Raman Spectra of the Tetraphosphorus Trichalcogenide Cage Molecules P_4S_2Se and P_4SSe_2

GARY R. BURNS*, JOANNE R. ROLLO and JONATHAN D. SARFATI Chemistry Department, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand) (Received November 22, 1988)

Abstract

Mixtures of the four cage molecules $P_4S_xSe_{3-x}$. (x = 0, 1, 2, 3) were prepared from α -P₄S₃ and α -P₄Se₃. The Raman-active bands of the mixed chalcogenide molecules have been identified and used together with the results of a normal coordinate analysis to provide assignments for 14 of the 15 normal modes of vibration of P₄S₂Se and P₄SSe₂.

A decrease in wavenumber observed for the most intense Raman-active band of crystalline P_4SSe_2 with increasing concentration in the mixed solids is attributed to intermolecular Se–Se interactions weakening the intramolecular bonds.

Introduction

Tetraphosphorus trisulphide and tetraphosphorus triselenide are cage-like molecules with C_{3v} symmetry (see Fig. 1). Both occur in the solid state in a number of polymorphic forms which are summarised in

Fig. 1. The $C_{3\nu}$ cage structure of the group V chalcogenides P_4S_3 and P_4Se_3 .

Scheme 1. In particular, they have at least one low temperature normal crystalline phase, the *a* phase, and a high temperature plastically crystalline phase, the β phase. Melting these compounds together produces a mixture of the four separate cage molecules $P_4S_xSe_{3-x}$ (x = 0, 1, 2, 3) [1]. The presence of the four separate compounds was established by HPLC which showed that their relative amounts are governed mainly by statistical factors. However, the mixed chalcogenide cage molecules P_4S_2Se and P_4SSe_2 have not previously been isolated in sufficient quantities to enable their vibrational spectra to be recorded and assigned.

Scheme 1. The polymorphic phase changes of P_4S_3 and P_4Se_3 . α , Low temperature crystalline phase; α' , high temperature crystalline phase; β , low temperature plastically crystalline phase; γ , high temperature plastically crystalline phase; $T_{\rm P}$, crystalline to plastically crystalline transition temperature; $T_{\rm M}$, plastically crystalline to liquid transition temperature.

We have studied the Raman-active phonons of the molecules P_4S_2Se and P_4SSe_2 as mixed crystals containing varying concentrations of the four possible chalcogenide molecules. The phonons attributable to P_4S_2Se and P_4SSe_2 have been observed without isolating the pure compounds by obtaining crystals enriched in one of these two species and using spectral subtraction of the known Raman-active phonons of α -P₄S₃ and α -P₄Se₃ from the Raman spectra of the mixed crystals.

The molecules P_4S_2Se and P_4SSe_2 both belong to the C_s point group and are presumed to have the same D_{2h} space group as the parent C_{3v} cage molecules, α -P₄S₃ [2] and α -P₄Se₃ [3]. The 15 normal modes are both infrared and Raman active. They comprise 9 in-plane (A') vibrations and 6 out-of-plane (A") vibrations. Based on the α -P₄S₃ unit cell [4] a

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

total of 60 Raman-active k = 0 phonons is expected for crystalline P_4S_2Se and P_4SSe_2 .

Assignments for the normal modes of the mixed chalcogenide molecules have been made with the aid of a normal coordinate analysis of P_4S_3 . The results of that analysis, based on a previously described [5] set of internal valence displacement coordinates, are also reported.

Experimental

A sample of α -P₄Se₃ was prepared from yellow phosphorus and selenium powder [6] and recrystallised from carbon disulphide. Commercial α -P₄S₃ (Fluka AG, pract.) was purified by recrystallisation from carbon disulphide under a nitrogen atmosphere.

Heating an equimolar mixture of α -P₄S₃ and α -P₄Se₃ in an evacuated glass ampoule at 520 K for 12 h produced an orange-yellow solid on cooling. The sample was analysed by HPLC. A 1.5% wt./vol. solution in carbon disulphide was eluted through a Waters Radial Pak C18 column using a 9:1 methanol/ water mixture with a flow rate of 1 ml/min. The wavelength detector was set at 254 nm and four carbon disulphide soluble components were identified in the solid mixture.

Attempts to use column and thin layer chromatography with 9:1 methanol/water, carbon disulphide or toluene as solvents to separate the mixture were unsuccessful.

Crystals enriched in either P_4S_2Se (and containing a negligible amount of α -P₄Se₃) or P₄SSe₂ (and containing a negligible amount of α -P₄Se₃) were prepared by melting α -P₄S₃ and α -P₄Se₃ in mole ratios of 5:1, 3:1, 1:3 and 1:5. For the 5:1 mixture the proportions based on a statistical distribution of the chalcogens would be 125:75:15:1 for P₄S₃:P₄S₂Se:P₄SSe₂:P₄Se₃

A vacuum sublimation of the finely ground solid 1:1 mixture in a temperature gradient furnace produced small ($0.5 \times 0.5 \times 0.5$ mm) crystals enriched in P₄S₃ and P₄S₂Se. The temperature at the hot end was held at 350 K, just below the crystalline to plastically crystalline phase change, T_P, of α -P₄Se₃ (see Scheme 1), while the other end was maintained at 300 K, a temperature just below the equivalent phase change for α -P₄S₃.

Raman spectra were recorded with a Spex Model 1401 double monochromator. The exciting line was the 647.1 nm line from a Spectra Physics Model 164-01 krypton ion laser using power levels of 50 mW at the sample. The scattered light was detected by an air-cooled Thorn EMI 9658 photomultiplier with instrumental slit widths of 150 μ m. The wavenumber calibration was achieved using neon emission lines.

Results

The Raman spectra of the molecules P_4S_2Se and P_4SSe_2 are shown in Fig. 2. The spectrum of P_4S_2Se was obtained by subtracting the Raman spectrum of α -P₄S₃ from the Raman spectrum of crystals containing α -P₄S₃, P₄S₂Se and P₄SSe₂, grown by vacuum sublimation of the melt obtained from a 1:1 mole ratio of α -P₄S₃ and α -P₄Se₃. Only the strongest Raman-active band of P_4SSe_2 , at 380 cm⁻¹, is apparent in the spectrum and the strongest Ramanactive band of α -P₄Se₃, at 365 cm⁻¹, is absent. The Raman spectrum of P₄SSe₂ was derived by subtracting the Raman spectrum of α -P₄Se₃ from the Raman spectrum of the melt obtained from a 1:3 mole ratio of α -P₄S₃ and α -P₄Se₃. Previous studies of the thermal stability of P_4Se_3 [7] would suggest that some P₄Se₄ should result from the peritectoidal decomposition of the P₄Se₃ dominant melt for temperatures above 450 K. However, there is no sign of any Raman-active phonons attributable to P₄Se₄ and in particular the strongly Raman-active phonon at 186 cm^{-1} [8] is absent.

The wavenumber of the strongly Raman-active band of P_4SSe_2 at 380 cm⁻¹ is observed to increase as the concentration of P_4SSe_2 in the host crystal decreases. There is an increase of 3 cm⁻¹ in going from the 1:5 to the 5:1 mole ratio of α -P₄S₃ to α -P₄Se₃. A smaller but discernable shift is also observed for the band at 345 cm⁻¹. This effect appears

Fig. 2. The Raman spectra of P_4S_2Se and P_4SSe_2 measured under ambient conditions.

to be due to intermolecular Se–Se interactions weakening the intramolecular bonding and causing a softening of selenium based normal modes. A similar effect has already been observed with α -P₄Se₃ where selenium based normal modes harden when α -P₄Se₃ is doped into a α -P₄S₃ crystal [9]. Because of this effect increasing the wavenumbers of bands of both α -P₄Se₃ and P₄SSe₂ in the mixtures, the subtraction of the α -P₄Se₃ spectrum from the spectra of the mixtures was not perfect and there is some remaining intensity at 365, 215 and 135 cm⁻¹ attributable to α -P₄Se₃.

In Table 1 we have correlated the fundamental modes of vibration of the molecules P_4S_2Se and P_4SSe_2 with those of the parent molecules α - P_4S_3 and α - P_4Se_3 using the results of a normal coordinate analysis of α - P_4S_3 . The unassigned modes for P_4S_2Se and P_4SSe_2 correspond to the E mode of α - P_4S_3 at 440 cm⁻¹.

To perform the normal coordinate analysis we have used a set of internal valence displacement coordinates and symmetry adapted coordinates described previously [5]. The feature of the coordinate set used was the explicit recognition of the intramolecular chalcogen-chalcogen bond. The final Fmatrix and the eigenvector matrix elements for the A₁ and E modes of α -P₄S₃ are given in Table 2. Estimates of the more important off-diagonal terms in the F matrix were obtained by cyclically constraining diagonal force constants. The calculated wavenumbers for α -P₄S₃, the mixed species P₄S₂Se and P_4SSe_2 and for α - P_4Se_3 are shown in Table 3. It can be seen that the force field for the A_1 and E species of α -P₄S₃ provides reasonable estimates for the A' and A" wavenumbers of the mixed species, P_4S_2Se and P₄SSe₂.

TABLE 1. The assignments (cm^{-1}) of the fundamental modes of vibration of P₄S₃, P₄S₂Se, P₄SSe₂ and P₄Se₃

	P ₄ S ₃	P ₄ S ₂ Se	P ₄ SSe ₂	P ₄ Se ₃
A ₁	488	486	485	485
	446	395	380	361
	424	356	345	330
	284	228	216	213
A ₂	185	158	154	154
E	457	455	460	405
		432	430	
	440	417	408	365
	242	337	327	222
	343	330	320	323
	201	305	281	274
	291	284	226	274
	225	202,206	191	135
		193	142	

TABLE 2. The final F matrix elements and the L matrix elements for the A₁ and E modes of α -P₄S₃

Final F matrix elements (10^2 Nm^{-1})									
mmetr	y species								
0	0 -	-0.84							
1.62	0	0							
	1.32	0							
		1.15							
E symmetry species									
0	0	1.84	-1.89						
1.65	0	0	0						
	2.05	0	1.06						
		2.23	-1.98						
			3.87						
rix ele	ments for	P ₄ S ₃							
mmetr	y species								
10	0.217	-0	0.057	-0.037					
59	-0.058	-0	0.162	-0.074					
52	-0.089	-0.141		-0.020					
26	0.197	-0	0.191	0.134					
E symmetry species									
52	-0.063	-0	.139	-0.134	-0.033				
50	-0.185	-0	.009	-0.051	0.030				
30	-0.128	C	0.150	0.015	-0.054				
25	-0.010	C	.009	0.170	0.131				
1	-0.048	-0	.174	0.089	0.029				
	F matr mmetry 0 1.62 metry 0 1.65 rix ele: mmetr; 0 59 52 26 mmetry 52 50 80 25 51	F matrix element mmetry species 0 0 1.62 0 1.62 0 1.62 0 1.62 0 1.62 0 1.62 0 1.62 0 1.62 0 1.62 0 imetry species 0 0 0.217 59 -0.058 62 -0.089 63 0.197 metry species 52 63 -0.185 60 -0.185 60 -0.128 60 -0.128 61 -0.048	F matrix elements (10^2) mmetry species 0 0 1.62 0 1.62 0 1.62 0 1.15 0 immetry species 0 0 0 1.65 0 2.05 0 2.05 0 2.23 rix elements for P4S3 mmetry species 40 0.217 69 -0.058 62 -0.089 62 -0.063 63 -0 64 -0.128 65 -0.010	F matrix elements (10^2 Nm^{-1}) mmetry species 0 0 1.62 0 1.62 0 1.62 0 1.15 1.15 imetry species 0 0 0 1.65 0 0 1.84 -1.89 1.65 0 2.05 1.06 2.23 -1.98 3.87 rix elements for P4S3 mmetry species 40 0.217 -0.057 59 -0.058 -0.162 52 -0.089 -0.141 26 0.197 -0.191 imetry species 52 -0.063 -0.139 50 -0.185 -0.009 30 -0.128 0.150 25 -0.010 0.009 -0.074 -0.074	F matrix elements (10^2 Nm^{-1}) mmetry species 0 0 1.62 0 1.62 0 1.52 0 1.65 0 0 1.84 1.65 0 0 1.84 1.65 0 0 1.06 2.05 0 1.65 0 0 2.05 1.65 0 0 1.84 -1.89 1.65 0 0 2.05 0 1.06 2.23 -1.98 3.87 rix elements for P4S3 mmetry species 40 0.217 -0.058 -0.162 -0.074 -0.020 26 0.197 27 -0.089 -0.191 0.134 0 -0.185 50 -0.128 51 0.015 52 -0.010 0.009 0.170				

TABLE 3. The observed and calculated wavenumbers for the normal modes of the molecules $P_4S_{3-x}Se_x$ (x = 0, 1, 2, 3) based on the symmetry coordinates defined in ref. 5

	Observed	Calculated		Observed	Calculated
P ₄ S ₃	488	492.7	P ₄ Se ₃	485	479
	446	437.8		361	362
	424	413.9		330	326
	284	266.3		213	219
	458	460.7		405	426
	441	435.6		365	370
	344	342.6		323	324
	292	295.7		274	249
	227	188.9		135	143
P ₄ S ₂ Se	486	486	P ₄ SSe ₂	485	482
	395	413		380	388
	356	386		345	354
	228	259		216	246
	455 432	449		460 430	437
	417	427		408	419
	337 330	337		327 320	333
	305 284	280		281 226	261
	202,206 193	179		191 142	164

A description of the A_1 normal modes for α -P₄S₃ is relatively straightforward. Q_1 is a symmetric stretch of the basal P-P bonds. A major component of Q_2 is a symmetric stretch of the apical P-S bonds. Q_3 involves the basal P-S bonds, the basal P-P bonds and the chalcogen-chalcogen S...S intramolecular bond and can be described as a deformation of the base of the molecule. Q_4 is relatively well defined as a change in the S-S intramolecular distance.

The normal modes of E symmetry show strong coupling of symmetry coordinates. The main components of Q_6 are the apical P-S and basal P-S stretch coordinates. Q_7 involves a deformation of the base of the molecule, mainly the basal P-S stretch. Q_8 is a combination of several symmetry coordinates, while Q_9 and Q_{10} may be described as involving a significant change in the chalcogen-chalcogen intramolecular bond.

Acknowledgements

The authors acknowledge the financial support of the UGC Research Committee without which the work would not have been possible and J.R.R. thanks the UGC for the award of a Research Scholarship.

References

- 1 R. Blachnik and U. Wickel, Angew. Chem., 95 (1983) 313.
- 2 T. K. Chattopadhyay, W. May, H. G. von Schnering and G. S. Pawley, Z. Kristallogr., 165 (1983) 47.
- 3 E. Keulen and A. Vos, *Acta Crystallogr.*, *12* (1959) 323.
- 4 G. R. Burns and J. R. Rollo, J. Phys. Chem. Solids, 48 (1987) 347.
- 5 G. R. Burns, J. R. Rollo and R. W. G. Syme, J. Raman Spectrosc., 19 (1988) 345.
- 6 K. Irgolic, R. A. Zingaro and M. Kudchadker, Inorg. Chem., 4 (1965) 1421.
- 7 R. Blachnik and U. Wickel, *Thermochim. Acta, 81* (1984) 185.
- 8 J. R. Rollo, *Ph. D. Thesis*, Victoria University of Wellington, 1988.
- 9 G. R. Burns and J. D. Sarfati, Solid State Commun., 66 (1988) 347.