Synthesis and Molecular Structure of Kryptofix 222 Potassium Phthalocyaninato Ferrate, [K C 222]- [FePc], and (18-crown-6) lithium (18-crown-6)-**(tetrahydrofuran) lithium phthalocyaninato ferrate,** $[Li \subset 18c.6] [Li(THF) \subset 18c.6] [FePc]$

M. TAHIRI, P. DOPPELT, J. FISCHER and R. WEISS

Institut Le Bel*, Université Louis Pasteur, 4 rue Blaise Pascal, *6 7070 Strasbourg, fiance*

(Received June 25, 1986)

Electrochemical and spectral studies of iron phthalocyanine complexes have led to the conclusion that the first reduction of iron (II) phthalocyanine, $[Fe(II)Pc]$ (Pc = phthalocyanine), occurs at the metal to form $[Fe(I)Pc(2-)$ ⁻ whereas the second reduction takes place at the ring to yield $[Fe(I)Pc(3\bar{)}]^{2-}$ $[1-3]$. Several papers have indicated that the doubly reduced species reacts with a number of small molecules such as N_2 , CO, NO and several organic substrates $[4-5]$. In order to study the reactivity of the 1 and 2 electron reduced species of [Fe(II)Pc], we have synthesized and isolated in the solid state derivatives containing the $[FePe]$ and $[FePe]$ ²⁻ anions. We report here the synthesis and structural characterization of $[K \subset 222]$ [FePc] and $[Li_2(THF) (18c.6)_2$ [FePc].

Experimental

Fe(II)Pc was prepared according to standard procedures [6] and purified by repeated sublimation at 400 \degree C under reduced pressure (10⁻⁴ Torr). Potassium t-butylthiolate, used as reducing agent for the synthesis of $[FePc]^-$, was prepared by the reaction of KOH with t-butylthiol in ethanol. The reducing agent used for the preparation of $[FePe]²⁻$ was LiAlH4. This reagent was obtained from Aldrich as were Krytofix 222(4,7,13,16,21,24-hexaoxa-1 JOdiazabicyclo [8.8.8] hexacosane) and the polyether I8-crown-6(1,4,7,10,13,16-hexaoxacyclooctadecane). All experiments were done under an inert atmosphere either by Schenk techniques or in a Vacuum Atmospheres drybox. Solvents were rigorously purified and dried under argon. Electronic spectra were recorded either on a Cary 210 or 219 spectrometer.

 $[K \subset 222]$ [FePc] (1) was synthesized by reaction of $[K \subset 222]$ [t-butyl S] (40 mg, 0.08 mmol) in chlorobenzene (15 ml) with a suspension of iron(I1) phthalocyanine (15 mg, 26×10^{-3} mmol) in chlorobenzene (10 ml). After stirring for 15-20 min, the pink solution was filtered, pentane was added (40 ml) and the solution was set aside for crystallization. The green crystals were collected and washed with pentane.

UV-Vis THF or chlorobenzene solutions: λ_{max} (loge) 682 (4.91), 624sh, 546 (4.85), 523 (4.83), 475 (4.75), 438 (4.63) nm; solid state: λ_{max} 681, 632,553,522,470,439sh nm.

 $[Li_2(THF)(18c.6)_2]$ [FePc] (2) was prepared by adding to a THF solution (10 ml) containing LiAlH₄ $(1.4 \text{ mg}, 37 \times 10^{-3} \text{ mmol})$ and 18-crown-6 (10 mg, 38×10^{-3} mmol) to a suspension of Fe(II)Pc (10 mg, 17×10^{-3} mmol) in THF (10 ml). The purple solution obtained was set aside for crystallization after filtration and addition of pentane (30 ml). The green crystals were collected and washed with pentane. UV-Vis (THF solutions) λ_{max} (log ϵ) 699 (4.62), 642 (4.90), 689sh, 524 (5.53), 346 (5.89).

Single crystals suitable for X-ray studies were obtained in sealed tubes by slow diffusion of pentane into chlorobenzene solutions containing [FePc]⁻ and THF solutions of $[FePe]²⁻$.

1, $C_{50}H_{52}N_{10}O_6$ KFe, $M_r = 983.48$, $a = 22.748(8)$, $b = 17.312(8)$, $c = 12.037(5)$ Å, $\beta = 92.48(1)$ °, $V =$ 4736 A³, space group $P2_1/n$, $Z = 4$, $D_{\text{calc}} = 1.38$ g cm^{-3} .

2, $C_{60}H_{72}N_8O_{13}Li_2Fe$, $M_r = 1182.31$, $a=$ 12.841(3), $b = 18.107(5)$, $c = 12.325(3)$ Å, $\alpha =$ 97.24(1), β = 91.19(1), γ = 94.53(1)^o, V = 2833 Å³, space group $P\overline{1}$, $Z = 2$, $D_{\text{calc}} = 1.37$ g cm⁻³.

Diffraction intensities were collected on a Philips PW-1100 diffractometer with graphite monochromated Cu K α radiation (λ = 1.5405 Å) at room temperature for 1 and -100 °C for 2. The structure solutions were based on 2765 and 4196 reflections having $I > 3\sigma(I)$ respectively for 1 and 2. Final R values were for 1 and 2 respectively: $R_1 = 0.045$, $R_2 = 0.055$ and $R_1 = 0.053$, $R_2 = 0.071$. The asymmetric units of both crystals contain two halves of the phthalocyanine anions located on crystallographic inversion centers. The $[FePe]$ ⁻ and $[FePe]$ ²⁻ present in 1 and 2 present thus at least C_i symmetry.

Results and Discussion

The electronic spectra of $[FePc]$ ⁻ and $[FePc]$ ²⁻ in THF or chlorobenzene are given in Fig. 1. For [FePc]-, the spectrum is notably different from those given in the literature $[2-7]$. We controlled that the solution spectrum matched the solid state spectrum which was obtained by crushing crystals of **1** on the walls of a cell under inert atmosphere.

*Laboratoire de chimie des métaux de transition et de Figure 2 displays a perspective view of the mono-

catalyse associé au CNRS (UA 424). $\qquad \qquad \text{anion} \quad \text{[FePc]}^-. \text{ The structure of } \text{[FePc]}^{2-} \text{ is very}$

Fig. 1. Electronic spectra of $[K \subset 222][FePc]$ (chlorobenzene solution, full line) and of $[Li_2(THF)(18c.6)_2]$ -[FePc] (THF solution, dashed line).

Fig. 2. ORTEP plot of the $[FePe]$ ⁻ anion present in $[K \subset$ 222][FePc] with part of the atom numbering scheme. Ellipsoids are scaled to enclose 30% of the electron density. Hydrogen atoms are omitted.

TABLE I. Comparison of Bond Lengths Found in Isoindole Moieties of $[Fe(II)(4MePy)₂Pc]²$, $[FePc]⁻$, $[FePc]⁻$ and $[Co(II)Pc]$ ^b

	$[Fe(II)(4MePy)$ ₂ Pc]	$[FePe]^-$	$[FePc]^{2-}$	[Co(II)Pc]
$Fe-Niso$	1.934(3)	1.910(2)	1.910(2)	1.908(2)
$N_{\rm iso}-C_\alpha$	1.374(4)	1.386(2)	1.395(2)	1.375(3)
$C_{\alpha}-C_{\beta}$	1.453(4)	1.436(2)	1.446(2)	1.450(3)
	1.400(4)	1.378(3)	1.393(2)	1.384(3)
$C_{\beta}-C_{\beta}$ C _a -N _m	1.327(4)	1.326(3)	1.327(2)	1.318(3)

aRef. 8. bRef. 9.

similar to that of the monoanion, thus no figure is given for the dianion.

Selected bond distances are given in Table I for $[FePc]$ ⁻ and $[FePc]$ ²⁻. Iron is four-coordinate in both compounds and linked only to the four isoindole nitrogens of the Pc rings. The mean values of the $Fe-N_{iso}$ bonds are identical in both compounds and equal to $1.910(2)$ Å. The conformation of both phthalocyanine rings are unremarkable. The inner cores are planar within ± 0.06 Å in 1 and ± 0.03 Å in 2. The bond parameters within the PC rings of **1** and 2 are not significantly different. Table I compares in order the average Fe-Np distances and average phthalocyaninato core dimensions in four species: low-spin six-coordinate, $[Fe(II)(4\text{MePy})_2\text{Pc}]$ [8], $[FePc]$, $[FePc]^2$ and $[Co(II)\rightarrow O(1)]$ [9]. In addition, the bond distances in the phthalo-

enclosed in a phthalocyanine ring would be expected present in most metallophthalocyanines of known to lead to small increases in the Fe-N_{iso} bond lengths structures [10]. Table I shows that the N_{iso}-C α

relative to the distances present in the complexes having iron in a formally higher oxidation state. The observed trend is in fact opposite to that expected. Indeed, Fe-N_{iso} in [Fe(II)(4MePy)₂Pc] is 1.934(3) and only 1.910(2) in $[FePe]$ ⁻ and $[FePe]$ ²⁻.

Expected Fe $-N_{iso}$ bond distance values could be based on the $Co-N_{iso}$ bond lengths observed in the isoelectronic d^7 Co(II) species with an appropriate allowance for the decreased effective nuclear charge in the iron complexes. For $[Co(II)Pc]$, the $Co-N_{iso}$ distance is 1.907(2) Å. Thus, the expected Fe-N_{iso} distance would be slightly longer than the observed length of $1.910(2)$ Å. It appears thus, that the Fe- N_{iso} distances in [FePc]⁻ and [FePc]²⁻ are shorter than predicted for iron(I) and iron(O) formulations.

A decrease in the formal oxidation state of iron cyanine cores show some trends which are not

bond lengths are somewhat longer whereas the Ca - $C\beta$ bond distances are slightly shorter. Unfortunately, a too close comparison of the bond distances present in $[FePc]^-$ and $[FePc]^{2-}$ is not possible, the structure of the former has been studied at normal temperature whereas the latter compound has been studied at -100 °C.

In conclusion, our X-ray studies show that the structural parameters are very similar for both anions: $[FePc]$ ⁻ and $[FePc]$ ²⁻. Thus, although not identical their electronic structures must be similar. This conclusion can be rationalized by assuming, as it was proposed for the reduced iron(II) porphyrinates $[11]$, that $[FePc]$ ⁻ and $[FePc]$ ²⁻ correspond respectively to resonance hybrids of the type:

$$
[Fe(I)Pc(-2)]^- \rightleftharpoons [Fe(II)Pc(-3\cdot)]^-
$$

and _

$$
[Fe(I)Pc(-3\cdot)]^{2-} \rightleftharpoons [Fe(I1)Pc(-4\cdot)]^{2-}
$$

EPR and Mössbauer studies of both derivatives are presently underway.

References

- 1 A. B. P. Lever and J. P. Wilshire, *Can. J.* Chem., 54, 2514 *2* A. B. P. Lever and J. P. Wilshire, *Inorg. Chem., 17,* 1145 (1976).
- *3* P. C. Minor, M. Gouterman and A. B. P. Lever, *Inorg.* (1978).
- *4 1* $\frac{1}{27}$, $\frac{10}{7}$ $\frac{1200}{7}$. Chem., 24, 1894 (1985).
- *5* K. Tamaru, *Gztal. Rev., 4,* 161 (1971). Tamaru, *J. Phys. Chem.,* 72, 1174 (1968).
- *6* H. Tomoda, S. Saito and S. Shiraishi, Chem. *Lett.,* 313
- *I* D. W. Clack and J. R. Yandle, Inorg. Chem., II, 1738 (1983).
- *8* F. Cariati, F. Morazzoni and M. Zocchi, *J.* Chem. Sot., (1972).
- *9* R. Mason, G. A. Williams and P. E. Fielding, *J. Chem. Dalton Trans., 1018 (1978).*
- 10 A. De Cian, M. Moussavi, J. Fischer and R. Weiss, *Inorg. Sot., Dalton Trans., 676 (1979).*
- T_{1} , T_{1} , T_{2} , T_{3} , T_{4} , T_{5} , T_{6} , T_{7} , T_{8} , T_{9} , T_{10} , T_{11} , T_{10} , T_{11 *Chem., 24, 3162* (1985) and refs. therein.
- *fnorg. Chem.,* 2.3, 3192 (1984).