Synthesis and X-ray Structure of the Heterotrinuclear Complex $[Pd{(\mu\text{-}Cl)(n^2\text{-}\mu\text{-}P(O)(OMe))}]Rh(cod)}_2]$ **. An Unusual Bridging Coordination Mode Involving Phosphonate Ligands**

MAURICIO VALDERRAMA*

Facultad de Quimica. Pontificia Universidad Cat6lica de Chile, Casilla 6177, Santiago, Chile

FERNANDO J. LAHOZ, LUIS A. ORO* and FRANCISCO J. PLOU

Departamento de Química Inorgánica, Instituto de Ciencia de *Materiales de Aragbn, Universidad de Zaragoza-C.S.I.C., 50009 Saragossa. Spain*

(Received May 5, 1988)

Recent studies $[1-3]$ have shown that the hydrogen-bonded proton of phosphonate complexes of type I, can be easily removed to give a variety of bimetallic derivatives of type II, in which the anion derived from 1 may be regarded as an analogue of β -diketonates [1, 2]. We wish to report the synthesis and the crystal and molecular structure of an unexpected heterotrinuclear complex that shows a novel heterometallic mixed phosphonate-chlorine bridge.

A dichloromethane solution (10 ml) of the com plex $[CIPd{P(O)(OMe)}_2]_2H]_2$ (0.2 mmol) $[4]$ was treated under purified nitrogen with [Rh(acac)(cod)] (0.4 mmol) [5]. After stirring for 5 h, the solution was evaporated to dryness. The extraction of the solid residue with dichloromethane or chloroform led to the separation of an insoluble white solid of the polymer $[Pd(P(O)(OMe)₂]₂]$ [4] and a yellow solution. The trinuclear complex $[Pd$ {(μ -Cl)(μ -P(O)- $(OMe)_2)Rh(cod)_2$ (1) was obtained, after partial evaporation of this solution and addition of methanol, as a yellow microcrystalline solid. Similar results with a better yield were obtained when the reaction was performed in methanol (92%). Analytical and IR data support the trinuclear formulation. Anal. Calc. for **1: C,** 29.4; H, 4.4. Found: C, 29.3; H, 4.7%.

The 'H NMR spectrum of this complex shows the characteristic virtual triplet signal assigned to the methyls of the phosphonate ligands $[6]$ (δ 3.67 ppm $(vt, 12H, OMe)$, $J(P-H)$ 12.7 Hz) and broad resonances of the coordinated cyclooctadiene (6 4.20 ppm (m, 8H, CH=CH); δ 2.42 ppm (s, br, 8H, CH₂); δ 1.70 ppm (m, 8H, CH₂)). A clear single signal is observed in the ${}^{31}P[{^1}H]$ NMR spectrum (δ 95.9 ppm) in a similar region to that reported in the related complexes $[PdCl_2{P(OEt)_2Cl}_2]$ (δ 112.1 ppm) and $[Pd_2(\mu\text{-}Cl)_2$ $[(P(OEt)_2O)_2H]_2]$ (δ 73.4 ppm) $[7]$.

Assuming that no reorganization on the palladium coordination sphere has taken place during the reaction, there are only two possible structures for 1: (i) an 'asymmetric' arrangement III exhibiting two different types of bridges (see below), or (ii) a 'symmetric' structure IV with two identical chloride/ phosphonate bridges between the metals.

The removal of the bridging proton in complexes with structure I normally gives rise to binuclear or polynuclear complexes with phosphonate, or related phosphite ligands, bridging the metals through a double $P-O$ bridge as shown in structure III, where the anion derived from the cis-phosphonate complex shows a similar coordination behaviour to that reported for β -diketones [2, 8]. In our case, none of the spectroscopic data reported above excluded any of the proposed structures, neither III, nor IV, and hence we decided to carry out an X-ray molecular structure determination.

Crystal data: $C_{20}H_{36}Cl_{2}O_{6}P_{2}PdRh_{2}$, $M = 817.56$, monoclinic, space group $P2_1/c$, $a = 15.685(1)$, $b =$ 7.3863(4), $c = 24.670(2)$ Å, $\beta = 105.46(1)$ °, $V =$ 2754.7(4) \mathbf{A}^3 , $\mathbf{Z} = 4$, $\mathbf{D}_e = 1.971$ g cm⁻³, $F(000) =$ 1616, μ (Mo K α) = 21.47 cm⁻¹. Data were collected to $2\theta_{\text{max}} = 45^{\circ}$ on a Siemens AED2 diffractometer

0020-l 693/88/\$3.50 0 Elsevier Sequoia/Printed in Switzerland

^{*}Authors to whom correspondence should be addressed.

and corrected semiempirically for absorption. The structure was solved by heavy atom and Fourier methods and refined by full-matrix least-squares, with anisotropic thermal parameters for the non-hydrogen atoms. The hydrogens were partially located in a difference Fourier map and included in the last cycle of refinement riding on their carbon atoms. For 3229 unique reflections with $I \geq 3\sigma(I)$, final agreement factors are $R = 0.021$ and $R_w = 0.025$. The final atomic coordinates are given in Table 1.

The structure of $[Pd{(\mu\text{-}Cl)(\mu\text{-}P(O)(OMe)_2)}Rh$ - $(c \text{od})$ ₂] (1) is represented in Fig. 1. The most relevant bond parameters of the complex are collected in Table II. Interestingly, the molecular structure of 1 is trinuclear with two 'Rh(cod)' units bridged by a pair of identical Cl/P-O groups to both sides of a square-planar palladium atom. The phosphonate ligands maintain their relative cis-disposition as in the parent compound, and are linked to the

TABLE 1. Fractional Atomic Coordinates *(X* 104) for the Non-hydrogen Atoms of the Complex $[Pd(\mu-CI)(\mu-P(O)-\sigma(1-\mu)-\sigma(1-\mu-1)]$ $(OMe)_2)Rh(cod){}_{2} (1)^a$

Atom	x/a	y/b	z/c
Pd	2434(1)	4772(1)	2740(1)
Rh(1)	818(1)	6173(1)	3614(1)
Rh(2)	3179(1)	4154(1)	1354(1)
Cl(1)	1139(1)	6574(2)	2729(1)
Cl(2)	2381(1)	6033(2)	1825(1)
P(1)	2579(1)	3901(2)	3626(1)
P(2)	3552(1)	3017(2)	2670(1)
O(1)	3559(2)	3710(5)	4007(1)
O(2)	2296(3)	1878(5)	3688(2)
O(3)	2090(2)	5156(6)	3919(1)
O(4)	3704(2)	1184(4)	3013(1)
O(5)	4437(2)	4053(5)	2957(1)
O(6)	3507(2)	2526(5)	2070(1)
C(1)	4069(4)	5332(9)	4163(3)
C(2)	1404(4)	1357(10)	3434(3)
C(3)	3108(4)	$-320(8)$	2832(3)
C(4)	5278(3)	3371(9)	2899(3)
C(11)	$-555(3)$	6265(8)	3260(2)
C(12)	$-247(3)$	8003(8)	3431(2)
C(13)	$-375(5)$	8890(9)	3955(3)
C(14)	250(4)	8349(9)	4483(3)
C(15)	782(4)	6681(8)	4440(2)
C(16)	418(4)	4973(8)	4281(2)
C(17)	$-556(5)$	4579(10)	4140(3)
C(18)	$-1047(5)$	5106(13)	3577(3)
C(21)	2479(4)	5059(8)	551(2)
C(22)	3211(4)	6143(9)	757(3)
C(23)	4050(6)	6043(11)	554(4)
C(24)	4586(5)	4382(11)	727(3)
C(25)	4230(4)	3055(10)	1077(2)
C(26)	3490(4)	1995(9)	887(2)
C(27)	2914(6)	1999(13)	290(3)
C(28)	2398(6)	3614(11)	113(3)

a_{e.s.d.s} given in parentheses.

Fig. 1. Molecular structure and atom labelling scheme for the complex $[Pd$ {(μ -Cl)(μ -P(O)(OMe)₂)Rh(cod)}₂} (1).

TABLE Il. Selected Bond Distances (A) and Angles (") for the Complex $\left[Pd\left\{(\mu\text{-Cl})(\mu\text{-P}(O)(OMe)_2)Rh(cod)\right\}_2\right]$ (1)^a

$Pd-P(1)$	2.231(3)	$P(1) - Pd - P(2)$	91.80(9)
$Pd-P(2)$	2.224(2)	$P(1) - Pd - Cl(1)$	92.04(8)
$Pd - Cl(1)$	2.423(2)	$P(1) - Pd - Cl(2)$	173.13(7)
$Pd - Cl(2)$	2.423(3)	$P(2) - Pd - Cl(1)$	174.52(11)
		$P(2) - Pd - Cl(2)$	89.06(8)
		$Cl(1)-Pd-Cl(2)$	87.59(8)
$Rh(1) - Cl(1)$	2.386(3)	$Cl(1) - Rh(1) - O(3)$	87.7(1)
$Rh(1) - O(3)$	2.076(3)	$Cl(1) - Rh(1) - C(112)^D$	93.9(1)
$Rh(1) - C(11)$	2.098(5)	$Cl(1) - Rh(1) - C(156)^{b}$	177.9(1)
$Rh(1) - C(12)$	2.102(5)	$O(3) - Rh(1) - C(112)^b$	178.4(2)
$Rh(1) - C(15)$	2.088(6)	$O(3) - Rh(1) - C(156)^b$	90.2(1)
$Rh(1) - C(16)$	2.107(6)	$C(112) - Rh(1) - C(156)^b$	88.2(1)
$Rh(2) - Cl(2)$	2.370(3)	$Cl(2) - Rh(2) - O(6)$	88.0(1)
$Rh(2)-O(6)$	2.085(3)	$Cl(2) - Rh(2) - C(212)^{b}$	93.4(1)
$Rh(2) - C(21)$	2.102(5)	$Cl(2) - Rh(2) - C(256)^{b}$	178.1(1)
$Rh(2)-C(22)$	2.090(7)	$O(6) - Rh(2) - C(212)^b$	177.4(2)
$Rh(2)-C(25)$	2.108(7)	$O(6) - Rh(2) - C(256)^b$	90.0(2)
$Rh(2) - C(26)$	2.100(7)	$C(212) - Rh(2) - C(256)^{b}$	88.5(2)
$P(1) - O(3)$	1.505(4)	$Pd-P(1)-O(3)$	111.2(2)
$P(2)-O(6)$	1.507(4)	$P(1) - O(3) - Rh(1)$	127.8(2)
$C(11)-C(12)$	1.397(8)	$Pd-P(2)-O(6)$	112.6(2)
$C(15)-C(16)$	1.397(8)	$P(2)-O(6)-Rh(2)$	129.0(2)
$C(21) - C(22)$	1.381(8)		
$C(25)-C(26)$	1.375(9)		

^ae.s.d.s given in parentheses. $bC(112)$, $C(156)$, $C(212)$ and $C(256)$ represent the midpoints of the olefinic bonds $C(11)$ -C(12), C(15)–C(16), C(21)–C(22) and C(25)–C(26), respectively.

palladium through the P atoms and to the rhodium atoms through the oxygens. All the metals present distorted square-planar coordination, but the distortion at Pd is considerably larger with a maximum perpendicular deviation from the least-squares plane of $0.120(2)$ Å for the $P(1)$ atom. The coordination planes of both Rh(1) and Rh(2) atoms are not coplanar with the central plane of palladium, being set at respective dihedral angles of 18.7(l) and $-17.3(1)$ °.

The bond lengths involving the Pd atom are all closely similar to those previously observed in $[{\rm Pd}_2$ - $(\mu$ -Cl)₂ {(P(OEt)₂O)₂H₂] [7]. As in this case, the relative short $Pd-P$ distances (average 2.228(3) Å) are not completely unexpected in view of the low trans-influence of the chloride ligand and the high electronegativity of the methoxy substituents. The Pd-Cl length, 2.423(2) Å, is slightly longer than those found in $[{\rm Pd}_2(\mu\text{-Cl})_2\{({\rm P(OEt})_2O)_2\text{H}\}_2]$ (2.393(2) A), where a double chloride bridge is present.

The phosphoryl $P=O$ bond distances, 1.505(4) and 1.507(4) A, compare well the values reported in the related pentanuclear compound U{Ni(P(O)- $(OCH₃)₂$ ₂(C₅H₅)²₄ (av. 1.51(1) Å) [9] where the uranium atom is connected to each Ni by a double dimethoxy-phosphonate bridge, or with those observed in $[{\rm Pd}_2(\mu\text{-Cl})_2\{({\rm P(OEt})_2O)_2H\}_2]$ (av. 1.502(6) A) where the phosphoryl oxygens are linked by a hydrogen bond. These values are on the long end of the bond distance range usually associated with metal-coordinated phosphoryl groups, and are clearly indicative of a remaining partial double bond character [10]. The P-OEt bond distances, average 1.579(4) Å, are in the normal range for these distances [10].

Regarding the two Rh centres, the most interesting feature concerns the coordination of the 1,5-cyclooctadiene. Normally, as described for typical transition metal-olefin bonds involving $d_{\pi}-\pi^*$ metal \rightarrow olefin back-donation, the shorter metal-olefin distance is associated with the longer C-C bonds, and vice versa. However, in our case, both $Rh - C$ (av. 2.099(6) A) and olefinic C-C (av. 1.388(8) A) distances are in the lower part of the ranges reported for these types of bonds [11]. This fact probably reflects the high electronegativity of the atoms coordinated on the opposite side of the metal (oxygen and chloride), which make the rhodium atom electronically poor, and force a cyclooctadiene coordination through strong σ - and weak π components.

In this context it should be pointed out that Rh-Cl and Rh-O bond distances compare well with data reported in similar Rh(1) complexes; for instance, the dimer compound $[Rh(\mu-Cl)(\text{cod})]_2$ $(Rh-Cl 2.38(1)$ Å) [12] and the trinuclear complex $[Rh_3(\mu_3\text{-}Onapy)(CO)_2(\text{cod})_2]$ (av. Rh-O 2.103(7) Å) $[13]$.

Supplementary Material

Tables of anisotropic thermal parameters, hydrogen atomic coordinates, bond distances, angles and least-squares planes, and observed/calculated structure factors are available from the author (F.J.L.) on request.

Acknowledgements

The authors thank the Comision Asesora de Investigación Cientifica y Técnica (CAICYT), España, for financial support. One of us (M.V.) is indebted to the Spanish Sabatical Program by a grant.

References

- 1 D. M. Roundhill, R. P. Sperline and W. B. Beaulieu, *Coord. Chem. Rev., 26, 263 (1978),* and refs. therein.
- 2 D. E. Berry, K. A. Beveridge, J. Browning, G. W. Bushnell and K. R. Dixon, *Can. J.* Chem., 64, 1903 (1986).
- 3 K. R. Dixon and A. D. Rattray, *Inorg. Chem.*, 16, 209 (1977).
- 4 H. Werner and T. N. Khac, Z. *Anorg. Allg.* Chem., 479, 134 (1981).
- 5 F. Bonati and G. Wilkinson, J. Chem. Soc., 3156 (1964).
- 6 M. J. Church and M. J. Mays, J. Znorg. Nucl. *Chem., 33, 253 (1971).*
- *7* D. E. Berry, K. A. Beveridge, G. W. Bushnell and K. R. Dixon, *C&n. J. Chem., 63, 2949 (1985).*
- *8 C.* M. Lukehart, *Act.* Chem. *Res., 14,* 109 (1981).
- 9 R. T. Paine, E. N. Duesler and D. C. Moody, *Organometallics, 1, 1097 (1982).*
- 10 D. E. C. Corbridge, 'The Structural Chemistry of Phosphorus', Elsevier, Amsterdam, 1974.
- 11 F. J. Lahoz, A. Tiripicchio, *M.* TiripicchioCamellini, L. A. Oro and M. T. Pinillos, J. *Chem. Sot., Dalton Trans., 1487 (1985).*
- *12* J. A. Ibers and R. G. Snyder, *Acta Crystallogr., 15, 923 (1962).*
- *13* A. Tiripicchio, F. J. Lahoz, L. A. Oro, M. A. Ciriano and B. E. Villarroya, *Inorg. Chim. Acta. III,* Ll (1986).