Study of Reduction of TcO₄ in 6 M HBr

S. TRUFFERCARON, E. IANOZ and P. LERCH

Institut d'Electrochimie et de Radiochimie, Swiss Federal Institute of Technology, Lausanne, Switzerland (Received February 1, 1988)

Abstract

The reduction of pertechnetate by 6 M HBr takes place in two steps: (i) $Tc(VII) \rightarrow Tc(V)$ and (ii) $Tc(V)$ \rightarrow Tc(IV). The kinetics of both reactions were studied. The first step corresponds to a pseudo first order reaction. The second step of the reduction appears to be a combination of a first order with a zero order process. The same $Tc(V)$ species was formed when the TcO_4 ⁻ was reduced with either 8.7 M or 6 M HBr. The spectrophotometric characteristics of this species were comparable to those of Rb^{+} and Cs⁺ salts of $[TcORr_{5}]^{2-}$.

Introduction

Recently, a kinetic study of the reduction of $[TCOBr₅]²$ to $[TeBr₆]²$ by concentrated (8.7 M) HBr has been reported $[1]$. The effect of Tc(V) concentration on the reaction rate has been investigated. Below 10^{-3} M, the reaction proceeded more rapidly as the $[TC(V)]$ decreased. It has been found that the reduction reaction was a combination of a first order with a zero order process. In concentrated HBr the reduction of TcO_4^- to $Tc(V)$ is a fast reaction, therefore the kinetics of the reaction could not be studied.

In the present work, the reaction of TcO_4^- with 6 M HBr is investigated. Under these conditions, both steps of the reduction reaction $Tc(VII) \rightarrow Tc(V) \rightarrow$ Tc(IV) can be studied. The electrochemical reduction of $[TCOCl_5]^2$ ⁻ in 4 M HCl is also reported [2].

Experimental

Materials

99Tc was obtained from the Radiochemical Center, Amersham as an ammonium pertechnetate solution. Hydrobromic acid (47%, 8.7 M) of p.a. quality was used.

Kinetic Run

(34 mg/ml); the final volume was kept at 1 ml. 10^{-5} and 10^{-4} M NH₄TcO₄ in 6 M HBr were prepared from 10^{-3} M NH₄TcO₄ aqueous solution. The Tc concentrations were determined by measuring the 99Tc radioactivity using a Packard Tri-Carb 460 CD liquid scintillation system. The kinetic studies were carried out at 16 $^{\circ}$ C. The method used was ascending paper chromatography described previously [1]. At appropriate time intervals, a 5 μ l aliquot from the reaction solution was put on the paper strips (Schleicher-Schull No 2040 B). The ⁹⁹Tc was measured with a TLC Linear Analyser LB 282 consisting of a position sensitive proportional counter tube connected to a multichannel analyser. The time for chromatographic development in 1 M HBr was 30 min at a temperature of 16 "C. The *Rf* values of Tc(V) species, $[TeBr_6]^2$ and TeO_4 were 0.26-0.28,0.78-0.80 and 0.80-0.82 respectively.

Results and Discussion

Chemical Species of Tc(V) and Tc(IV)

From the reaction of TcO_4^- with conc. HBr, salts of $[TcOBr₅]²⁻$ ions with $Cs⁺$ and Rb⁺ were isolated [3,4]. The infrared absorption bands at 950 cm^{-1} (Cs⁺ salt) and 973 cm^{-1} (Rb⁺ salt) were assigned to the stretching of the Tc=O bond. For $Cs₂[TcOBr₅]$, a cubic structure was found [3]. The UV-Vis spectrum in 4 M HBr shows absorption maxima at 238, 275, 354 and 616 nm (ϵ = 10300, 9400, 3100 and 15 1 M^{-1} cm⁻¹ respectively) [4]. The spectrophotometric characteristics of the Rb' salt are similar. Our attempt to isolate $(NH_4)_2$ ^[Tc--1] $OBr₅$] was unsuccessful because of its high solubility. Only at a low temperature $(-50^{\circ}C)$ was a green precipitate formed, but it dissolved rapidly as the temperature increased. Alternatively, the $[TcOBr_4]^$ ion was isolated with $(n-Bu)_{4}N^{+}$ from the solution of TcO_4 ⁻ reduced by 8.7 M HBr. The UV-Vis spectrum in dichloromethane exhibits absorption maxima at 248, 353, 478 and 615 nm (ϵ = 10400, 3750, 113 and 22 1 M^{-1} cm⁻¹ respectively) and the Tc=O stretching frequency occurs at 1011 cm^{-1} [S]. It has been reported [6] that the addition of $(CH_3CH_2)_4N^+$ to the solution resulting from TcO₄⁻

0 Elsevier Sequoia/Printed in Switzerland

reduction with concentrated HX $(X = CI, Br)$ led to a salt of $TcOBr_5^2$. However, the product which we have isolated from the reaction solution $(TcO₄^{-})$ conc. HBr) was $(CH_3CH_2)_4N[TeOBr_4H_2O]$. The crystal structure of the latter has been determined by single crystal X-ray diffraction methods [7]. The UV-Vis spectrum of this complex in $CH₂Cl₂$ is similar to that of $(n-Bu)₄N[TcOBr₄]$ [5]. It must be noted that the equilibrium between $TcOCl₄-/TcO Cl₅²⁻$ has been investigated in $CH₂Cl₂$ and 12 M HCI solutions by Raman spectroscopy. In both media, $TcOCl₄$ was found to be the predominant species. However, the studies of Chang-su Kim and Murmann [8] indicate that the major species in concentrated HCl and HBr is $[MoOX₅]²⁻$. To our knowledge, there are no data on the $TcOBr₄^-/TcOBr₅^2^$ system in HBr solutions.

In the present work, we tried to characterise spectrophotometrically the Tc(V) species formed in the reaction of TcO_4 ⁻ with 8.7 M and with 6 M HBr. The UV-Vis spectrum of the reacting solution $([Tc(V)] = 10^{-3}$ M) in 8.7 M HBr showed an absorption maximum at 616 nm (ϵ = 18 1 M⁻¹ cm⁻¹) and a shoulder at about 482 nm. When an aliquot from the above solution was added into a cooled cell containing 8.7 M HBr $([Tc(V)] = 2.6 \times 10^{-5}$ M), the spectrum changed continuously and soon the absorption maxima of $[TeBr_6]^2$ appeared. These results were in agreement with the statements previously made that the reduction rate of $Tc(V)$ to Tc(IV) in 8.7 M HBr increases with a decrease in the $Tc(V)$ concentration [1]. As, at low concentrations, Tc(V) is more stable with respect to further reduction in dilute acid, the spectrophotometric measurements were performed in 4 M HBr. An aliquot from a 10^{-3} M solution in 8.7 M HBr was transferred into a cooled cell containing 4 M HBr and immediately measured. The absorption spectra (Fig. 1 a, b) show maxima at 273 and 360 nm (ϵ = 13 969 and 4100 respectively) and a shoulder at 482 nm.

The absorption spectrum of the $Tc(V)$ species formed in the reaction of NH_4TcO_4 (c = 1.3 \times 10⁻³ M) with 6 M HBr showed a maximum at 616 nm and a shoulder at 482 nm. For a diluted solution $(c = 1 \times 10^{-4} - 3 \times 10^{-5} \text{ M})$ in 4 M HBr, the spectrum exhibited absorption maxima at 274 and 360 nm and a shoulder at 482 nm. These results indicate that the same $Tc(V)$ species is formed by the reduction of NH_4TcO_4 with either 8.7 M or 6 M HBr. The similarity of its absorption spectrum, except the inflection at 482 nm, with those of $Rh⁺$ and $Cs⁺$ salts suggest the formation of $[TcOBr₅]²⁻$ species in >6 M HBr solutions. The variation observed in ϵ values arises from some differences in the composition of the solutions used in the spectrophotometric measurements. In the solution resulting from $TcO₄$ reduction to $Tc(V)$, the errors in the measurements

Fig. 1. Absorption spectrum of $Tc(V)$ species in 4 M HBr. (a) $[Tc(V)] = 1.17 \times 10^{-4}$ M, (b) $[Tc(V)] = 2.57 \times 10^{-5}$ M.

are introduced from the $Br₂$ and $Br⁻$ absorptions. These errors are eliminated when Rb^+ and Cs^+ salts are directly dissolved in 4 M HBr.

The spectrophotometric characteristics of (n- $Bu)_{4}N[TcOBr_{4}]$ in dichloromethane [5] are rather similar to those of $[TcOBr₅]²⁻$ in bromhydric acid. However it should be noted that:

(a) The absorption spectra are different in the region of 230-300 nm.

(b) When $(n-Bu)_{4}N[TcOBr_{4}]$ is dissolved in 4 M HBr, its absorption spectrum is the same as those of Rb' and Cs' salts. The spectrum is different compared to the spectra of known hydrolysed Tc(IV) species [9]. This fact permits the assumption that the disproportionation to $Tc(IV)$ and $TcO₄$ does not occur during the measurements. The absorption spectra of $M_2[TcOBr_5]$, $M = Cs^+$, Rb^+ and $M[Tc OBr_4$, $M = (n-Bu)_4N^+$, $(CH_3CH_2)_4N^+$ in dimethyl sulfoxide are different. However, as the spectra change continuously, it indicates that both anions are not stable in this solvent. These results suggest that, in HBr solution, $TcOBr₅²$ can be formed by a Br⁻⁻ coordination in *trans* position to the oxo group in $TcOBr₄$ ⁻ ion.

(c) The electrochemical reduction of $[TcOCl_5]^{2-}$ in 4 M HCl has been studied by coulometry and spectrophotometry $[2]$. The above $Tc(V)$ species was obtained by the reduction of NH_4TcO_4 with 11.8 M HCl. The reduction of $[Te O Cl₅]^{2-}$ to $[TCC]_{6}]^{2-}$ took place in two steps. In the first step, the electrochemical reduction of $[TcOCl₅]²$ led to $[{\rm Tc}({\rm H_2O}){\rm Cl}_5]$ ⁻ formation and in the second one, an aquo-anation reaction produced $[TCC]_6]^{2-}$. Direct formation of hexachlorotechnetate from oxopentachlorocomplex by an electrode process was not excluded. This study confirms the results of the present work, *i.e.* the existence of the $[TcOX₅]²$ ion in 4 M HX solutions. In 6 M HBr the transient species $[{\rm Tc}({\rm H_2O}){\rm Br_5}]^-$ (λ = 405, 456 nm) [9, 10] was not observed.

As the reduction of TcO_4^- takes place in 6 M hydrobromic acid, the $[Br^-]$ is still high enough to convert $[TeOBr_4]^-$ mostly into $[TeOBr_5]^{2-}$.

The end product of the reaction $Tc(VII) \rightarrow Tc(V)$ \rightarrow Tc(IV) in 6 M HBr was [TcBr₆]²⁻. The spectrum shows absorption maxima at 444, 383, 325 and 261 nm (ϵ = 6053, 7115, 10831 and 15876 1 M⁻¹ cm^{-1} , respectively). These measurements are in agreement with earlier published data [11].

Rlduction of Tc04- by 6 M HBr

This reaction takes place in two steps

(i)
$$
TcO_4^- + 6H^+ + 7Br^- \longrightarrow
$$

 $TcOBr_5^{2-} + Br_2 + 3H_2O$

(ii)
$$
2TcOBr_5^{2-} + 4H^+ + 4Br^- \longrightarrow
$$

 $2TcBr_6^{2-} + Br_2 +$

It has been shown that in conc. HBr, the first step was too fast to be kinetically studied. In 6 M HBr the reduction rate is slower, therefore the kinetics of both reactions could be studied.

 $\mathbf{1}$ (i) $Tc(VII) \longrightarrow Tc(V)$

The concentration of TcO_4^- ranged from 0.97 X 10^{-2} M to 5.68 X 10^{-4} M in 6 M HBr and the temperature was kept constant at 16 "C.

As the concentration of HBr was in large excess with respect to $[{\rm TeO}_4^-]$, the rate constant was determined assuming a pseudo first order process

$$
\frac{-d[\text{TeO}_4^-]}{dt} = k_1[\text{TeO}_4^-]
$$
 (1)

The plots of $\ln [T_C(VII)]_0/[T_C(VII)]$ as a function of time, where $[Tc(VII)]_0$ is the initial concentration of TcO_4^- and $[Tc(VII)]$ the unreacted TcO_4^- , are straight lines; their slopes give the rate constant k_{1} .

As two consecutive reactions take place, three species coexist in the solution: TcO_4^- , $[TcOBr_5]^{2-}$

Fig. 2. ⁹⁹Tc chemical distribution vs. time in 6 M HBr, [Tc] $= 0.97 \times 10^{-2}$ M, $T = 16$ °C.

TABLE 1. Rate Constants for TcO_4 ⁻ Reduction in 6 M HBr, $T = 16 °C$

k_1^a (h ⁻¹)	
1.07	
1.29	
1.22	
1.10	

 ${}^{\text{a}}$ Correlation coefficient = 0.99.

 $2H₂O$

nd $[TcBr_6]^2$ (Fig. 2). The chromatographic separaion of TcO_4^- and $[TcBr_6]^2$ being unsatisfactory he rate of the first step was followed until the TcO_4] had fallen to *ca*. 20% of its initial value. In these conditions, $[TeBr_6]^2$ ⁻ was formed in negligible amount. The k_1 values for different $TcO_4^$ concentrations are presented in Table I. The mean value of the rate constant is $k_1 = 1.17 \pm 0.10 \text{ h}^{-1}$.

An accurate k_1 value could not be determined for $[TcO_4^-]$ < 5.7 \times 10⁻⁴ M. As the reduction rate of the second step $(Tc(V) \rightarrow Tc(IV))$ increases with the decrease in the $Tc(V)$ concentration (see step (ii)), the $[TeBr_6]^{2-}$ produced in this way will disturb the chromatographic measurements. As this method did not allow an accurate separation of $TcO₄$ and $[TcBr₆]²⁻$, it was not possible to verify if the rate law assumed so far is valid for $[TeO_4^-]$ < 5.7 \times 10⁻⁴ M. For the TcO_4 ⁻ concentrations studied, the first order kinetic is respected.

(ii) $Tc(V) \xrightarrow{k_2} Tc(IV)$

The first step of the reduction being much faster than the second, at a time $t = t_1$, the TcO₄⁻ will be completely reduced and consequently only [Tc- OBr_s ²⁻ and $[TeBr_6]$ ²⁻ will be present in solution.

$\lceil \text{Te} \rceil$ (M) $t = 0$	$\lceil Tc(V) \rceil$ (M) $t = t_1$	k_2 ^a (h ⁻¹)	k_2 (h ⁻¹)	
0.97×10^{-2}	7.76×10^{-3}	1.03×10^{-2}	$(1.13 \pm 0.09) \times 10^{-2}$	
4.57×10^{-3}	3.58×10^{-3}	1.10×10^{-2}	$(1.27 \pm 0.08) \times 10^{-2}$	
1.19×10^{-3}	9.34×10^{-4}	1.01×10^{-2}	$(1.02 \pm 0.06) \times 10^{-2}$	

TABLE II. Rate Constants for $Tc(V)$ Reduction in 6 M HBr, $T = 16 °C$

^aCalculated by linear regression, correlation coefficient = 0.99 .

Under these conditions, the kinetics of this reaction can be studied. To eliminate any contributions from the first step, the reaction was followed from the starting point $t_1 \approx 8$ h; the [Tc(V)] was about 80% from the initial technetium concentration.

As in the reduction of $Tc(V)$ to $Tc(IV)$ in conc. HBr [1], the effect of the Tc concentration on the reaction rate was also observed. Below 10^{-3} M, the reduction reaction proceeds more rapidly as the $[Tc(V)]$ decreases. Consequently, we have assumed that the kinetics of this process are the same as those found for the reduction in 8.7 M HBr. Indeed, assuming that the reaction is a combination of a first order with a zero order process, it was possible to find a rate law fitting all experimental results. The reaction rate can be written as

$$
-\frac{\mathrm{d}[\mathrm{Tc(V)}]}{\mathrm{d}t}=k_2[\mathrm{Tc(V)}]+k'_2\tag{2}
$$

The general solution of this differential equation is

$$
\frac{\{\text{Tc(V)}\}_t}{\{\text{Tc(V)}\}_t_1} = e^{-k_2(t-t_1)} \left\{ 1 + \frac{k'_2}{k_2 \{\text{Tc(V)}\}_t_1} \right\} - \frac{k'_2}{k_2 \{\text{Tc(V)}\}_t_1}
$$
(3)

where the constants k_2 and k'_2 have to be determined. This expression gives no possibility for determining them using the experimental data, but approximative solutions can be found in the limiting cases.

If $k'_2 \ll k_2$ [Tc(V)], *i.e.* in the case of high Tc(V) concentrations ($>10^{-3}$ M), k'_2 can be neglected and eqn. (3) becomes

$$
\frac{\{\text{TC(V)}\}_t}{\{\text{TC(V)}\}_{t_1}} = e^{-k_2(t - t_1)}\tag{4}
$$

A plot of $ln[{\rm Tc(V)}]_{t=t_1}/[{\rm Tc(V)}]_{t_1}$ versus time allows the determination of k_2 using a linear regression for a set of experiments (Table II).

The rate constant k_2 for each experimental point was also calculated using eqn. (5)

$$
k_2 = \frac{1}{t - t_1} \ln \frac{[\text{Te(V)}]_{t_1}}{[\text{Te(V)}]_{t - t_1}}
$$
 (5)

Fig. 3. $[Tc(V)]_{t-t_1}/[Tc(V)]_{t_1}$ vs. $t - t_1/[Tc(V)]_{t_1}$ for 4.5 \times 10⁻⁶ M Tc(V) concentration.

The mean values of k_2 at different Tc(V) concentrations are shown in Table II. The mean value of the rate constant determined by both methods was found equal to $k_2 = (1.09 \pm 0.1) \times 10^{-2} \text{ h}^{-1}$.

At low Tc(V) concentrations $(4.5 \times 10^{-6}$ M), k_2 [Tc(V)] $\ll k'_2$ and the approximate solution is given by

$$
\frac{[\text{Tc(V)}]_t}{[\text{Tc(V)}]_{t_1}} = 1 - k'_2 \frac{t - t_1}{[\text{Tc(V)}]_{t_1}}
$$
(6)

By plotting $[Tc(V)]_{t-t_1}/[Tc(V)]_{t_1}$ as a function of $t - t_1 / [\text{Tc(V)}]_{t_1}$, a linear dependence was found with a slope equal to $k'_2 = 1.1 \times 10^{-7}$ mol 1^{-1} h⁻¹ (Fig. 3).

The types of processes describing the reaction rate at different Tc(V) concentrations are given in Table III. Using the k_2 and k'_2 values as well as the general solution (3), a set of curves $[{\rm Tc(V)}]_{t-t_1}/[{\rm Tc(V)}]_{t_1}$ as a function of time were plotted (Fig. 4). A good fit with experimental data is obtained.

Reduction of TcO_4 ⁻ 123

Fig. 4. $[TC(V)]_{t-t_1}/[TC(V)]_{t_1}$ vs. time for different Tc(V) concentrations: full line, theoretical curves (eqn. (3)); symbols, experimental data.

Comparison with the results given for the reduction of $Tc(V)$ in 8.7 M HBr $[1]$ shows that the reduction of $Tc(V)$ in conc. HBr is faster than in 6 M HBr. These results indicate that below 6 M HBr the reduction reactions $Tc(VII) \rightarrow Tc(V) \rightarrow Tc(IV)$ should proceed more slowly when the HBr concentration lowers. Indeed, the reaction of 1.12×10^{-2} M NH_4TcO_4 in 4 M HBr at 16 °C showed only a 35% reduction after 25 days. On the other hand, as the $Tc(V) \rightarrow Tc(IV)$ reduction is a very slow reaction, it is reasonable to assume that the aquation and/or the hydrolysis of $Tc(V)$ and $Tc(IV)$ complexes could play an important role. Indeed, the absorption spectrum of the solution after 150 days at 16 $^{\circ}$ C shows a mixture of $[TeBr_6]^2$ and $[TeBr_5(H_2O)]^-$. The absorption maxima at 395 and 452 nm are attributed to the latter complex $[9, 10]$. Thus, the kinetic study of $Tc(V) \rightarrow Tc(V) \rightarrow Tc(V)$ reduction reactions in 4 M HBr is limited by the complexity of reactions occurring in this system.

References

- 1 S. Caron, E. Ianovici, P. Lerch and A. G. Maddock, 1norg. *Chim. Actu,* 109,209 (1985).
- 2 P. Rajec and F. Macasek, *J. Inorg. Nucl.* Chem., 43, 1607 (1981).
- 3 J. E. Fergusson, A. M. Greenaway and B. R. Penfold, *Inorg. Chim. Actu, 17, 29 (1983).*
- *4* E. Ianovici, D. Mantegazzi and P. Lerch, *J. Lab. Comp. Radiopharm., 23,116O* (1986).
- 5 R. Thomas, A. Davison, H. Trop and E. Deutsch, *Inorg. Chem., 19,284O* (1980).
- 6 R. W. Thomas, M. J. Heeg, R. C. Elder and E. Deutsch, Inorg. Chem., 24, 1472 (1985).
- *7* E. *Ianoz,* D. Mantegazzi, P. Lerch and K. Tatsumi, manuscript in preparation.
- 8 Chang-su Kim and R. K. Murmann, *Inorg. Chem.*, 23, *263 (1984).*
- *9* M. Cohn, E. Ianovici, P. Lerch, A. G. Maddock, *J. Radioanal. Nucl. Chem., 9212, 283* (1985).
- 10 M. Kawashima, M. Koyama, T. Fuginaga, J. Inorg. *NucZ. Chem., 38,819* (1976).
- 11 C. K. Jorgensen and K. Schwochau, 2. *Nuturforsch., TeilA,20,65* (1965).