NMR Investigation of Diorganoyltin(IV)dihalide Complexes with Secondary Phosphines and Diorganoylphosphino-*N*-phenyl(thioformamido) Ligands

DAINIS DAKTERNIEKS

Department of Chemical and Analytical Sciences, Deakin University, Geelong, Vic. 3217 (Australia) and CAROLYN L. ROLLS

Department of Inorganic Chemistry, University of Melbourne, Parkville, Vic. 3052 (Australia)*

(Received January 27, 1989)

Abstract

Phosphorus-31 and tin-119 NMR spectroscopies have been used to study the formation of a series of organoyltin(IV)phosphine and phosphido complexes $R_2SnX_2(HPR'_2)$, $R_2SnX(PR'_2)$ and $R_2 Sn(PR'_2)_2$ (where R = Ph, Me, Bu; $R' = c - C_6 H_{11}$, Ph; X = Cl, Br) in dichloromethane solution. Tin-119 chemical shifts indicate that $R_2 Sn(PR'_2)_2$ are four coordinate whereas $R_2 Sn X_2 (HPR'_2)$ and $R_2 Sn X (PR'_2)$ are five coordinated, the latter probably being dimeric via bridging halides. PhNCS inserts into the Sn-P bonds of $R_2 SnX(PR'_2)$ and $R_2 Sn(PR'_2)_2$ to give the new series of tin compounds $R_2 SnX[R'_2PC(S)NPh]$ and $R_2Sn[R'_2PC(S)NPh]_2$ where ligand coordination is through the sulphur and nitrogen atoms resulting respectively, in five and six coordination about the tin atom. The series $R_2 SnX[R'_2PC(S)NPh]$ and R_2 - $Sn[R'_2PC(S)NPh]_2$ may also be generated by reaction diorganophosphino-N-phenyl(thioformabetween mide) ligands, $R'_2PC(S)N(H)Ph$ and diorganoyltin-(IV)dihalides; ligand deprotonation is spontaneous in one case (for $Ph_2SnX[(c-C_6H_{11})_2PC(S)NPh]$) whereas addition of base is necessary to generate the other members of the series.

Introduction

The interactions between organoyltin(IV)halide compounds, $R_n Sn X_{4-n}$ (n = 1-3), with tertiary phosphines have been well documented and the general reaction is one of simple adduct formation leading to an increase of coordination number about the tin atom [1-4]. Fewer studies have appeared involving the use of secondary phosphines instead of tertiary phosphines. Reactions with secondary phosphines are interesting because of the further reactions, beyond simple adduct formation, that are

base [5]. Furthermore, the tin-phosphorus bonds in such compounds may undergo insertion reactions with 1,2-dipolar molecules such as CS_2 and PhNCS leading to formation of either a tin-sulphur or a tin-nitrogen bond [6]. Relevant to these complexes formed by insertion of a small molecule into an existing tin-ligand bond are diorganophosphino-Nphenyl(thioformamide) ligands, R₂PC(S)N(H)Ph, which usually coordinate through the phosphorus atom [7,8] whereas deprotonated forms of the ligands are potentially mono- or bidentate or bridging ligands which may involve phosphorus, sulphur or nitrogen as donor atoms [9-11]. We have extended our studies of triorganoyltin-(IV)halide with secondary phosphines and diorganophosphino-N-phenyl(thioformamide) ligands [12, 13] and now report the results of our studies of diorganoyltin(IV)dihalides with these ligands.

possible. These reactions should also be dependent

on the Lewis acidity of the initial organoyltin(IV)halide used. For example, Ph_3SnCl does not form a simple adduct with HPR'₂ but does form phosphido

compounds in the presence of a suitable Brönsted

Experimental

NMR spectra were generally recorded with broad band decoupling on a JEOL FX 100 spectrometer, phosphorus-31 at 40.26 MHz and tin-119 at 37.08 MHz using an external ⁷Li lock. Phosphorus-31 spectra were referenced against external 85% H₃PO₄ and tin-119 against external Me₄Sn. Temperatures were maintained using a JEOL 5471 controller. Infrared spectra were recorded using a Perkin-Elmer 457 Grating Infrared Spectrometer. Elemental analyses were carried out by AMDEL, Port Melbourne, Australia.

Reactions were carried out under a dry argon atmosphere. Dicyclohexylphosphine, $HP(c-C_6H_{11})_2$, dbu (1,8-diazabicyclo(5.4.0)undec-7-ene), Ph_4Sn and Bu_2SnCl_2 were purchased from commercial sources

© Elsevier Sequoia/Printed in Switzerland

^{*}Present address: ICI Australia Research Laboratories, Newsom St., Ascot Vale, Vic. 3032, Australia.

and used without further purification. Diphenylphosphine, HPPh₂, was prepared from triphenylphosphine [14]. The compounds Ph_2SnCl_2 and Ph₂SnBr₂ were prepared from redistribution reactions between Ph₄Sn and the appropriate tin(IV)tetrahalide [15]. The ligands dicyclohexylphosphino-Nphenyl(thioformamide) and diphenylphosphino-Nphenyl(thioformamide) were prepared by literature methods [16]. The adducts R₂SnCl₂[HPPh₂] and $R_2SnX_2[HP(c-C_6H_{11})_2]$ were not isolated but were prepared in situ from the appropriate diorganoyltin-(IV)dihalide and phosphine. The compounds Ph2- $SnX(PPh_2)$ (X = Cl, Br) Me₂SnCl(PPh₂) and R₂Sn- $X[P(c-C_6H_{11})_2]$ (X = Cl, Br; R = Me, Bu) (excluding $Bu_2SnBr[P(c-C_6H_{11})_2])$ were made in situ by reacting equimolar quantities of diorganoyltin(IV)dihalide, phosphine and dbu. Compounds of the type R₂Sn- $(PR'_2)_2$ (R' = Ph, c-C₆H₁₁) were prepared similarly but using two mole equivalents of base (Et₃N or dbu). Alternatively, these compounds may be prepared by addition of phosphine and dbu to R₂Sn- $X(PR'_2)$. Isolation of the complexes $Ph_3Sn(PPh_2)$ and $Ph_2Sn(PPh_2)_2$ have been described previously [17].

Results and Discussion

Reactions of $R_2 Sn X_2$ with $HP(c-C_6H_{11})_2$

The room temperature ³¹P spectrum of a dichloromethane solution containing equimolar proportions of $HP(c-C_6H_{11})_2$ and Ph_2SnCl_2 contains a single broad resonance near -20 ppm. At -70 °C the spectrum sharpens and a single resonance, with clearly resolved tin-119 and tin-117 satellites, is observed at 14.0 ppm. The proton-coupled ³¹P spectrum comprises a doublet, J(P-H) 390 Hz. The ¹¹⁹Sn spectrum consists of a doublet at -296 ppm [J(Sn-P) 710 Hz]. Addition of a further mole equivalent of $HP(c-C_6H_{11})_2$ causes the resonances to broaden. At -95 °C the ³¹P spectrum again sharpens and comprises a resonance with broad tin satellites at $\delta(^{31}P)$ 13.5 ppm and a resonance at the position of uncoordinated phosphine. The ¹¹⁹Sn spectrum at -95 °C shows only one, very broad, doublet resonance at -297 ppm [J(Sn-P) 700 Hz]. These NMR spectra are consistent with the formation of a 1:1 adduct, Ph₂SnCl₂[HP(c-C₆H₁₁)₂]. Addition of amounts of phosphine above that required for formation of the 1:1 adduct induce rapid intramolecular phosphine exchange but there is no evidence for formation of a 1:2 adduct. Diphenyltin-(IV) dibromide reacts similarly with $HP(c-C_6H_{11})_2$, forming only the 1:1 adduct, Ph2SnBr2 [HP(c-C6- H_{11}_{2}].

The ³¹P spectrum of a dichloromethane solution at -70 °C containing Ph₂SnCl₂, Ph₂SnBr₂ and HP(c-C₆H₁₁)₂ in 1:1:2 molar proportions shows three resonances of approximate relative intensities 1:2:1 (each accompanied by tin satellites). The outermost resonances are identified by their chemical shift and coupling constant values as due to $Ph_2SnCl_2[HP(c-C_6H_{11})_2]$ and $Ph_2SnBr_2[HP(c-C_6 H_{11}_{11}_{2}$, whilst the central resonance is assigned to the mixed halide species $Ph_2SnClBr[HP(c-C_6H_{11})_2]$. The ¹¹⁹Sn spectrum at this temperature consists of three doublets of relative intensities 1:2:1 and confirms the assignment made from the ³¹P spectrum. These observations indicate not only that halide exchange can be slowed on the NMR time scale but also that these adducts must be considered as essentially five coordinate in solution at low temperature. The similarity of the NMR parameters for the chloro and bromo adducts is in accordance with the phosphine occupying an equatorial position of a trigonal bipyramid [1].

Dimethyltin(IV)dichloride, Me₂SnBr₂, and Bu₂-SnCl₂ react similarly with HP(c-C₆H₁₁)₂ to form 1:1 adducts in dichloromethane solution. In each case the spectra were recorded below -70 °C in order to slow intermolecular phosphine exchange. In each case the proton-coupled ³¹P spectra show J(P-H) (Table 1). In contrast to the aryl analogues, halide exchange cannot be slowed sufficiently to allow observation of mixed-halide species for the alkyl derivatives. A dichloromethane solution containing an equimolar proportion of Bu₂SnBr₂ and HP(c-C₆H₁₁)₂ has a single, very broad, ³¹P resonance near -40 ppm. The corresponding ¹¹⁹Sn spectrum contains a very broad singlet near -204 ppm (cf. 93 ppm for Bu₂- $SnBr_2$). Although cooling to -100 °C does not slow intermolecular phosphine exchange sufficiently to permit observation of Sn-P coupling, the change in ¹¹⁹Sn chemical shift neverless implies the formation of a 1:1 adduct, albeit a particularly labile one.

Reactions of $R_2 Sn X_2$ with $HP(c-C_6H_{11})_2$ and Base

Dicyclohexylphosphine is itself not deprotonated by the base dbu. However Ph_2SnCl_2 and Ph_2SnBr_2 both react with dbu; the ¹¹⁹Sn spectra of these solutions contain a variety of singlet resonances in the region -200 to -500 ppm, the intensities being dependent on the concentration of added dbu. The species in solution are probably partially hydrolysed species similar to 'ladder complexes' which have previously been described [18]. In the case of Ph_2 -SnCl₂ one of these products was isolated and characterised by its infrared spectrum and microanalyses as [Ph₄Sn₂O(OH)₂]₂ (Calc. C, 48.32; H, 3.99. Found C, 48.94; H, 4.08%).

The ³¹P spectrum of a dichloromethane solution at -20 °C containing equimolar quantities of HP(c-C₆H₁₁)₂ and Ph₂SnCl₂ to which dbu had been added shows a resonance at 13.9 ppm with clearly defined tin-119 and tin-117 satellites and a resonance at the chemical shift position for uncoordinated HP(c-C₆-

TABLE 1. Phosphorus-31 and tin-119 NMR data for organoyltin(IV)phosphine and phosphido complexes in dichloromethane solution

Species	$\delta(^{31}P)$	δ(¹¹⁹ Sn)	J(Sn-P)	<i>J</i> (P–H)	Temperature (°C)
$Ph_{2}SnCl_{2}[HP(c-C_{6}H_{11})_{2}]$ $Ph_{2}SnBr_{2}[HP(c-C_{6}H_{11})_{2}]$ $Ph_{2}SnClBr[HP(c-C_{6}H_{11})_{2}]$	14.3	296d	710	390	- 90
	18.8	303d	595	400	- 90
	18.2	298d	667	396	110
Me ₂ SnCl ₂ [HP(c-C ₆ H ₁₁) ₂]	6.6	176d	341	392	90
Me ₂ SnBr ₂ [HP(c-C ₆ H ₁₁) ₂]	4.9	208d	293	390	90
Bu ₂ SnCl ₂ [HP(c-C ₆ H ₁₁) ₂]	6.4	198d	98	386	90
$Ph_2SnCl[P(c-C_6H_{11})_2]$	13.9	-221d	945		-70
$Ph_2Sn[P(c-C_6H_{11})_2]_2$	-33.8	-71t	890		-90
$Me_2SnCl[P(c-C_6H_{11})_2]$	-6.5	79d	879		-90
$Me_2SnBr[P(c-C_6H_{11})_2]$	-4.7	33d	940		-90
$Me_2Sn[P(c-C_6H_{11})_2]_2$	-35.7	40t	788		-90
Bu ₂ SnCl[P(c-C ₆ H ₁₁) ₂]	-6.8	81d	913		90
Bu ₂ Sn[P(c-C ₆ H ₁₁) ₂] ₂	-32.3	46t	830		90
Ph ₂ SnCl ₂ [HPPh ₂]	-11.0	-291d	570	300	-100
Ph ₂ SnCl[PPh ₂]	7.4	-291d	730		-100
Ph ₂ SnBr[PPh ₂]	12.5	-231d	891		-115
Ph ₂ Sn[PPh ₂] ₂	53.8	-99t	841		-115
Me ₂ SnCl[PPh ₂]	- 25.8	99d	718		-90
Me ₂ Sn[PPh ₂] ₂	- 53.5	2t	768		-90
$Bu_2Sn[PPh_2]_2$	-53.5	-13t	810		-90
HP(c-C ₆ H ₁₁) ₂ HPPh ₂	-28.9 -40.0			200 219	25 25

d, doublet; t, triplet.

 H_{11}_{2} . The resonance at 13.9 ppm shows no proton coupling in the ³¹P proton-coupled spectrum. Although the ³¹P spectrum shows clearly resolved tin-119 and tin-117 satellites at -20 °C, cooling to -70 °C is required before a ¹¹⁹Sn spectrum could be observed. At this temperature the spectrum comprises a doublet [-221 ppm, J(Sn-P) 945 Hz], consistent with formation of Ph₂SnCl[P(c-C₆H₁₁)₂]. However the position of the tin-119 resonance implies that the tin atom is greater than four coordinated and is more consistent with five coordination [1]. Five coordination can be achieved by dimerisation through bridging chlorides (structure I). In such

a dimer, it is likely that the bridging halides exchange rapidly at temperatures above -70 °C [19] which would explain the sharp ³¹P spectrum (showing clear tin satellites) at -20 °C but the absence of a ¹¹⁹Sn spectrum until -70 °C. Addition of a second mole equivalent of phosphine and additional dbu gives rise to a new ³¹P resonance at -33.8 ppm with J(Sn-P) 890 Hz and no J(P-H) coupling in the proton-coupled ³¹P spectrum. The ¹¹⁹Sn spectrum comprises a triplet at -71 ppm, which is now in the range for four coordinated tin(IV) species, and these results are consistent with formation of a monomeric compound, Ph₂Sn[P(c-C₆H₁₁)₂]₂.

The ¹¹⁹Sn spectrum at -90 °C of a dichloromethane solution of Ph₂SnBr₂ with HP(c-C₆H₁₁)₂ (1:1) and dbu is complicated and there is no clear evidence to allow assignment of resonances due to Ph₂SnBr[P(c-C₆H₁₁)₂]. However, the ¹¹⁹Sn spectrum of a 1:2 solution of Ph₂SnBr₂ and HP(c-C₆H₁₁)₂ plus added dbu consists of a triplet at -71 ppm, J(Sn-P) 880 Hz, consistent with the formation of Ph₂Sn[P(c-C₆H₁₁)₂]₂.

The NMR spectra at -90 °C of dichloromethane solutions of Me₂SnCl₂ with an equimolar quantity of HP(c-C₆H₁₁)₂ in the presence of dbu are consistent with formation of a species Me₂SnCl[P(c-C₆- H_{11}_{2}]. Reaction between two mole equivalents of $HP(c-C_6H_{11})_2$ with Me_2SnCl_2 in the presence of dbu gives rise to resonances due to $Me_2Sn[P(c-C_6H_{11})_2]_2$. Similarly, the NMR spectra of solutions of Me_2SnBr_2 or Bu_2SnCl_2 with $HP(c-C_6H_{11})_2$ indicate the formation of $Me_2SnBr[P(c-C_6H_{11})_2]$ and $Me_2Sn[P(c-C_6H_{11})_2]_2$, or $Bu_2SnCl[P(c-C_6H_{11})_2]$ and $Bu_2Sn[P(c-C_6H_{11})_2]_2$, respectively. NMR data are given in Table 1.

Reactions of $R_2 Sn X_2$ with HPPh₂

The ³¹P spectrum of a dichloromethane solution containing 1:1 proportions of Ph₂SnCl₂ and diphenylphosphine at room temperature comprises a broad resonance near the chemical shift position for uncoordinated HPPh₂. At -110 °C an additional ³¹P resonance at -11.0 ppm with broad tin satellites is observed; the proton-coupled spectrum shows J(P-H) of 390 Hz. The ¹¹⁹Sn spectrum comprises a somewhat broad doublet at -291 ppm, J(Sn-P) 570 Hz. These observations are consistent with the formation of a five coordinate adduct, Ph2SnCl2-[HPPh₂]. Addition of a second mole equivalent of phosphine causes broadening of the resonances due to rapid intermolecular phosphine exchange. No evidence was found for formation of a 1:2 adduct. Results are presented in Table 1. NMR spectra, in the temperature range 30 to -105 °C, of a dichloromethane solution containing an equimolar ratio of Ph₂SnBr₂ and HPPh₂, show broad resonances near the chemical shift positions for the starting materials and provide no evidence for adduct formation.

The ¹¹⁹Sn spectra of solutions of HPPh₂ with Me_2SnCl_2 , Me_2SnBr_2 and Bu_2SnCl_2 each show only single broad resonances at substantially lower frequencies than those observed for the starting compounds. Formation of 1:1 adducts is postulated for these compounds although phosphine exchange is too rapid to enable observation of J(Sn-P) coupling. The different behaviour between HP(c-C₆H₁₁)₂ and HPPh₂ presumably results from differences in basicities of the two phosphines, HP(c-C₆H₁₁)₂ being the stronger base and the more reactive of the two.

Reactions of $R_2 Sn X_2$ with HPPh₂ and Base

The ³¹P spectrum at -100 °C of a dichloromethane solution containing equimolar quantities of Ph₂SnCl₂ and HPPh₂ to which dbu has been added consists of a resonance at -19.3 ppm (without tin satellites) and a resonance at the chemical shift position for uncoordinated phosphine. The ¹¹⁹Sn spectrum contains a number of poorly defined resonances between -210 and -297 ppm. Although no clear assignment is possible, the range is that usually associated with five coordinate rather than four coordinate tin(IV) species and it is possible that associated species such as that depicted in structure I are also formed in the present circumstances. Addition of a second mole equivalent of HPPh₂ gives rise to an additional ³¹P resonance at -52.2 ppm (with tin satellites) which shows no J(P-H) in the protoncoupled spectrum. The ¹¹⁹Sn spectrum at -70 °C comprises a triplet at -99 ppm, J(Sn-P) 850 Hz, which is consistent with formation of a four coordinate species Ph₂Sn[PPh₂]₂. Solutions of Ph₂SnBr₂ and less than two molar equivalents of HPPh₂ and dbu have ³¹P and ¹¹⁹Sn spectra which remain unassigned at present, however when the ratio of Ph₂SnBr₂ to HPPh₂ is 1:2, the spectra again indicate formation of Ph₂Sn[PPh₂]₂.

The reaction of Me₂SnCl₂ with an equimolar equivalent of HPPh₂ in the presence of dbu at -90 °C displays two ³¹P resonances accompanied by tin satellites. The ¹¹⁹Sn spectrum consists of a doublet at -99 ppm, assigned to Me₂SnCl[PPh₂] and a triplet at -2 ppm due to Me₂Sn[PPh₂]₂. A solution of Me₂-SnCl₂ and HPPh₂ in 1:2 proportions in the presence of dbu has NMR spectra consistent with the presence of Me₂Sn[PPh₂]₂. Reaction of Me₂SnBr₂ with dbu and any proportion of HPPh2 results only in the formation of Me₂Sn[PPh₂]₂. Similarly, mixtures of HPPh₂, dbu and Bu₂SnCl₂ or Bu₂SnBr₂ give NMR spectra consistent with formation of $Bu_2Sn[PPh_2]_2$. No evidence was observed for formation of Bu₂Sn- $X[PPh_2]$. NMR data for all the observed species are given in Table 1.

Reactions of Ph_2SnX_2 with $(c-C_6H_{11})_2PC(S)N(H)Ph$

The ³¹P spectrum of $(c-C_6H_{11})_2PC(S)N(H)Ph$ in dichloromethane solution at room temperature consists of two sharp resonances of relative intensities 3:2 assigned to $(c-C_6H_{11})_2PC(S)N(H)Ph [\delta(^{31}P) 40.0$ ppm] and HP(c-C_6H_{11})_2 [\delta(^{31}P) - 28.9 ppm, J(P-H) 200 Hz] respectively. Addition of excess PhNCS causes the HP(c-C_6H_{11})_2 resonance to disappear leaving only the ³¹P resonance due to $(c-C_6H_{11})_2PC-(S)N(H)Ph$. These observations are consistent with the equilibrium

$(c-C_6H_{11})_2PC(S)N(H)Ph \leftrightarrow (c-C_6H_{11})_2PH + PhNCS$

The ³¹P spectrum of a dichloromethane solution of Ph₂SnCl₂ with an equimolar proportion of (c-C₆-H₁₁)₂PC(S)N(H)Ph contains two resonances, each with tin satellites [δ (³¹P) 14.3 ppm, J(Sn-P) 710 Hz, J(P-H) 390 Hz and $\delta(^{31}P)$ 3.2 ppm, J(Sn-P)72 Hz], the former is attributed to the five coordinated tin adduct $Ph_2SnCl_2[HP(c-C_6H_{11})_2]$. The latter resonance shows no J(P-H) whilst the magnitude of the coupling constant J(Sn-P) suggests that bonding is not directly through phosphorus but rather that the ligand is bonded through the sulphur and/or nitrogen atoms [13]. The ¹¹⁹Sn spectrum at -90 °C consists of two doublets (-211, -297 ppm) of equal intensity with J(Sn-P) the same as observed in the corresponding ³¹P spectra. The combination of a small coupling constant J(Sn-P) and the relative

position of the ¹¹⁹Sn resonance (at -211 ppm) implies that the second species may also be five coordinate and it is tentatively assigned to the deprotonated ligand species Ph2SnCl[(c-C6H11)2PC(S)N-Ph]. Five coordination could be achieved either by the ligand being bidentate through sulphur and nitrogen, or by a monodentate ligand accompanied by dimerisation as was proposed above for Ph2Sn- $Cl[P(c-C_6H_{11})_2]$. When a mole equivalent of PhNCS is added to the above solution, the ³¹P and ¹¹⁹Sn resonances attributed to $Ph_2SnCl_2[HP(c-C_6H_{11})_2]$ are diminished in intensity relative to those assigned to the deprotonated species, Ph₂SnCl[(c-C₆H₁₁)₂PC(S)-NPh]. Addition of a further mole equivalent of Ph-NCS results in the observation of only the deprotonated species. This suggests that addition of PhNCS to a 1:1 solution of ligand and tin salt shifts the equilibrium towards exclusive formation of (c-C6-H₁₁)₂PC(S)N(H)Ph and subsequently to the formation of $Ph_2SnCl[(c-C_6H_{11})_2PC(S)NPh]$. Addition of PhNCS to a solution containing the 1:1 adduct $Ph_2SnCl_2[HP(c-C_6H_{11})_2]$ also gives rise to spectra consistent with the formation of Ph2SnCl[(c-C6-H₁₁)₂PC(S)NPh]. Attempts at isolation of Ph₂Sn- $Cl[(c-C_6H_{11})_2PC(S)NPh]$ were unsuccessful.

The ³¹P and ¹¹⁹Sn NMR spectra of a 1:2 mixture of Ph₂SnCl₂ and (c-C₆H₁₁)₂PC(S)N(H)Ph in dichloromethane solution are identical to spectra of the 1:1 mixture, but contain additional ³¹P resonances due to uncoordinated ligand and HP(c-C₆H₁₁)₂. Addition of two mole equivalents of PhNCS causes the ³¹P and ¹¹⁹Sn resonances assigned to Ph₂SnCl₂[HP(c-C₆H₁₁)₂] to diminish while the intensity of the Ph₂SnCl[(c-C₆H₁₁)₂PC(S)NPh] resonances increase. Addition of a further two mole equivalents of Ph-NCS does not alter the ³¹P spectrum except for the disappearance of the resonance due to Ph₂SnCl₂-[HP(c-C₆H₁₁)₂]. The ¹¹⁹Sn spectrum comprises a doublet due to Ph₂SnCl[(c-C₆H₁₁)₂PC(S)NPh].

Addition of dbu to an equimolar solution of Ph2-SnCl₂ and (c-C₆H₁₁)₂PC(S)N(H)Ph at room temperature results exclusively in formation of Ph2SnCl[(c- $C_6H_{11}_2PC(S)NPh$] and coupling J(Sn-P) is seen at room temperature. The $\delta(^{31}P)$ resonance moves from 66.8 ppm at room temperature to 2.9 ppm at -90 $^{\circ}$ C. Addition of a second mole equivalent of (c-C₆- $H_{11}_{2}PC(S)N(H)Ph$ causes a change in the ³¹P spectrum, which now shows a resonance near 3 ppm (with tin satellites) and resonances due to uncoordinated $(c-C_6H_{11})_2PC(S)N(H)Ph$ and $HP(c-C_6H_{11})_2$. The ¹¹⁹Sn spectrum at -90 °C consists of a triplet [δ - (^{119}Sn) -293 ppm, J(Sn-P) 55 Hz] assigned to $Ph_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$. The magnitude of the ¹¹⁹Sn chemical shift is consistent with six coordinate tin and leads to the postulation of bidentate S, N coordination of the ligand to tin.

Diphenyltin(IV)dibromide is apparently unreactive towards $(c-C_6H_{11})_2PC(S)N(H)Ph$ at room temper-

ature. However at -100 °C the ³¹P spectrum shows a very intense resonance due to free ligand and additional, very weak, resonances at 19.1, 10.4 and 3.3 ppm. The ¹¹⁹Sn spectrum shows a broad resonance at -164 ppm and two doublets, one at -231 ppm, J(Sn-P) 73 Hz, the other at -303 ppm, J(Sn-P)611 Hz. The latter is due to Ph₂SnBr₂[HP(c-C₆H₁₁)₂] whilst the former is, by analogy with Ph₂SnCl₂ reactions, assigned to a five coordinate species Ph₂SnBr[(c-C₆H₁₁)₂PC(S)NPh]. Addition of dbu results exclusively in formation of Ph₂SnBr[(c-C₆H₁₁)₂PC(S)NPh]. Addition of $Ph_2Sn[(c-C_6+I_{11})_2PC(S)NPh]_2$.

No evidence is observed for reaction of Me₂SnX₂ (where X = Cl, Br) with $(c-C_6H_{11})_2PC(S)N(H)Ph$ in dichloromethane solution over the temperature range 20 to -100 °C. However, addition of base does induce reaction and a dichloromethane solution containing equimolar quantities of Me₂SnCl₂, (c- C_6H_{11} PC(S)N(H)Ph and dbu has a ³¹P spectrum containing a resonance at 5.1 ppm with J(Sn-P)73 Hz whilst the ¹¹⁹Sn spectrum comprises a doublet at -70 ppm. These data are consistent with formation of the species $Me_2SnC1[(c-C_6H_{11})_2PC(S)NPh]$. The proximity of the ¹¹⁹Sn chemical shift value to that observed for the four coordinate species Me₂Sn- $[P(c-C_6H_{11})_2]_2$ implies that $Me_2SnCl[(c-C_6H_{11})_2PC-$ (S)NPh] is also four coordinate in solution. The small J(Sn-P) value is consistent with three-bond tinphosphorus coupling and, together with the ¹¹⁹Sn chemical shift value, implies that the ligand is coordinated in a monodentate fashion, either via sulphur or nitrogen, although NMR cannot distinguish between the two possibilities.

NMR spectra of solutions containing 1:1 molar proportions of Me₂SnBr₂ and (c-C₆H₁₁)₂PC(S)N-(H)Ph and base are consistent with formation of $Me_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$. The ¹¹⁹Sn spectrum at -10 °C consists of a triplet at -166 ppm. The ³¹P spectrum contains several resonances, one at 3.6 ppm with J(Sn-P) 46 Hz equal to that derived from the ¹¹⁹Sn spectrum. The small observed value of J(Sn-P) is consistent with three-bond coupling and hence it is apparent that tin is not directly bonded to the phosphorus atom of the ligand. The ¹¹⁹Sn shift is similar to values observed for five coordinate species $Me_2SnX_2HP(c-C_6H_{11})_2$ (Table 1) which implies that the tin atom in $Me_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$ is also effectively five coordinate. Rapid intramolecular monodentate-bidentate exchange of the sulphur and nitrogen atoms of the two ligands would have the effect of giving an effective coordination number greater than four but less than six, whilst still retaining the observed ${}^{3}J(Sn-P)$ coupling. The only other phosphorus resonance assigned is that of uncoordinated $HP(c-C_6H_{11})_2$. A 1:2 dichloromethane solution of Me2SnBr2, ligand and base contains the

Species	$\delta(^{31}P)$	$\delta(^{119}Sn)$	J(Sn-P)	Temperature (°C)
$Ph_2SnCl[(c-C_6H_{11})_2PC(S)NPh]$	3.2	-211d	72	-100
$Ph_2SnBr[(c-C_6H_{11})_2PC(S)NPh]$	-0.9	-238d	52	-20
$Ph_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$	0.2	-293t	53	9 0
$Me_2SnCl[(c-C_6H_{11})_2PC(S)NPh]$	5.1	-70d	73	25
$Me_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$	3.6	-166t	46	0
$Bu_2SnCl[(c-C_6H_{11})_2PC(S)NPh]$	5.6	-67d	70	25
$Bu_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$	3.5	-142t	46	-10
Ph ₂ SnCl[Ph ₂ PC(S)NPh]	0.4	-217d	52	30
Ph ₂ SnBr[Ph ₂ PC(S)NPh]	0.1	-238d	59	0
Ph ₂ Sn[Ph ₂ PC(S)NPh] ₂	-0.8	- 318t	44	- 90
Me ₂ SnCl[Ph ₂ PC(S)NPh]	-0.6	-80d	56	25
$Me_2SnBr[Ph_2PC(S)NPh]$	-0.4	-108d	54	25
$Me_2Sn[Ph_2PC(S)NPh]_2$	0.3	-165t	46	25
	-0.4	-171t	49	0
Bu ₂ SnCl[Ph ₂ PC(S)NPh]	0.3	-75d	61	25
Bu ₂ Sn[Ph ₂ PC(S)NPh] ₂	-1.1	- 1 51t	45	-10
$(c-C_6H_{11})_2PC(S)N(H)Ph$	44.3			25
Ph ₂ PC(S)N(H)Ph	20.0			25

TABLE 2. Phosphorus-31 and tin-119 NMR data for diorganoyltin(IV) complexes of $[R_2PC(S)NPh]^-$ in dichloromethane solution

d, doublet; t, triplet.

same species, $Me_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$. NMR results are given in Table 2.

No reaction occurs between Bu_2SnCl_2 and (c-C₆H₁₁)₂PC(S)N(H)Ph. However addition of dbu to an equimolar mixture of these compounds results in NMR spectra which are consistent with formation of $Bu_2SnCl[(c-C_6H_{11})_2PC(S)NPh]$. The ³¹P spectrum at room temperature exhibits a single resonance at 5.6 ppm with tin satellites. The corresponding tin spectrum comprises a doublet at -67 ppm with J(Sn-P) 70 Hz. Addition of further (c-C₆H₁₁)₂-PC(S)N(H)Ph and dbu leads to the formation of $Bu_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$, which is probably six coordinate.

Reactions of Phosphine Adducts with PhNCS

The ³¹P spectrum of a dichloromethane solution containing equimolar amounts of $R_2 SnX[P(c-C_6-H_{11})_2]$ (X = Cl, Br) and phenylisothiocyanate, Ph-NCS, consists of a single resonance accompanied by tin satellites. The corresponding ¹¹⁹Sn spectrum consists of a doublet. In each case the observed NMR data are consistent with formation of the species $R_2SnX[(c-C_6H_{11})_2PC(S)NPh]$ and confirm that insertion of PhNCS into the Sn-P bond of R_2SNX . [P(c-C_6H_{11})_2] has occurred. The ³¹P spectrum of an equimolar solution of PhNCS and $R_2Sn[P(c-C_6-H_{11})_2]$ consists of two resonances accompanied by tin satellites. The ¹¹⁹Sn spectrum consists of two doublets of equal intensity and the data are in accord with the presence of $R_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$ and unreacted $R_2Sn[P(c-C_6H_{11})_2]_2$. No evidence was observed for the existence of the mixed-ligand species $R_2Sn[P(c-C_6H_{11})_2][(c-C_6H_{11})_2PC(S)NPh]$. NMR data for a 1:2 solution of $R_2Sn[P(c-C_6H_{11})_2]_2$ and PhNCS are consistent with formation of the insertion product $R_2Sn[(c-C_6H_{11})_2PC(S)NPh]_2$.

Reactions of $R_2 SnX_2$ with $Ph_2PC(S)N(H)Ph$

Unlike $(c-C_6H_{11})_2PC(S)N(H)Ph$, the ligand $Ph_2-PC(S)N(H)Ph$ does not dissociate in dichloromethane solution. The ³¹P and ¹¹⁹Sn spectra of dichloromethane solutions of Ph_2SnX_2 (X = Cl, Br) and $Ph_2PC(S)-N(H)Ph$ in various proportions, recorded between room temperature and -100 °C, show resonances due only to starting materials. However addition of base does induce reaction and the ³¹P spectrum of an equimolar mixture of Ph_2SnX_2 , $Ph_2PC(S)N(H)Ph$ and base (dbu or Et_3N) consists of a single resonance, accompanied by tin satellites. The ¹¹⁹Sn spectrum in each case shows a doublet with the J(Sn-P) coupling values consistent with three-bond coupling.

Addition of base to 1:2 proportions of Ph_2SnCl_2 and $Ph_2PC(S)N(H)Ph$ in dichloromethane at room temperature gives a ³¹P spectrum consisting of a single broad resonance at about 0 ppm. Cooling to -60 °C sharpens the resonance and tin satellites become apparent. The ¹¹⁹Sn spectrum at -60 °C is a triplet at -318 ppm. These spectra are consistent with the presence of a single species $Ph_2Sn[Ph_2PC(S)NPh]_2$ which has two equivalent phosphorus ligands coordinated to the tin atom. NMR spectra of solutions of 1:2 proportions of Ph_2SnBr_2 and $Ph_2PC(S)N(H)$ -Ph and base also indicate formation of $Ph_2Sn[Ph_2-PC(S)NPh]_2$. The magnitude of the coupling constant, 44 Hz, implies that the ligand is coordinated not through phosphorus but rather through sulphur and nitrogen. NMR data are recorded in Table 2.

Neither Me_2SnCl_2 nor Me_2SnBr_2 apparently react with $Ph_2PC(S)N(H)Ph$ in the absence of base. However, the deprotonation reactions of mixtures of Me_2 - SnX_2 and $Ph_2PC(S)N(H)Ph$ are facile. Equimolar quantities of Me_2SnX_2 , $Ph_2PC(S)N(H)Ph$ and base have ³P spectra each consisting of a single resonance with tin satellites and in each case the ¹¹⁹Sn spectrum is a doublet, assigned to $Me_2SnX[Ph_2PC(S)NPh]$. The spectra are unaffected by changes in temperature. Reaction between Me_2SnX_2 and two molar equivalents of $Ph_2PC(S)N(H)Ph$ and base results in spectra consistent with exclusive formation of the six coordinate species, $Me_2Sn[Ph_2PC(S)NPh]_2$.

There is no reaction between Bu_2SnCl_2 and $Ph_2-PC(S)N(H)Ph$ (1:1) in the absence of base. Addition of base to the above solution leads to formation of $Bu_2SnCl[Ph_2PC(S)NPh]$. Addition of base to a 1:2 mixture of Bu_2SnCl_2 and $Ph_2PC(S)N(H)Ph$ gives spectra consistent with formation of $Bu_2Sn[Ph_2-PC(S)NPh]_2$. In the case of Bu_2SnBr_2 , there is no evidence for formation of Bu_2SnBr_2 , there is no evidence for formation of $Bu_2SnBr_1Ph_2PC(S)NPh]_3$ and only $Bu_2Sn[Ph_2PC(S)NPh]_2$ was observed in both 1:1 and 1:2 solutions of Bu_2SnBr_2 and $Ph_2-PC(S)N(H)Ph$.

Conclusions

PhNCS readily inserts into the Sn-P bonds of $R_2SnX(PR'_2)$ and $R_2Sn(PR'_2)_2$ to give the new series of tin compounds $R_2SnX[R'_2PC(S)NPh]$ and R_2 -Sn $[R'_2PC(S)NPh]_2$. Although these new compounds have so far not been isolated, tin-119 spectroscopic data imply that ligand coordination is through the sulphur and nitrogen atoms resulting, respectively,

in five and six coordination about the tin atom, in dichloromethane solution.

Acknowledgement

We are grateful for a Commonwealth Postgraduate Research Award to C.L.R.

References

- 1 R. Colton and D. Dakternieks, Inorg. Chim. Acta, 148 (1988) 31.
- 2 R. Colton and D. Dakternieks, *Inorg. Chim. Acta, 143* (1988) 151.
- 3 R. Colton and D. Dakternieks, Inorg. Chim. Acta, 102 (1985) L17.
- 4 R. Colton and D. Dakternieks, Inorg. Chim. Acta, 71 (1983) 101.
- 5 H. Schumann, H. Kopf and M. Schmidt, J. Organomet. Chem., 2 (1964) 159.
- 6 H. Schumann and P. Jutzi, Chem. Ber., 101 (1968) 24.
- 7 S. W. Cowan, D. Dakternieks, R. W. Gable, B. F. Hoskins, C. L. Rolls and E. R. T. Tiekink, *Aust. J. Chem.*, 39 (1986) 547.
- 8 D. Dakternieks and C. L. Rolls, *Inorg. Chim. Acta, 87* (1984) 5.
- 9 W. P. Bosman, J. H. Noordik, H. P. M. M. Ambrosius and J. A. Cras, Cryst. Struct. Commun., 9 (1980) 17.
- 10 H. P. M. M. Ambrosius, J. Willemse, J. A. Cras, W. P. Bosman and J. H. Noordik, *Inorg. Chem.*, 23 (1984) 2672.
- 11 D. H. M. W. Thewissen, J. G. Noltes and J. J. Steggerda, *Inorg. Chim. Acta*, 51 (1981) 135.
- 12 D. Dakternieks, B. F. Hoskins and C. L. Rolls, Aust. J. Chem., 41 (1988) 195.
- 13 D. Dakternieks, B. F. Hoskins and C. L. Rolls, Aust. J. Chem., 39 (1986) 1221.
- 14 F. Basolo (ed.), *Inorganic Synthesis*, Vol. 16, McGraw-Hill, New York, 1976, p. 161.
- 15 A. K. Sawyer (ed.), Organotin Compounds, Marcel Dekker, New York, 1972, Ch. 3.
- 16 K. Issleib and G. Harzfeld, Chem. Ber., 97 (1964) 3430.
- 17 H. Schumann, Angew. Chem., 81 (1969) 970.
- 18 J. F. Vollano, R. O. Day and R. R. Holmes, Organometallics, 3 (1984) 745.
- 19 R. Colton and D. Dakternieks, Aust. J. Chem., 33 (1980) 955.