Peroxocarbonato and Carbonato Derivatives of Pd(II)

CRISTINA DI BUGNO, MARCO PASQUALI

Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, 56100 Pisa, Italy

and PIERO LEONI

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy

(Received April 8, 1988)

Palladium-phosphine complexes have been found to promote the fixation of CO_2 in some organic compounds [1] and to mediate the electrochemical reduction of CO_2 [2]; however there is no example reported of the isolation of a CO_2 palladium complex. The reaction between $[Pd(PCy_3)_2]$ [3] and CO_2 has already been studied and the conclusion was that there is no reaction at all [4].

We did not understand the reason for such a different behaviour compared to that of $[Ni(PCy_3)_3]$ [5], so we decided to reinvestigate the reaction of $[Pd(PCy_3)_2]$ with CO₂ and the first impression was that a reaction occurred*; however a careful check of the experimental conditions employed showed that the reaction takes place only in the presence of oxygen.

Results and Discussion

CO₂ and O₂ were bubbled into a toluene or n-hexane solution of $[Pd(PCy_3)_2]$ at room temperature and a white, microcrystalline product 1 formed in two hours. The IR spectrum of 1 shows strong absorptions at 1670 and 1250 cm⁻¹; these bands are shifted to 1620 and 1200 cm⁻¹ respectively if the reaction is carried out with ¹³CO₂, so they can be assigned to ν (C=O) and ν_{as} (C-O). The ¹³C NMR spectrum of 1 shows a broad signal at δ 169 ppm and the ³¹P NMR spectrum shows two singlets at δ 47 and 41 ppm (1:1 ratio). CO₂ and O₂ were developed by treating a toluene solution of 1 with I₂, while 1 is stable in the solid state even under vacuum.

On the basis of these experimental data and taking into account the reaction of other palladium— and platinum—phosphino complexes with CO_2 in the presence of O_2 [7], we formulate 1 as the peroxycarbonate [Pd(PCy_3)_2(OCO_3)] $\cdot C_6H_5CH_3$ (the presence of toluene was inferred from the ¹H NMR spectrum and from analytical data). The non-equivalence of the two phosphorus atoms in the ³¹P NMR spectrum agrees with the above formulation for 1. Unfortunately, while some ¹³C NMR spectra have been reported for the transition metal–CO₂ complexes [8] (δ 193–210 ppm) and carbonates [9] (δ 167–170 ppm), the lack of ¹³C NMR data for peroxycarbonates prevents any comparison with our case.

1 is not stable in toluene solution under nitrogen and it slowly evolves spontaneously to a new product 2. 2 is also obtained as a yellow crystalline solid by reacting $[Pd(PCy_3)_2]$ with CO₂ and O₂ in thf and keeping the resulting solution under nitrogen some days. The IR spectrum of 2 agrees with infrared data reported for some palladium-phosphine-carbonato compounds [7]: it shows two strong absorptions at 1655 and 1630 cm^{-1} of the same intensity (ν (C=O)) and a band of medium intensity at 1190 cm⁻¹ ($v_{as}(C-O)$). A direct comparison between the IR spectra of 1 and 2 shows the disappearance in 2 of a weak band at 780 $\rm cm^{-1}$, which can be assigned to the $\nu(O-O)$ of the peroxycarbonate. Taking also into account that 2 is almost insoluble in all the common solvents, we formulate it as a carbonato derivative of unknown nuclearity $[Pd(PCy_3)_2(CO_3)]_n$.

Experimental

IR spectra were recorded on a Perkin-Elmer 283 instrument as nujol mulls. NMR spectra were recorded on a Varian 300 spectrometer; chemical shifts were referred to SiMe₄ for ¹³C and ¹H nuclei, and to H₃PO₄ (85%, external) for ³¹P. Pd(PCy₃)₂ was prepared as previously described [3].

$[Pd(PCy_3)_2(OCO_3)] \cdot C_6H_5CH_3(1)$

CO₂ and O₂ were contemporaneously bubbled into a toluene (20 cm³) solution of $[Pd(PCy_3)_2]$ (0.475 g, 0.71 mmol). A white, microcrystalline product formed slowly and after about 2 h it was filtered off and dried under vacuum (0.341 g, 58%). *Anal.* Found: C, 63.45; H, 8.88. Calc. for C₄₄H₇₄-O₄P₂Pd: C, 63.28; H, 8.87%. NMR ¹H(thf-d₈) δ 7.14(s, 5H, C₆H₅), 2.30(s, 3H, CH₃), 1.99–1.19(br. m, 66H, C₆H₁₁); ³¹P{¹H}(C₆D₆) δ 47(s, PCy₃), 41(s, PCy₃). IR 1670s (ν (C=O)), 1250m (ν_{as} (C-O)), 780w (ν (O-O)) cm⁻¹.

 13 CO₂-enriched compound was obtained by the same procedure using 13 C-enriched CO₂ obtained from Ba¹³CO₃ and H₂SO₄. IR 1670m (ν (C=O)),

© Elsevier Sequoia/Printed in Switzerland

^{*}We reported in previous communications the formation of an unidentified $[Pd(PCy_3)_2(CO_2)]$ species [6].

1620s (ν (¹³C=O)), 1250w (ν_{as} (C-O)), 1220m (ν_{as} (¹³C-O)) cm⁻¹. ¹³C{¹H} NMR (C₆D₆) δ 169(br. s, C=O).

$[Pd(PCy_3)_2(CO_3)]_n(2)$

CO₂ and O₂ were contemporaneously bubbled into a thf (15 cm³) solution of $[Pd(PCy_3)_2]$ (0.108 g, 0.16 mmol). The IR spectrum of the solution showed absorption at 1670 cm⁻¹ of the peroxocarbonato complex. The solution was saturated with nitrogen and, after five days at room temperature, yellow crystals formed which were filtered and dried under vacuum. Yield 16 mg, 14%. Anal. Found: C, 60.55; H, 9.25. Calc. for C₃₇H₆₆O₃P₂Pd: C, 61.12; H, 9.08%. IR 1655s, 1630s (ν (C=O)); 1190m (ν_{as} (C-O)) cm⁻¹.

Acknowledgement

We thank the Italian Ministry of Education for financial support.

References

- 1 Y. Inoue, T. Hibi, M. Satake and H. Hashimoto, J. Chem. Soc., Chem. Commun., 982 (1979), and refs. therein; A. Musco, J. Chem. Soc., Perkin Trans. I, 693 (1980), and refs. therein.
- 2 D. Du Bois and A. Miedaner, J. Am. Chem. Soc., 109, 113 (1987).
- 3 T. Yoshida and S. Otsuka, Inorg. Synth., 19, 103 (1979).
- 4 M. G. Mason and J. A. Ibers, J. Am. Chem. Soc., 104, 5153 (1982).
- 5 M. Aresta, C. F. Nobile, V. G. Albano, E. Forni and M. Manassero, J. Chem. Soc., Chem. Commun., 636 (1975).
- 6 C. Di Bugno, P. Leoni, M. Pasquali, D. Braga and P. Sabatino, 20° Congresso Nazionale de Chimica Inorganica, Pavia, Italy, Sept. 15–18, 1987, p. 442; C. Di Bugno, P. Leoni, M. Pasquali, D. Braga and P. Sabatino, 3rd International Conference on Chemistry of Platinum Group Metals, Sheffield, U.K., July 12–17, 1987.
- 7 P. J. Hayward, D. M. Blake, G. Wilkinson and C. J. Nyman, J. Am. Chem. Soc., 92, 5873 (1970).
- R. Alvarez, E. Carmona, J. M. Marin, M. L. Poveda, E. G. Puebla and A. Monge, J. Am. Chem. Soc., 108, 2286 (1986); E. G. Lundquist, J. C. Huffmann and K. G. Caulton, J. Am. Chem. Soc., 108, 8309 (1986).
- 9 E. G. Lundquist, K. Folting, J. C. Huffman and K. G. Caulton, Inorg. Chem., 26, 205 (1987).