The Reaction of $[PtCl_4]^2$ with 1,1,4,7,10,10-Hexaphenyl-1,4,7,10-Tetraphosphadecane: Complete Product Selectivity via Non-coordinating Anions and Isolation of Two Intermediates

PETER BRÜGGELLER

Institut für Anorganische und Analytische Chemie, Universität Innsbruck, 6020 Innsbruck, Austria (Received May 4, 1988)

Abstract

The reaction of $[PtCl_4]^2$ with 1,1,4,7,10,10hexaphenyl-1,4,7,10-tetraphosphadecane (P₄) leads to four different products due to the formation of intermediates and the presence of two different diastereomers of P_4 . The four complexes can be separated using non-coordinating anions. [PtCl(P4)]- (BF_4) (1), $[PtCl(P_4)](BPh_4)$ (2), chiral $[Pt(P_4)]$ - $(BPh_4)_2$ (3) and meso- $[Pt(P_4)](BPh_4)_2$ (4) have been characterized by elemental analyses, ¹⁹⁵Pt and ³¹P NMR spectroscopy, and in one case (3) by a preliminary X-ray diffraction analysis. In the fivecoordinate complex 1 P₄ has a tetrahedral arrangement. 2 is also five-coordinate, the chloride occupying the apical and P_4 the four basal positions of a square pyramid. 3 and 4 have four-coordinate square-planar structures where the X-ray structure of 3 shows it to be the chiral form of the two possible diastereomers. 4 is therefore supposed to be the meso form. A steric effect as a possible reason for the observed diastereoselective action of Na-(BPh₄) is discussed.

Introduction

In the absence of non-coordinating anions replacement of the chlorides in $[PtCl_4]^{2-}$ by 1,1,4,7, 10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (P₄), first investigated by King and co-workers [1], leads to a mixture of three complexes. This is a common difficulty in polyphosphine chemistry, where different stereoisomers are often formed [2, 3]. However, it is widely recognized, that non-coordinating anions and cations may alter the reactivity of corresponding counterions by ion pairing effects [4]. In the above reaction the reaction pathway is strongly influenced by the presence of non-coordinating anions. NaBF₄ leads to a complete product selectivity and the formation of only one product. Two further products are obtainable by initial addition of Na(BPh₄). The first two products are shown to be intermediates. From one intermediate a fourth product is formed.

Results

It has been known for some time that P_4 has two different diastereoisomers due to the chiral nature of the internal phosphorus atoms: the chiral R,R and S,S diastereomer and the meso-(R,S) and S,R form [5]. At 300 MHz the two stereoisomers have similar but distinct ³¹P NMR resonances and it has been shown that commercial samples of P_4 contain the high-melting meso isomer and the lowmelting chiral isomer in the ratio 2/1 [6]. In this work commercial P_4 of the same composition has been used without separation of the two diastereomers.

Table 1 contains the various product distributions for the reaction of $[PtCl_4]^{2-}$ with P₄ in the absence and presence of non-coordinating anions. NaBF₄ leads only to one product $[PtCl(P_4)](BF_4)$ (1). Na(BPh₄) leads to a mixture of an isomer of 1 with a different arrangement of P₄, $[PtCl(P_4)](BPh_4)$ (2), and $[Pt(P_4)](BPh_4)_2$ (3). 2 and 3 are easily separable, since only 2 is soluble in CH₂Cl₂. Addition of an equimolar amount of Na(BPh₄) to CH₂Cl₂ solutions of 2 produces the other diastereomeric form of 3, 4.

In Fig. 1 the ¹⁹⁵Pt NMR spectra of 1 and 2 are shown. In Table 2 the ¹⁹⁵Pt and ³¹P NMR data for all four complexes are summarized. The ¹⁹⁵Pt NMR spectrum of 1 (Fig. 1a) consists of a broad quintet, indicating that all four ³¹P nuclei of P₄ occupy nearly identical magnetic sites, which is only possible in the case of a tetrahedral arrangement of P_4 in the five-coordinate complex 1. At 253 K the signals sharpened indicating an exchange process at room temperature. The ³¹P NMR spectrum of 1 is consistent with an AB₂C spin system also typical for a tetrahedral arrangement of P₄ in 1, since corresponding tetrahedral platinum(0) complexes show the same AB_2C spectra: $[Pt(etp)(PPh_3)]$, where etp is bis(2-(diphenylphosphino)ethyl)phenylphosphine, and $[Pt(P_4)]$ have been prepared according to ref. 7; both complexes show $AB_2C^{31}P$ NMR spectra (at 40.4, 30.65, 26.9; and 44.2, 37.9, 29.3 ppm). No attempt was made to assign the two kinds of ³¹P nuclei of P₄ in 1, though it seems likely that A and

0020-1693/89/\$3.50

© Elsevier Sequoia/Printed in Switzerland

Non-coordinating anion (X ⁻)	<i>T</i> (K)	[PtCl(P ₄)]X th ^b	[PtCl(P ₄)]X sp ^b	[Pt(P ₄)]X ₂ chiral	[Pt(P4)]X2 ^a meso
None $(X^- = CI^-)^c$	293	35		22	43
(PF ₆) ^{-c}	273	64		14	22
$(AsF_6)^{-c}$	273	9 0	3		7
	273	100			
(BF ₄) ⁻ (BPh ₄) ^{-d}	293		68	32	

TABLE 1. Product Distributions for the Reaction of [PtCl₄]²⁻ with P₄ under Various Conditions

^aIn %(w/w). ^bth = tetrahedral arrangement of P₄, sp = square-pyramidal. ^cFrom ³¹P NMR spectral integrations. ^dBy relative weights.

Fig. 1. 17.2 MHz 195 Pt {¹H} NMR spectra of (a) a CH₃NO₂ solution of 1 and (b) a CH₂Cl₂ solution of 2 at 300 K.

C correspond to the terminal $-PPh_2$ groups. At 233 K the ³¹P NMR spectrum of 1 consists of a single broad line showing two shoulders, nicely corresponding to the above described ¹⁹⁵Pt NMR spectrum of 1.

The ¹⁹⁵Pt NMR spectra of 2 (Fig. 1b), 3 and 4 consist of triplets of triplets produced by coupling of two equivalent -PPh and two equivalent $-PPh_2$ groups in all cases. The ¹⁹⁵Pt resonances of all four complexes are shifted to higher fields compared with the corresponding value for a similar platinum(II) complex of a tripodal tetraphosphine, [PtCl(PP₃)]Cl,

where PP₃ is tris(2-(diphenylphosphino)ethyl)phosphine and $\delta(^{195}Pt) = -4372$ ppm [8]. The ¹J(Pt-P) parameters are in the range expected for squareplanar platinum(II) complexes containing only phosphorus ligands, the ${}^{1}J(Pt-PPh_{2})$ coupling constants being typically larger than the ${}^{1}J(Pt-PPh)$ values [9]. The ³¹P NMR spectra of 2, 3 and 4 are consistent with A₂M₂ spin systems. Since phosphorus atoms as part of a five-membered ring are deshielded and the downfield shift increases nearly additively with the number of chelating five-membered rings to which a phosphorus atom is attached [10], one pair of phosphines is part of one five-membered chelate ring (with the ³¹P chemical shift very similar to that found in $[Pt(Ph_2PCH_2CH_2PPh_2)_2]Cl_2$, $\delta(P) = 47.8$ ppm; ref. 8) and the second pair is attached to two chelating five-rings. From that it is clear, that the high-field signal is attributed to the -PPh₂ groups and the low-field one to the -PPh groups in Table 2. The ²J(PPh, PPh₂) values are typical for ${}^{2}J(P, P_{trans})$ couplings for two phosphines [9, 11].

Both the ¹⁹⁵Pt and ³¹P NMR data are consistent with square-planar arrangements of P₄ in 2, 3 and 4. In 2 elemental analysis, colour and reactivity towards nucleophiles [12] indicate the presence of chloride as a fifth ligand. Therefore a square-pyramidal structure is suggested for 2, with the chloride occupying the apical position. The structure of 3 has been revealed by an X-ray structure analysis [13]. The *trans* positions of the phenyl groups at the two

TABLE 2. Platinum-195 and Phosphorus-31 NMR Data for 1, 2, 3 and 4^a

Compound	δ(Pt)	¹ J(Pt-P)	¹ <i>J</i> (Pt-P) 2233		δ(P) 46.1, 43.4, 38.0		
1	-5084(q)	2233					
		¹ J(PtPPh)	¹ J(Pt-PPh ₂)	δ(PPh)	$\delta(\text{PPh}_2)$	²J(PPh, PPh ₂)	
2 3 4	-5098(tt) -5110(tt) -5103(tt)	2279 2137 2100	2588 2403 2432	86.7 92.3 89.1	42.3 39.2 44.7	290 275 280	

^a δ [ppm], J [Hz], 300 K; 1, 3 and 4 were measured in CH₃NO₂, 2 was run in CH₂Cl₂; an internal deuterium lock was used; q = quintet, tt = triplet of triplets.

central phosphorus atoms of P_4 in 3 indicate that 3 is the chiral form of the two possible diastereomers. Since 4 can be easily produced from 2 and shows the same elemental composition as 3, 4 is assigned to the *meso*-diastereomer of $[Pt(P_4)](BPh_4)_2$. This is also in agreement with the observed product distributions of 2 and 3 in an approximate ratio 2/1reflecting the diastereomer distributions in commercial P_4 .

Discussion

In 1 no indication for a second diastereomer was observed. This might be due to the low yield for 1 and the synthetical preference of one diastereomer. Since four-coordinate platinum(II) complexes are invariably square planar [14], loss of the chloride as fifth ligand is only possible after rearrangement of P_4 from tetrahedral in 1 to square planar in 2. By the diastereoselective action of Na(BPh₄) the chloride remains coordinated only in the case of 2 containing meso-P₄. This illustrates the fact that for P4 complexes small changes in ligand geometry can have profound effects on their coordination chemistry [6] and might be a consequence of the steric differences in phenyl substitution at the central phosphorus atoms of P_4 between 2 (cis positions) and its chiral counterpart (trans positions) which seem to allow the formation of a contact ion pair with $(BPh_4)^-$ only in the case of 2. Both 1 and 2 have very unusual platinum(II) coordination geometries. 1 is possibly best described as a tetrahedral arrangement of P₄ with the chloride capping a tetrahedral face, a configuration type found for hydrides of composition HML₄ [15]. However, more work has to be done to reveal the very nature of complexes of type 1 and 2.

Experimental

Reagent grade chemicals were used as received unless stated otherwise. 1,1,4,7,10,10-Hexaphenyl-1,4,7,10-tetraphosphadecane (P₄) was purchased from Strem Chemical Co., NaPF₆ was purchased from Aldrich Chemical Co., LiAsF₆ from Ventron, NaBF₄ from Fluka, and Na(BPh₄) was of purissimum grade quality and received from Merck-Schuchardt. All solvents were obtained from Fluka. Solvents used for NMR measurements and for crystallization purposes were of purissimum grade quality. Na₂-PtCl₄·4H₂O was prepared from platinum metal.

Fourier-mode, broad-band proton-decoupled ¹⁹⁵Pt and ³¹P NMR spectra were obtained by use of a Bruker WP-80 spectrometer. Positive chemical shifts are downfield from 1.0 M Na₂PtCl₆ and 85% H₃PO₄ used as external standards. Elemental analyses were obtained with a Heraeus EA 425 elemental analyzer. A Schlenk apparatus and oxygen-free, dry Ar were used in the syntheses of all complexes. Solvents were degassed by several freeze-pump-thaw cycles prior to use.

Complex 1

To Na₂PtCl₄·4H₂O (0.3 mmol, 0.115 g) and NaBF₄ (0.6 mmol, 0.006 g) in water a solution of P₄ (0.3 mmol, 0.201 g) in CH₂Cl₂ was added. Then EtOH was added under stirring until a yellow precipitate formed. The reaction was carried out at 273 K. I was filtered off, washed with water, and dried *in vacuo*: yield 0.148 g (50%), melting point (m.p.) = 194-195 °C. Anal. Calc. for C₄₂H₄₂BClF₄P₄Pt: C, 51.1; H, 4.3. Found: C, 50.7; H, 3.9%.

Complexes 2 and 3

To Na₂PtCl₄·4H₂O (0.6 mmol, 0.230 g) and Na(BPh₄) (0.9 mmol, 0.308 g) in water a solution of P_4 (0.6 mmol, 0.402 g) in CH_2Cl_2 was added. Then EtOH was added under stirring until a yellow precipitate formed. The reaction was carried out at 293 K. 2 and 3 were filtered off, washed with water, and dried in vacuo. The yellow powder was partly dissolved in CH₂Cl₂ and filtered. Evaporation of the yellow filtrate lead to a yellow powder which was dried in vacuo. 2: yield 0.447 g (61%); m.p. = 135-137 °C. Anal. Calc. for C₆₆H₆₂BClP₄Pt: C, 64.9; H, 5.1. Found: C, 64.5; H, 5.5%. The insoluble part was washed with CH₂Cl₂, recrystallized from CH₃NO₂, and dried in vacuo. 3: colourless crystals, yield 0.210 g (29%); m.p. = 225-228 °C dec. Anal. Calc. for C₉₀H₈₂B₂P₄Pt: C, 71.8; H, 5.5. Found: C, 71.8; H, 5.9%.

Complex 4

2 (0.1 mmol, 0.122 g) was dissolved in CH_2Cl_2 and Na(BPh₄) (0.1 mmol, 0.034 g) was added. The solution was stored at 243 K for one week and a white precipitate gradually formed. 4 was filtered off, washed with CH_2Cl_2 and water, and dried *in* vacuo: yield 0.045 g (30%); m.p. = 236-239 °C dec. Anal. Calc. for $C_{90}H_{82}B_2P_4Pt$: C, 71.8; H, 5.5. Found: C, 71.5; H, 5.7%.

Acknowledgement

This work was supported by the Land Vorarlberg, Austria.

References

- R. B. King, R. N. Kapoor, M. S. Saran and P. N. Kapoor, Inorg. Chem., 10 (1971) 1851.
- 2 J. L. Bookham, W. McFarlane and I. J. Colquhoun, J. Chem. Soc., Chem. Commun., (1986) 1041; J. L. Bookham and W. McFarlane, 3rd Int. Conf. Chem. Plat. Group Met., Sheffield, U.K., 1987, J-2.
- 3 F. R. Askham, G. G. Stanley and E. C. Marques, J. Am. Chem. Soc., 107 (1985) 7423; S. A. Laneman and G. G.

Stanley, *Inorg. Chem.*, 26 (1987) 1177; F. R. Askham, A. W. Maverick and G. G. Stanley, *Inorg. Chem.*, 26 (1987) 3963.

- 4 M. Y. Darensbourg, Prog. Inorg. Chem., 33 (1985) 221; F. Mani and L. Sacconi, Comments Inorg. Chem., 2 (1983) 157.
- 5 R. B. King, P. R. Heckley and J. C. Cloyd, Jr., Z. Naturforsch., Teil B, 29 (1974) 574.
- 6 J. M. Brown and L. R. Canning, J. Organomet. Chem., 267 (1984) 179.
- 7 J. Chatt, R. Mason and D. W. Meek, J. Am. Chem. Soc., 97 (1975) 3826; R. B. King and P. N. Kapoor, Inorg. Chem., 11 (1972) 1524.
- 8 E. G. Hope, W. Levason and N. A. Powell, *Inorg. Chim.* Acta, 115 (1986) 187.

- 9 D. L. DuBois and A. Miedaner, J. Am. Chem. Soc., 109 (1987) 113; K. D. Tau and D. W. Meek, Inorg. Chem., 18 (1979) 3574.
- 10 P. E. Garrou, Chem. Rev., 81 (1981) 229; W. Hohman, D. J. Kountz and D. W. Meek, Inorg. Chem., 25 (1986) 616; E. Grimley and D. W. Meek, Inorg. Chem., 25 (1986) 2049.
- 11 P. Brüggeller, Inorg. Chem., 26 (1987) 4125.
- 12 P. Brüggeller, unpublished results.
- 13 A. Gieren, P. Brüggeller and T. Hübner, unpublished results.
- 14 J. D. Atwood, Inorganic and Organometallic Reaction Mechanisms, Brooks/Cole, Monterey, CA, 1985, p. 244.
- 15 P. Meakin, E. L. Muetterties and J. P. Jesson, J. Am. Chem. Soc., 94 (1972) 5271.