The Reaction of $[PtCl_4]^2$ ⁻ with 1,1,4,7,10,10-Hexaphenyl-1,4,7,10-Tetra**phosphadecane: Complete Product Selectivity via Non-coordinating Anions and Isolation of Two Intermediates**

PETER BRÜGGELLER

Institut fiir Anorganische und Analytische Chemie, Universitiit Innsbruck, 6020 Innsbruck, Austria (Received May 4, 1988)

Abstract

The reaction of $[PtCl_4]^2$ ⁻ with 1,1,4,7,10,10hexaphenyl-1,4,7,10-tetraphosphadecane (P_4) leads to four different products due to the formation of intermediates and the presence of two different diastereomers of P4. The four complexes can be separated using non-coordinating anions. $[PtCl(P₄)]$ -(BF₄) (1), $[PtCl(P_4)] (BPh_4)$ (2), chiral $[Pt(P_4)]$ - $(BPh_4)_2$ (3) and *meso*- $Pt(P_4)J(BPh_4)_2$ (4) have been characterized by elemental analyses, ¹⁹⁵Pt and $31P$ NMR spectroscopy, and in one case (3) by a preliminary X-ray diffraction analysis. In the fivecoordinate complex 1 P₄ has a tetrahedral arrangement. 2 is also five-coordinate, the chloride occupying the apical and P_4 the four basal positions of a square pyramid. 3 and 4 have four-coordinate square-planar structures where the X-ray structure of 3 shows it to be the chiral form of the two possible diastereomers. 4 is therefore supposed to be the *meso* form. A steric effect as a possible reason for the observed diastereoselective action of Na- $(BPh₄)$ is discussed.

Introduction

In the absence of non-coordinating anions replacement of the chlorides in $[PtCl_4]^2$ by 1,1,4,7, 10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (P_4) , first investigated by King and co-workers [I], leads to a mixture of three complexes. This is a common difficulty in polyphosphine chemistry, where different stereoisomers are often formed [2,3]. However, it is widely recognized, that non-coordinating anions and cations may alter the reactivity of corresponding counterions by ion pairing effects [4]. In the above reaction the reaction pathway is strongly influenced by the presence of non-coordinating anions. NaBF₄ leads to a complete product selectivity and the formation of only one product. Two further products are obtainable by initial addition of $Na(BPh₄)$. The first two products are shown to be intermediates. From one intermediate a fourth product is formed.

Results

It has been known for some time that P_4 has two different diastereoisomers due to the chiral nature of the internal phosphorus atoms: the chiral *R,R* and S,S diastereomer and the *meso-(R,S* and *S,R)* form [S]. At 300 MHz the two stereoisomers have similar but distinct ³¹P NMR resonances and it has been shown that commercial samples of P4 contain the high-melting meso isomer and the lowmelting chiral isomer in the ratio $2/1$ [6]. In this work commercial P4 of the same composition has been used without separation of the two diastereomers.

Table 1 contains the various product distributions for the reaction of $[PtCl_4]^2$ ⁻ with P₄ in the absence and presence of non-coordinating anions. NaBF4 leads only to one product $[PtCl(P_4)](BF_4)$ (1). Na(BPh4) leads to a mixture of an isomer of **1** with a different arrangement of P_4 , $[PtCl(P_4)](BPh_4)$ (2), and $[Pt(P_4)](BPh_4)_2$ (3). 2 and 3 are easily separable, since only 2 is soluble in $CH₂Cl₂$. Addition of an equimolar amount of $Na(BPh₄)$ to $CH₂Cl₂$ solutions of 2 produces the other diastereomeric form of 3,4.

In Fig. 1 the ¹⁹⁵Pt NMR spectra of 1 and 2 are shown. In Table 2 the 195 Pt and $31P$ NMR data for all four complexes are summarized. The ¹⁹⁵Pt NMR spectrum of **1** (Fig. la) consists of a broad quintet, indicating that all four $31P$ nuclei of P_4 occupy nearly identical magnetic sites, which is only possible in the case of a tetrahedral arrangement of P_4 in the five-coordinate complex **1.** At 253 K the signals sharpened indicating an exchange process at room temperature. The 31P NMR spectrum of **1** is consistent with an AB_2C spin system also typical for a tetrahedral arrangement of P_4 in 1, since corresponding tetrahedral platinum(O) complexes show the same AB_2C spectra: $[Pt(etp)(PPh_3)]$, where etp is bis(2-(diphenylphosphino)ethyl)phenylphosphine, and $[Pt(P_4)]$ have been prepared according to ref. 7; both complexes show AB_2C ³¹P NMR spectra (at 40.4, 30.65, 26.9; and 44.2, 37.9, 29.3 ppm). No attempt was made to assign the two kinds of ³¹P nuclei of P4 in **1,** though it seems likely that A and

0020-1693/89/\$3.50

0 Elsevier Sequoia/Printed in Switzerland

Non-coordinating anion (X^-)	T(K)	[PtCl(P ₄)]X th ^b	[PtCl(P ₄)]X $\mathbf{S} \mathbf{D}^{\mathbf{b}}$	$[Pt(P_4)]X_2$ chiral	$[Pt(P_4)]X_2^a$ meso
None $(X^- = CI^{-c})$	293	35		22	43
$(PF_6)^{-c}$	273	64		14	22
$(AsF_6)^{-c}$	273	90			
$(BF_4)^-$	273	100			
$(BPh_4)^{-d}$	293		68	32	

TABLE 1. Product Distributions for the Reaction of $[PtCl₄]$ ²⁻with P₄ under Various Conditions

^aIn %(w/w). ^bth = tetrahedral arrangement of P₄, sp = square-pyramidal. ^cFrom ³¹P NMR spectral integrations. ^dBy relative weights.

46

Fig. 1. 17.2 MHz ¹⁹⁵Pt 1H NMR spectra of (a) a CH₃NO₂ solution of 1 and (b) a $CH₂Cl₂$ solution of 2 at 300 K.

C correspond to the terminal $-PPh₂$ groups. At 233 K the 31P NMR spectrum of **1** consists of a single broad line showing two shoulders, nicely corresponding to the above described ¹⁹⁵Pt NMR spectrum of 1.

The 195 Pt NMR spectra of 2 (Fig. 1b), 3 and 4 consist of triplets of triplets produced by coupling of two equivalent -PPh and two equivalent $-PPh_2$ groups in all cases. The ¹⁹⁵Pt resonances of all four complexes are shifted to higher fields compared with the corresponding value for a similar platinum (II) complex of a tripodal tetraphosphine, $[PtCl(PP₃)]Cl$,

TABLE 2. Platinum-195 and Phosphorus-31 NMR Data for **1,2,** 3 and 4*

where PP_3 is tris(2-(diphenylphosphino)ethyl)phosphine and $\delta(^{195}Pt) = -4372$ ppm [8]. The $^{1}J(Pt-P)$ parameters are in the range expected for squareplanar platinum(U) complexes containing only phosphorus ligands, the $\frac{1}{f}$ (Pt-PPh₂) coupling constants being typically larger than the $J(Pt-PPh)$ values $[9]$. The $31P$ NMR spectra of 2, 3 and 4 are consistent with A_2M_2 spin systems. Since phosphorus atoms as part of a five-membered ring are deshielded and the downfield shift increases nearly additively with the number of chelating five-membered rings to which a phosphorus atom is attached [IO], one pair of phosphines is part of one five-membered chelate ring (with the ³¹P chemical shift very similar to that found in $[Pt(Ph_2PCH_2CH_2PPh_2)_2]Cl_2$, $\delta(P)$ = 47.8 ppm; ref. 8) and the second pair is attached to two chelating five-rings. From that it is clear, that the high-field signal is attributed to the $-PPh₂$ groups and the low-field one to the $-PPh$ groups in Table 2. The $\frac{2J}{PPh}$, PPh₂) values are typical for $^{2}J(P, P_{trans})$ couplings for two phosphines [9,111.

Both the ¹⁹⁵Pt and ³¹P NMR data are consistent with square-planar arrangements of P_4 in 2, 3 and 4. In 2 elemental analysis, colour and reactivity towards nucleophiles [12] indicate the presence of chloride as a fifth ligand. Therefore a square-pyramidal structure is suggested for 2, with the chloride occupying the apical position. The structure of 3 has been revealed by an X-ray structure analysis $[13]$. The trans positions of the phenyl groups at the two

 δ (PPh) δ (PPh₂) $\frac{2J(\text{PPh}, \text{PPh}_2)}{2}$

Compound 1 δ (Pt) $-5084(q)$ $¹J(Pt-P)$ </sup> 2233 $\delta(P)$ 46.1,43.4, 38.0

 $\frac{1}{J}$ (Pt-PPh) $\frac{1}{J}$ (Pt-PPh₂)

2 $-5098(\text{tt})$ 2279 2588 86.7 42.3 290 3 $-5110(t)$ 2137 2403 92.3 39.2 275

central phosphorus atoms of P_4 in 3 indicate that 3 is the chiral form of the two possible diastereomers. Since 4 can be easily produced from 2 and shows the same elemental composition as 3, 4 is assigned to the meso-diastereomer of $[Pt(P_4)] (BPh_4)_2$. This is also in agreement with the observed product distributions of 2 and 3 in an approximate ratio 2/l reflecting the diastereomer distributions in commercial P_4 .

Discussion

In 1 no indication for a second diastereomer was observed. This might be due to the low yield for **1** and the synthetical preference of one diastereomer. Since four-coordinate platinum(I1) complexes are invariably square planar [14], loss of the chloride as fifth ligand is only possible after rearrangement of P4 from tetrahedral in **1** to square planar in 2. By the diastereoselective action of $Na(BPh₄)$ the chloride remains coordinated only in the case of 2 containing $meso-P₄$. This illustrates the fact that for P4 complexes small changes in ligand geometry can have profound effects on their coordination chemistry [6] and might be a consequence of the steric differences in phenyl substitution at the central phosphorus atoms of P₄ between 2 (cis positions) and its chiral counterpart (trans positions) which seem to allow the formation of a contact ion pair with $(BPh_4)^-$ only in the case of 2. Both 1 and 2 have very unusual platinum(H) coordination geometries. **1** is possibly best described as a tetrahedral arrangement of P_4 with the chloride capping a tetrahedral face, a configuration type found for hydrides of composition HML₄ [15]. However, more work has to be done to reveal the very nature of complexes of type **1** and 2.

Experimental

Reagent grade chemicals were used as received unless stated otherwise. 1 ,1,4,7,10,10-Hexaphenyl-1,4,7,10-tetraphosphadecane (P_4) was purchased from Strem Chemical Co. NaP F_6 was purchased from Aldrich Chemical Co., LiAsF₆ from Ventron, NaBF₄ from Fluka, and $Na(BPh₄)$ was of purissimum grade quality and received from Merck-Schuchardt. All solvents were obtained from Fluka. Solvents used for NMR measurements and for crystallization purposes were of purissimum grade quality. $Na₂$ - $PtCl₄·4H₂O$ was prepared from platinum metal.

Fourier-mode, broad-band proton-decoupled 19'Pt and ³¹P NMR spectra were obtained by use of a Bruker WP-80 spectrometer. Positive chemical shifts are downfield from 1.0 M $Na₂PrCl₆$ and 85% H₃PO₄ used as external standards. Elemental analyses were obtained with a Heraeus EA 425 elemental analyzer.

A Schlenk apparatus and oxygen-free, dry Ar were used in the syntheses of all complexes. Solvents were degassed by several freeze-pump-thaw cycles prior to use.

Complex I

To $Na₂PtCl₄·4H₂O$ (0.3 mmol, 0.115 g) and NaBF₄ (0.6 mmol, 0.006 g) in water a solution of P₄ $(0.3 \text{ mmol}, 0.201 \text{ g})$ in $CH₂Cl₂$ was added. Then EtOH was added under stirring until a yellow precipitate formed. The reaction was carried out at 273 K. **1** was filtered off, washed with water, and dried in *vacuo*: yield 0.148 g (50%), melting point (m.p.) = 194-195 °C. Anal. Calc. for $C_{42}H_{42}BC1F_4P_4Pt$: C, 51.1;H,4.3.Found: C, 50.7;H, 3.9%.

Complexes 2 and 3

To $Na_2PtCl_4 \tcdot 4H_2O$ (0.6 mmol, 0.230 g) and $Na(BPh₄)$ (0.9 mmol, 0.308 g) in water a solution of P_4 (0.6 mmol, 0.402 g) in CH_2Cl_2 was added. Then EtOH was added under stirring until a yellow precipitate formed. The reaction was carried out at 293 K. 2 and 3 were filtered off, washed with water, and dried *in vacua.* The yellow powder was partly dissolved in $CH₂Cl₂$ and filtered. Evaporation of the yellow filtrate lead to a yellow powder which was dried *in vacuo*. 2: yield 0.447 g (61%) ; m.p. = 135-137 °C. *Anal.* Calc. for $C_{66}H_{62}BCIP_4Pt$: C, 64.9; H, 5 **.l .** Found : C, 64.5 ; H, 5.5%. The insoluble part was washed with CH_2Cl_2 , recrystallized from CHaN02, and dried *in uacuo. 3:* colourless crystals, yield 0.210 g (29%); m.p. = 225-228 "C dec. *Anal.* Calc. for $C_{90}H_{82}B_2P_4Pt$: C, 71.8; H, 5.5. Found: C,71.8;H,5.9%.

Complex 4

2 $(0.1 \text{ mmol}, 0.122 \text{ g})$ was dissolved in CH_2Cl_2 and $Na(BPh₄)$ (0.1 mmol, 0.034 g) was added. The solution was stored at 243 K for one week and a white precipitate gradually formed. 4 was filtered off, washed with CH₂Cl₂ and water, and dried in *vacuo*: yield 0.045 g (30%); m.p. = 236-239 °C dec. *Anal.* Calc. for C₉₀H₈₂B₂P₄Pt: C, 71.8; H, 5.5. Found: C, 71.5; H, 5.7%.

Acknowledgement

This work was supported by the Land Vorarlberg, Austria.

References

- 1 R. B. King, R. N. Kapoor, M. S. Saran and P. N. Kapoor, *Inorg. Chem., 20* (1971) 1851.
- 2 J. L. Bookham, W. McFarlane and I. J. Colquhoun, J. *Chem. Sot., Chem. Commun., (1986) 1041;* J. L. Bookham and W. McFarlane, 3rd Int. Conf. Chem. Plat. *Group Met..* Sheffield, U.K., 1987, J-2.
- 3 F. R. Askham, G. G. Stanley and E. C. Marques, J. *Am. Chem. SOL, 107 (1985) 7423: S.* A. Laneman and G. G.

Stanley, *Inorg. Chem.*, 26 (1987) 1177; F. R. Askham, A. W. Maverick and G. G. Stanley, Inorg. *Chem.. 26 (1987) 3963.*

- *4 M. Y.* Darensbourg, Prog. *Inorg.* Chem., 33 (1985) 221; F. Mani and L. Sacconi, *Comments Inorg. Chem.*, 2 (1983) 157.
- 5 R. B. King, P. R. Heckley and J. C. Cloyd, Jr., 2. *Naturforsch., Teil B, 29 (1974) 574.*
- *6* J. M. Brown and L. R. Canning, *J. Organomet.* Chem., 267 (1984) 179.
- 7 J. Cbatt, R. Mason and D. W. Meek, J. *Am. Chem. Sot., 97* (1975) *3826;* R. B. King and P. N. Kapoor, *fnorg.* Chem., II (1972) 1524.
- 8 E. G. Hope, W. Levason and N. A. Powell, *Inorg. Chim. Acta. 115 (1986) 187.*
- 9 D. L. DuBois and A. Miedaner, *J. Am.* Chem. Sot.. 109 (1987) 113; K. D. Tau and D. W. Meek, *Inorg. Chem.*, 18 *(1979) 3574.*
- 10 P. E. Garrou, *Gem. Rev., 81* (1981) 229; W. Hohman, D. J. Kountz and D. W. Meek, *Inorg. Chem., 25 (1986) 616;* E. Grimley and D. W. Meek, *Inorg.* Chem., 25 (1986) 2049.
- 11 P. Briiggeller, *Inorg. Chem., 26 (1987) 4125.*
- 12 P. Brüggeller, unpublished results.
- 13 A. Gieren, P. Briiggeller and T. Hiibner, unpublished results.
- 14 J. D. Atwood, *Inorganic and Organometallic Reaction Mechanisms,* Brooks/Cole, Monterey, CA, 1985, p. 244.
- 15 P. Meakin, E. L. Muetterties and J. P. Jesson, J. *Am.* Chem. Soc., 94 (1972) 5271.