(CO)2]+ is apparently unable to complete- 
ly shut off the O2 decay reaction of TCNQ*- leading 
to the &,a-dicyano-p-toluoylcyanide anion [(N-C)*- 
CC&--CO(CN)]-(DCTC-) [ 151 as evidenced by 
the presence of an IR band at 1645 cm-’ (carbonyl) 
and an electronic transition at 480 nm analogous to 
the one observed for NaDCTC. ‘H NMR spectroscopy 
of the red complex showed the presence not only of 
D but also of two further products probably DCTC- 
derivatives of D which, however, could not be isolated. 

Redox Potentials and Electron Transfer Reactions 
The electron transfer process between A and the 

acceptors TCNE and TCNQ can be rationalized on 
the basis of the thermodynamic redox potentials E 
(Table I). 

TABLE I. Redox Potentials E (V vs. saturated calomel 

electrode) 

Acceptor E Donor E 

TCNQa +0.20 A -1.1oc 
TCNQ; -0.33 A -1.29 
TCNEb +0.14 
TCNE’ -0.75 

- 
%olvent: DMF with 0.1 M BuaNBFg (ref. 16). bSolvent : 
CHsCN (ref. 17). ‘Solvent: CH$N with BuhNBFa (ref. 18). 
dE vs. Ag/Ag+. Solvent: CH$N with Bu4NPFh. A = [(Cs- 

Mes)Fe(CO)zl~. 
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[(C,Me,)Fe(CO)Jz (E = -1.27 V) is capable of 
reducing TCNE, TCNE’, TCNQ and TCNQ-. From 
the reduction potential of A it is evident that the 
production of TCNE’- and TCNQ2- (eqns. (1) and 
(2)) would have a very low equilibrium constant in 
solution and could be driven to the right by optical 
excitation which efficiently cleaves the metal-metal 
bond. Equation (2) is representative of the chemistry; 
ESR spectroscopy coupled with the spin-trap tech- 
nique confirm that the homolytic cleavage of the 
bridged Fe-Fe unit produces the 17electron frag- 
ment [(CsMes)Fe(CO),'] . The reactions are driven 
to produce TCNE’- and TCNQ2- by the irreversible 
reaction of the substrate radical cation. Study of the 
reactivity of the 17electron species ((CsMe,)Fe- 
(CO)2 ‘1 is in progress. 
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