Oxidative addition of triphenylstannyl aryltellurols to platinum(0) and palladium(0) complexes

Bishan L. Khandelwal*, Sushil K. Gupta and Kalipada Kundu

Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India)

(Received April 18, 1990; revised July 10, 1990)

Abstract

Triphenylstannyl aryltellurols, Ph₃SnTeAr (Ar = Ph, C₆H₄Me-4, C₆H₄OMe-4 and C₆H₄OEt-4), react with Pt(PPh₃)₄ or Pt(PPh₃)₂(C₂H₄) to form *cis*-[Pt(PPh₃)₂(TeAr)(SnPh₃)] (Ia) which with more Ph₃SnTeAr gives *cis*-[Pt(PPh₃)₂(Ph)(SnPh₂TeAr)] (IIa). The formation of IIa from Ia is explained by a mechanism involving a six coordinate platinum(IV) intermediate. A similar reaction between Pd(PPh₃)₄ and Ph₃SnTeAr resulted in the formation of two *cis* palladium(II) complexes (Ib and IIb) in solution. Complexes Ia and IIa (Ar = C₆H₄OEt-4) have been isolated and characterized and ¹H and ³¹P{¹H} NMR parameters are reported for all complexes.

Introduction

The diorganyl dichalcogenides, R_2E_2 (E=S, Se, Te), are known to undergo oxidative addition reactions with Pd(0) and Pt(0) by cleavage of the E-E bond [1-4]. Although Ph_2Te_2 has been found to be unreactive towards $[Pt(PPh_3)_2(C_2H_4)]$ [5], related oxidative addition reactions of $[Pt(PPh_3)_4]$ with $Te_2(C_6H_4Me-4)_2$ and p-MeOC₆H₄TeCN [6] as well as of $[Pd(PPh_3)_4]$ with Ar_2Te_2 ($Ar = p-EtOC_6H_4$ or 2-C₄H₃S) [3] have been reported. Recently Jennings et al. [7, 8] have studied the oxidative addition of thiols and selenols to a coordinatively unsaturated triplatinum cluster. Platinum(0) complexes, $[Pt(PPh_3)_4]$ and $[Pt(PPh_3)_2(C_2H_4)]$, are known to react with organotin reagents such as SnPh₄, SnPh₂Cl₂, SnMe₃Cl and SnMe₃Ar to give complexes which are the products of insertion of platinum into the Sn-C bond [9-12]. The reactions of Ph₃SnTeAr with the platinum(0) or palladium(0) complexes have not yet been reported. Hence, in order to investigate the behaviour of Ph₃SnTeAr and to know whether M(Pt, Pd) inserts into the Sn-C or Sn-Te bond or both when treated with Ph₃SnTeAr, the present study is undertaken.

Experimental

All the reactions were carried out using the Schlenk tube technique under dry oxygen free nitrogen atmosphere. The ¹H and ³¹P{¹H} NMR spectra were recorded on a Bruker AM 500 MHz FT NMR instrument in C₆D₆ using TMS as internal and H₃PO₄ as external references. The ³¹P resonances downfield with respect to H₃PO₄ are given as positive values (ppm).

¹H NMR study in solution

A typical procedure for the ¹H NMR study is as follows. Pt(PPh₃)₄ or Pt(PPh₃)₂(C₂H₄) (0.025 g) was dissolved in 1 cm³ of C₆D₆ in a Schlenk tube under oxygen free dry nitrogen atmosphere. To this solution was added solid Ph₃SnTeAr (Ar = C₆H₄Me-4, C₆H₄OMe-4 and C₆H₄OEt-4) in 1:0.5 (or 1:2) molar ratio and the spectrum of the resulting solution was recorded after 2–4 h at room temperature.

Reactions between $Pd(PPh_3)_4$ and $Ph_3SnTeAr$ were carried out following a similar procedure and the spectra of the resulting solutions were recorded.

³¹P NMR study in solution

Pt(PPh₃)₄ or Pt(PPh₃)₂(C₂H₄) (0.05 g) was dissolved in C₆D₆ (3 cm³) and then treated with Ph₃SnTeAr (Ar = Ph, C₆H₄Me-4, C₆H₄OMe-4 and C₆H₄OEt-4) in 1:0.5 (or 1:1 or 1:2) molar ratio under oxygen free dry nitrogen atmosphere. The ³¹P{¹H} NMR spectrum of the resulting solution was recorded after 2-4 h of mixing the reagents.

A similar methodology was adopted for recording the ${}^{31}P{}^{1}H$ NMR spectrum of the reaction products in solution resulting from Pd(PPh₃)₄ (0.1 g) and

^{*}Author to whom correspondence should be addressed.

 $Ph_3SnTeAr$ in 1:2 molar ratio after 4 h of mixing the reagents.

Synthesis of $[Pt(PPh_3)_2(TeC_6H_4OEt-4)(SnPh_3)]$ (Ia)

The complex was prepared by treatment of $Pt(PPh_3)_2(C_2H_4)$ (0.2 g, 0.26 mmol) in benzene or dichloromethane with Ph₃SnTeC₆H₄OEt-4 in 1:0.5 molar ratio. After c. 2 h at room temperature, the reaction mixture was concentrated under reduced pressure and mixed with a large volume of light petroleum and diethyl ether (1:1, vol./vol.) when a light yellow solid separated out. The product after washing with the same solvent system, was recrystallized from CH₂Cl₂/hexane. Yield, 53%. Decomposition temperature 125 °C. Anal. Calc. for C₆₂H₅₄OP₂TeSnPt: C, 56,47; H, 4.09; Te, 9.68%. Found: C, 55.80; H, 3.95; Te, 10.34%. Molecular weight (C₆H₆): found 1280, calc. 1317. λ_{M} (10⁻³ M, CH₃CN) 16 ohm⁻¹ cm² mol⁻¹. ³¹P{¹H} NMR: δ 23.9 ppm, ¹J(Pt-P) 2348 Hz, ²J(PP) 14 Hz; δ 19.4 ppm, ¹J(Pt-P) 2106 Hz.

Synthesis of $[Pt(PPh_3)_2(Ph)(SnPh_2TeC_6H_4OEt-4)]$ (IIa)

It was obtained as a light orange solid on addition of an excess of Ph₃SnTeC₆H₄OEt-4 to Pt(PPh₃)₂(C₂H₄) in the same manner as mentioned above. Yield, 59%. Decomposition temperature, 114 °C. Anal. Calc. for C₆₂H₅₄OP₂TeSnPt: C, 56.47; H, 4.09; Te, 9.68%. Found: C, 55.01; H, 3.91; Te, 10.46%. Molecular weight (C₆H₆): found 1268, calc. 1317. $\lambda_{\rm M}$ (10⁻³ M, CH₃CN) 12 ohm⁻¹ cm² mol⁻¹. ³¹P{¹H} NMR: δ 24.8 ppm, ¹J(Pt-P) 1552 Hz, ²J(PP) 18 Hz; δ 18.1 ppm, ¹J(Pt-P) obscured.

Results and discussion

The formation of the reaction products of the types $[M(PPh_3)_2(SnPh_3)(TeAr)]$ (Ia and Ib) and $[M(PPh_3)_2(Ph)(SnPh_2TeAr)]$ (IIa and IIb) has been examined *in situ* by ¹H and ³¹P NMR from the reactions between $M(PPh_3)_4$ (M = Pt, Pd) or Pt(PPh_3)_2(C_2H_4) with Ph_3SnTeAr in C_6D_6 at room temperature. The ¹H and ³¹P NMR parameters are compiled in Tables 1–3. Complexes Ia and IIa (M = Pt, Ar = C_6H_4OEt-4) have been isolated and characterized.

¹H NMR study

Reactions of $Pt(PPh_3)_4$, $Pt(PPh_3)_2(C_2H_4)$ and $Pd(PPh_3)_4$ with $Ph_3SnTeAr$ ($Ar = C_6H_4Me$ -4, C_6H_4OMe -4 and C_6H_4OEt -4) in 1:0.5 and 1:2 molar ratios have been examined by ¹H NMR in C_6D_6 solution. In each case, three methyl, methoxy or ethoxy signals are observed, one of which is identified

for the parent tellurol. The other two signals can be considered to originate from the reaction products. The intensity of these two signals varies with the concentration of the tin reagent suggesting that the signals are arising out of the two different complexes. The signals in the aromatic region could not give much useful information as all appeared in the same region. Also the detection of the free ethylene signal in the reaction between $Pt(PPh_3)_2(C_2H_4)$ and $Ph_3SnTeAr$ has proved to be elusive in the ¹H NMR spectrum. All the ¹H NMR parameters of methyl, methoxy and ethoxy resonances have been tabulated in Table 1.

³¹P NMR study

In а typical experiment Pt(PPh₃)₄ or Pt(PPh₃)₂(C₂H₄) and Ph₃SnTeAr in 2:1 molar proportion are dissolved in C_6D_6 and the clear solution is left to stand at room temperature for 2 h before recording its ³¹P{¹H} NMR spectrum. The spectrum of the resulting complex Ia comprises of two doublets each with ¹⁹⁵Pt satellites (Fig. 1). The coupling constant ²J(P-Pt-P) values (12-14 Hz; Table 2) are typical for a cis structure [13]. In general, the cis complexes have lower ${}^{2}J(PP)$ coupling constants than those of trans complexes $(^{2}J(PP))$ for cis complexes is <40 Hz and for *trans* complexes it is >150 Hz [14]). Values of ${}^{1}J(Pt-P)$ are known to depend largely on the nature of the phosphine and the ligand trans to it in platinum(II) complexes [15, 16]. The two $^{1}J(Pt-P)$ coupling constants observed are in the range 2342-2352 and 2102-2118 Hz (Table 2); the former arises due to coupling of Pt with PPh₃ trans to SnPh₃ (since the values are of the order observed for cis- $[PtPh(SnPh_3)(PPh_3)_2]$ (2352 Hz) [12]) and the latter, although relatively smaller than the reported values for cis-[Pt(Te₂C₆H₄)(PPh₃)₂] (2990 Hz) and cis- $[Pt(Te_2C_5H_6)(PPh_3)_2]$ (2860 Hz) [17], corresponds to coupling of Pt with PPh₃ trans to the TeAr group. Thus, the ³¹P NMR strongly suggests that the complexes Ia have cis structure. Since the Pt(0) complexes are highly sensitive towards oxidative addition reactions and the Sn-Te bond in Ph₃SnTeAr is also very reactive, [18, 19], formation of Ia from $Ph_3SnTeAr$ and $Pt(PPh_3)_4$ or $Pt(PPh_3)_2(C_2H_4)$ may be represented by eqn. (1)

$$Pt(PPh_3)_4$$

or

$$Ph_{3}SnTeAr/C_{6}D_{6}$$

$$-2PPh_{3} \text{ or } -C_{2}H_{4}$$

$$Pt(PPh_{3})_{2}(C_{2}H_{4})$$

$$cis-[Pt(PPh_{3})_{2}(TeAr)(SnPh_{3})] \qquad (1)$$
Ia

The free PPh₃ liberated in the reaction between $Pt(PPh_3)_4$ and $Ph_3SnTeAr$ is observed at $-\delta$ 9.3 ppm (upfield from the reference H_3PO_4).

Mixture	δCH ₂ (ppm)	δCH₃ (ppm)
A, $L(Ar = C_6H_4CH_{3}-4)^a$		2.34(s) 2.26(s)
A, $L(Ar = C_6H_4OCH_3-4)^b$		3.55(s) 3.47(s)
A, $L(Ar = C_6H_4OCH_2CH_3-4)^c$	3.83(q, J=7 Hz) 3.77(q, J=7 Hz)	1.40(t, $J=7$ Hz) 1.34(t, $J=7$ Hz)
B', $L(Ar = C_6H_4CH_3-4)$		2.38(s) 2.26(s)
B', $L(Ar = C_6H_4OCH_3-4)$		3.56(s) 3.46(s)
B', $L(Ar = C_6H_4OCH_2CH_3-4)$	3.87(q, J=7 Hz) 3.74(q, J=7 Hz)	1.37(t, $J=7$ Hz) 1.32(t, $J=7$ Hz)

TABLE 1. ¹H NMR parameters of reaction products of mixing $Pt(PPh_3)_4$ (or $Pt(PPh_3)_2(C_2H_4)$) (A) or $Pd(PPh_3)_4$ (B') with $Ph_3SnTeAr$ (L) in C_6D_6

For free L^a, δ CH₃ 2.16 ppm(s); L^b, δ OCH₃, 3.37 ppm(s); L^c, δ CH₂ 3.63 ppm (q, J=7Hz), δ CH₃ 1.28 ppm (t, J=7 Hz); s=singlet, t=triplet, and q=quartet.

TABLE 2. ³¹P NMR data of reaction products of mixing $Pt(PPh_3)_2(C_2H_4)$ or $Pt(PPh_3)_4$ with $Ph_3SnTeAr$ in C_6D_6

Ar	δP (ppm)	¹ J(Pt–P) (Hz)	²J(PP) (Hz)
cis-[Pt(PPh ₃) ₂	(SnPh ₃)(TeA	Ar)] (Ia)	
Ph	23.81(d) 19.37(d)	2342(trans SnPh ₃) 2102(trans TePh)	14
C ₆ H₄Me-4	23.88(d) 19.34(d)	2352(trans SnPh ₃) 2118(trans TeAr)	14
C ₆ H₄OMe-4	23.89(d) 19.49(d)	2344(trans SnPh ₃) 2106(trans TeAr)	14
C ₆ H₄OEt-4	28.40(d) 24.00(d)	2348(<i>trans</i> SnPh ₃) 2108(<i>trans</i> TeAr)	12
cis-[Pt(PPh ₃) ₂	(Ph)(SnPh ₂ 7	[eAr)] (IIa)	
Ph	20.8(d) 16.1(d)	1590(trans Ph) 2350(trans Sn)	15
C ₆ H₄Me-4	21.0(d) 15.9(d)	1544(<i>trans</i> Ph) 2370(<i>trans</i> Sn)	18
C ₆ H₄OMe-4	22.7(d) 18.3(d)	1550(<i>trans</i> Ph) 2414(<i>trans</i> Sn)	15
C ₆ H₄OEt-4	25.2(d) 20.5(d)	1540(<i>trans</i> Ph) obscured	18

TABLE 3. ³¹P NMR data of reaction products of mixing Pd(PPh₃)₄ with Ph₃SnTeAr in C_6D_6

Ar	δP (ppm)	²J(PP) (Hz)
cis-[Pd(PPh ₃) ₂ (SnPh		
Ph	9.84(d) 9.54(d)	25
C ₆ H₄Me-4	9.69(d) 9.41(d)	22
C₅H₄OMe-4	9.58(d) 9.47(d)	22
C ₆ H₄OEt-4	9.81(d) 9.50(d)	24
cis-[Pd(PPh ₃) ₂ (Ph)(S	SnPh ₂ TeAr)] (IIb)	
Ph	7.08(d) 6.78(d)	17
C ₆ H₄Me-4	7.15(d) 6.87(d)	16
C ₆ H₄OMe-4	7.17(d) 6.81(d)	15
C ₆ H₄OEt-4	7.12(d) 6.82(d)	17

In view of substantive dissociation of $Pt(PPh_3)_4$ in solution to give $Pt(PPh_3)_3$ and even $Pt(PPh_3)_2$ [20, 21], a five coordinate or a tetrahedral intermediate of Pt species with Ph₃SnTeAr can be proposed to be the most plausible one for the formation of *cis* complex Ia (Scheme 1). The intermediate is, of course, not present in sufficient quantity at any time to be observed in the ${}^{31}P{}^{1}H$ NMR spectrum.

In another experiment, when the platinum(0) complex in C_6D_6 is treated with Ph₃SnTeAr in 1:2 molar ratio, the ³¹P{¹H} NMR spectrum of the resulting solution after 4 h does not show the presence of

Fig. 1. ³¹P NMR spectrum of cis-[Pt(PPh₃)₂(SnPh)₃(TeC₆H₄OMe-4)] in C₆D₆ at 202.4 MHz.

Scheme 1. Suggested mechanism for the formation of Ia from Pt(0) and $Ph_3SnTeAr$.

any detectable amount of Ia. However, it does indicate the existence of a new complex IIa. The spectrum consists of two doublets of equal intensities both having platinum satellites (Fig. 2). Using arguments similar to those given for Ia, it follows that IIa is also a *cis* complex with two non-equivalent phosphorus atoms attached to platinum (${}^{2}J(PP)$ 15-18 Hz, Table 2). The values of 1540-1590 and 2350-2414 Hz for ${}^{1}J(Pt-P)$ (Table 2) are of the order expected for PPh₃ *trans* to Ph [12, 22] and SnPh₂TeAr [12] groups, respectively.

The ${}^{31}P{}^{1}H$ NMR spectrum of the C₆D₆ solution containing the tin reagent and the platinum(0) com-

plex in 1:1 molar ratio shows the coexistence of both the complexes Ia and IIa even after 4 h although IIa is the major product.

The ³¹P{¹H} NMR experiment clearly indicates that, of the two products in the reaction of Pt(0)and Ph₃SnTeAr, complex Ia is initially formed which then reacts with more tin reagent to give another complex IIa. The formation of IIa from Ia and Ph₃SnTeAr may be satisfactorily explained by Scheme 2 (a mechanism similar to that for the formation of cis-[PtMe(SnMe₂Cl)(PPh₃)₂] from [Pt(PPh₃)₂(C₂H₄)] and SnMe₃Cl [23]) in which it is suggested that a second molecule of Ph₃SnTeAr adds oxidatively to complex Ia to give a six coordinate platinum(IV) complex. One molecule of Ph₃SnTeAr is then reductively eliminated to give the new complex IIa. Since no $SnPh_2(TeAr)_2$ is detected during the reaction by ¹H NMR, it is considered that the elimination of Ph₃SnTeAr is probably faster than the sterically hindered elimination of SnPh₂(TeAr)₂. It is important to note that the proposed mechanism does not require the insertion of Ia into the Sn-Ph bond to be faster than its insertion into the Sn-TeAr bond. Indeed the reverse is likely to be true. But insertion of Ia into Sn-TeAr is followed by elimination of Ph₃SnTeAr to reform Ia, whereas insertion of Ia into the Sn-Ph bond, although slower, can result in the formation of the IIa by elimination of Ph₃SnTeAr.

The complexes Ia and IIa ($Ar = C_6H_4OEt-4$) have been isolated as light yellow and light orange solids, respectively (see 'Experimental'). The elemental analyses and molecular weight measurements in benzene are consistent with the above formulations. They are found to be non-electrolytes in CH₃CN solution. The

Fig. 2. ³¹P NMR spectrum of cis-[Pt(PPh₃)₂(Ph)(SnPh₂TeC₆H₄OMe-4)] in C₆D₆ at 202.4 MHz.

Scheme 2. Proposed mechanism for the formation of IIa from Ia and $Ph_3SnTeAr$.

¹H NMR spectra show the equivalence of all aryl groups in the complexes. The ³¹P{¹H} NMR spectra suggest their *cis* configurations in solution. The ³¹P NMR parameters of the reaction products obtained *in situ* are in good agreement with the authentic samples. Although the ν (Pt-C) band in the Pt-aryl complexes have been reported to lie in the range 480-600 cm⁻¹, an unambiguous identification in the IR spectrum of **Ha** is difficult due to its association with aromatic ring vibrations.

The reaction between palladium(0) complexes and $Ph_3SnTeAr$ (Ar = Ph, C₆H₄Me-4, C₆H₄OMe-4 and C_6H_4OEt-4) has also been examined in situ by ³¹P NMR spectroscopy. The spectrum recorded with the resulting solution after 4 h consists of two doublets of equal intensities. This clearly indicates the nonequivalence of the two phosphorus atoms in the complex. The coupling constant ²J(P-Pd-P) (15-26 Hz; Table 3) is characteristic for a cis complex. The free PPh₃ liberated in the reaction is observed at $-\delta$ 9.0–9.3 ppm. This strongly suggests that, similar to the platinum analogues, two cis complexes [Pd(PPh₃)₂(TeAr)(SnPh₃)] (**Ib**) and [Pd(PPh₃)₂(Ph)(SnPh₂TeAr)] (IIb) are also formed in the reaction between Pd(PPh₃)₄ and Ph₃SnTeAr. It has been observed that the reaction of $Ph_3SnTeAr$ with Pd(0) is relatively slower than its reaction with Pt(0). The complexes Ib and IIb are formed simultaneously from mixing Pd(PPh₃)₄ with

formed simultaneously from mixing $Pd(PPh_3)_4$ with $Ph_3SnTeAr$ in 1:2 molar ratio in C_6D_6 solution. The isolation and separation of **Ib** and **IIb** have been unsuccessful.

Conclusions

The reaction of $Ph_3SnTeAr$ with Pd(0) and Pt(0)gives rise to two *cis* complexes, $[M(PPh_3)_2(TeAr)(SnPh_3)]$ and $[M(PPh_3)_2(Ph)-(SnPh_2TeAr)]$, which are products of insertion of M(Pd, Pt) into the Sn-Te and Sn-C bonds, respectively.

Acknowledgement

We thank the authorities of TIFR, Bombay for providing facilities for recording ¹H and ³¹P NMR spectra on the Bruker AM 500 MHz FT NMR National Facility.

References

- 1 R. Zanella, R. Ros and M. Graziani, *Inorg. Chem.*, 12 (1973) 2736.
- 2 V. W. Day, D. A. Lesch and T. B. Rauchfuss, J. Am. Chem. Soc., 104 (1982) 1290.
- 3 L. Y. Chia and W. R. McWhinnie, J. Organomet. Chem., 148 (1978) 165.
- 4 V. N. Drozd, V. A. Sergeichuk and V. I. Sokolov, *Izv.* AN SSSR, Ser. Khim., (1981) 1624.
- 5 D. A. Lesch and T. B. Rauchfuss, J. Organomet. Chem., 199 (1980) C6.
- 6 H. J. Gysling, Am. Chem. Soc. Meet., Rochester, NY, 1981, Abstr. 136.
- 7 M. C. Jennings, N. C. Payne and R. J. Puddephatt, J. Chem. Soc., Chem. Commun., (1986) 1809.
- 8 M. C. Jennings and R. J. Puddephatt, Inorg. Chem., 27 (1988) 4280.
- 9 C. Eaborn, A. Pidcock and B. R. Steele, J. Chem. Soc., Dalton Trans., (1976) 767.

- 10 G. Butler, C. Eaborn and A. Pidcock, J. Organomet. Chem., 181 (1979) 47.
- 11 G. Butler, C. Eaborn and A. Pidcock, J. Organomet. Chem., 185 (1980) 367.
- 12 C. Eaborn, K. Kundu and A. Pidcock, J. Chem. Soc., Dalton Trans., (1981) 1223.
- 13 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Complexes, Springer, Berlin, 1979.
- 14 J. H. Nelson and F. Mathey, in J. G. Verkade and L. D. Quin (eds.), *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis*, VCH, Deerfield Beach, FL, 1987, p. 672.
- 15 A. Pidcock, R. E. Richards and L. M. Venanzi, J. Chem. Soc. A, (1966) 1707.
- 16 P. S. Pregosin, in J. G. Verkade and L. D. Quin (eds.), Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis, VCH, Deerfield Beach, FL, 1987, p. 465.
- 17 D. M. Giolando, T. B. Rauchfuss and A. L. Rheingold, Inorg. Chem., 26 (1987) 1636.
- 18 I. Davies and W. R. McWhinnie, Inorg. Chim. Acta, 29 (1978) L217.
- 19 I. Davies and W. R. McWhinnie, Inorg. Nucl. Chem. Lett., 12 (1976) 763.
- 20 C. A. Tolman, W. C. Seidel and D. H. Gerlach, J. Am. Chem. Soc., 94 (1972) 2669.
- 21 K. P. Butin, T. V. Magdesieva, V. V. Bashilov, V. I. Sokolov and O. A. Reutov, *Metalloorg. Khim.*, 1 (1988) 330.
- 22 C. Eaborn, K. J. Odell and A. Pidcock, J. Chem. Soc., Dalton Trans., (1978) 357.
- 23 T. A. K. Al-Allaf, C. Eaborn, K. Kundu and A. Pidcock, J. Chem. Soc., Chem. Commun., (1981) 55.