Triphenylbismuth Seven-coordinate Complexes of Molybdenum(I1) and Tungsten(I1)

PAUL K. BAKER*, STUART G. FRASER and TONY M. MATTHEWS

Department of Chemistry, University College of North Wales, Bangor, Gwynedd LL5 7 2UW. U.K. (Received March 28, 1988)

Abstract

The seven-coordinate complexes $[MI_2(CO)_3]$ - $(NCMe)₂$] (M = Mo and W) react with one equivalent of $Bibh$ in $CHCl$ at room temperature to give the monoacetonitrile complexes $\frac{1}{2}$ (CO) (NCMe) monoacetonitrile complexes $[MI_2(CO)_3(NCMe)-(BiPh_3)]$. The molybdenum complex $[MoI_2(CO)_3-(BiPh_3)]$ $(NCMe)(BiPh₃)]$ after stirring in $CH₂Cl₂$ at room temperature for 5 h affords the iodide-bridged dimer $[Mo(\mu-I)I(CO)₃(BiPh₃)]₂$, whereas the tungsten complex $[WI_2(CO)_3(NCMe)(BiPh_3)]$ does not appear to dimerise even after stirring for 48 h in $CH₂Cl₂$ at room temperature. Reaction of $[MI_2(CO)_3(NCMe)_2]$ with two equivalents of $BiPh_3$ gives the bistriphenylbismuth compounds $[MI_2(CO)_3(BiPh_3)_2]$ in good yield. The new mixed ligand complexes $[MI_2(CO)₃$ - $L(BiPh₃)$] were prepared either by reaction of $[M]_{2}$ - $(CO)_{3}(NCMe)(BiPh_{3})$] in situ with one equivalent of L (L = P(OPh)₃), or an *in situ* reaction of $[MI_2(CO)₃$ (NCMe)L] $(L = PPh_3$ and SbPh₃; and L = AsPh₃ and PPh_2Cy (for $M = Mo$ only)) with an equimolar quantity of $BiPh_3$. Reaction of $[Mol_2(CO)_3(NCMe)]$ - $(BiPh₃)$] with one equivalent of 2,2'-bipyridyl (bipy) in $CH₂Cl₂$ at room temperature afforded the cationic complex $[Mol(CO)₃(bipy)(BiPh₃)]$ I in good yield. The complex $[WI_2(CO)_3(NCMe)(BiPh_3)]$ (prepared *in situ*) reacts with two equivalents of NaS₂CNMe₂^{*} $2H₂O$ to eventually give the non-triphenylbismuth containing product $[W(CO)_{3}(S_{2}CNMe_{2})_{2}]$ in high yield.

Introduction

Over the years triphenylphosphine, triphenylarsine and triphenylantimony have proved to be important ligands when coordinated to transition metals. For example, the seven-coordinate complexes $[MX_2(CO)_3L_2]$ (M = Mo and W; X = Cl, Br and I; L = PPh_3 , AsPh₃ and SbPh₃) have been synthesised by a wide variety of methods $[1-7]$, and the compounds $[MX_2(CO)_3L_2]$ (M = Mo and W; X = Cl and Br; L = $PPh₃$ and AsPh₃) have been shown to be catalysts for

the ring-opening polymerisation of norbornene and norbornadiene [8,9]. However, far fewer triphenylbismuth compounds have been prepared which is probably due to the very poor donor ability of $BiPh₃$ as a ligand. Some examples of $BiPh_3$ complexes include $[Fe(CO)₃(BiPh₃)₂]$ $[10, 11]$, $[Mn(CO)₂$ $(BiPh_3)(\eta^5-C_5H_5)]$ [12] and more recently [Fe(CO)₂- $(BiPh_3)(\eta^5-C_5H_5)$] [BF₄] [13].

In recent years we have been investigating the chemistry of the highly versatile seven-coordinate complexes $[MI_2(CO)_3(NCMe)_2]$ $(M = Mo$ and W) [14] which are prepared by reacting the trisaceto- $\frac{1}{n+1}$ when are prepared by redeving the ensured with an equimolar quantity of I at 0 $^{\circ}$ C. In this paper we wish to describe in full the reactions of $[M]_2$ - (CO) ₃(NCMe)₂] and their derivatives with triphenylbismuth. Preliminary results of this work have been reported in an earlier communication [16].

Experimental

All reactions described in this paper were carried out using standard Schlenk line techniques. The seven-coordinate complexes $[MI_2(CO)_3(NCMe)_2]$ $(M = Mo$ and W) were prepared by the published method [14]. All chemicals were purchased from commercial sources. CH_2Cl_2 was dried over P_2O_5 and distilled before use.

Elemental analyses (C, H and N) were recorded on a Carlo Erba Elemental Analyser MOD 1106 (using helium as a carrier gas). Infrared spectra were recorded on a Perkin-Elmer 197 infrared spectrophotometer. 'H NMR spectra were recorded on a Jeol FX60 NMR spectrometer. The low temperature (-70 °C) ¹³C NMR spectrum of $[WI_2(CO)_3(BiPh_3)_2]$ was recorded on a Bruker WH-400 NMR spectrometer at the University of Warwick. (All spectra were calibrated against tetramethylsilane.) The molecular weight of the complex $[Mo(\mu-1)I(CO)₃(BiPh₃)]₂$ was determined by Rast's method [17].

$[MoI₂(CO)₃(NCMe)[BiPh₃][(1)]$

To $[Mol_2(CO)_3(NCMe)_2]$ (0.212 g, 0.411 mmol) dissolved in $CH₂Cl₂$ (15 cm³) with continuous stirring under a stream of dry nitrogen was added BiPh₃

0020-l 693/88/\$3 SO 0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

(0.181 g, 0.411 mmol). After stirring the solution for 5 min and filtration, removal of the solvent in vacuo gave black crystals of $[MoI₂(CO)₃(NCMe)(BiPh₃)]$ (1) (yield = 0.16 g, 43%), which were rapidly recrystallised from $CH₂Cl₂$.

A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with one equivalent of $BiPh_3$ gave the compound $[WI_2$ - $(CO)₃(NCMe)(BiPh₃)$] (2) (see Table I for physical and analytical data).

 $[Mo(\mu-1)I(CO)_{3}(BiPh_{3})]_{2}$ (3)
The compound [MoI₂(CO)₃(NCMe)(BiPh₃)] (0.100 g, 0.109 mmol) was dissolved in CH_2Cl_2 (15 $cm³$) and stirred under a stream of dry nitrogen for 5 h. Filtration and removal of the solvent in vacuo gave black crystals of $[Mo(\mu-I)I(CO)₃(BiPh₃)]₂ (3)$ (yield = 0.045 g, $47\%)$, which were recrystallised from CH_2Cl_2 . Molecular weight for $C_{42}H_{30}Mo_2O_6$ - $Bi₂I₄$: calc. 1748; found, 1379.

Attempts made to prepare the analogous tungsten complex $[W(\mu-1)I(CO)_{3}(BiPh_{3})]_{2}$ were unsuccessful. After several days the monomer had still not dimerised and there was extensive decomposition.

 $[Mol_2(CO)_3(BiPh_3)_2]$ (4)
To $[Mol_2(CO)_3(NCMe)_2]$ (0.212 g, 0.411 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added BiPh₃ (0.362 g, 0.822 mmol). After stirring the solution for 25 h and filtration, removal of the solvent *in vucuo* gave brown crystals of $[MoI₂(CO)₃(BiPh₃)₂]$ (4) (ψ ield = 0.29 g, 54%), which were recrystallised from CH_2Cl_2 .
A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with

two molar equivalents of BiPh₃ gave the new complex $[WI_2(CO)_3(BiPh_3)_2]$ (5) (see Table I for physical and analytical data).

 $[Mol_2(CO)_3\{P(OPh)_3\} (BiPh_3)J(6)$
To $[Mol_2(CO)_3(NCMe)_2]$ (0.186 g, 0.361 mmol) dissolved in $CH₂Cl₂$ (15 cm³) with continuous stirring under a stream of dry nitrogen was added BiPh₃ (0.159 g, 0.361 mmol). After stirring the solution for 5 min, $P(OPh)$ ₃ (0.112 g, 0.361 mmol) was added and the mixture was stirred for a further 24 min. After filtration, removal of the solvent in vacuo gave orange α crystals of IMoI₂(CO), β (OPh), β (BiPh₂)] (6) $(v_{\text{yield}} = 0.200 \text{ g} \cdot 68\%)$ which were recrystallised (yield = 0.290 g, 68%), which were recrystallised from CH₂Cl₂.

A similar reaction of $[W₁, (CO)₃(NCMe)₂]$ with one equivalent of BiPh₃ followed by an *in situ* reaction with one equivalent of $P(OPh)$ ₃ gave the new compound $[WI₂(CO)₃{P(OPh)₃}{BiPh₃}]$ (7) (see Table I for physical and analytical data).

 $[Mol_2(CO)_3(PPh_3/(BiPh_3)/(8)]$
To $[Mol_2(CO)_3(NCMe)_2]$ (0.5 g, 0.969 mmol) dissolved in $CH₂Cl₂$ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.969 mmol). After stirring the solution for 1 min, $BiPh₃$ (0.427 g, 0.969 mmol) was added and the mixture was stirred for a further 3 h. After filtration, removal of the solvent *in vacuo* gave brown crystals of $[MoI₂(CO)₃(PPh₃)(BiPh₃)]$ (8) (yield = 0.264 g, 24%).

Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with one equivalent of L $(L = PPh_3$ and SbPh₃; PPh₂Cy and AsPh₃ (for $M = Mo$ only)); followed by an *in situ* reaction with one equivalent of $BiPh₃$ gave the compounds $[MI_2(CO)_3L(BiPh_3)]$ (9-13) (see Table I for physical and analytical data).

$[Mol(CO)₃(bipy)/BiPh₃]/I(14)$

To $[MoI₂(CO)₃(NCMe)₂]$ (0.5 g, 0.969 mmol) dissolved in degassed CH_2Cl_2 (15 cm³) was added

TABLE I. Physical and Analytical Data^a for the Triphenylbismuth Complexes

aCalculated values in parentheses.

 $BiPh_3$ (0.427 g, 0.969 mmol). After stirring the solution for 7 min bipy $(0.151 \text{ g}, 0.969 \text{ mmol})$ was added and the mixture was stirred for a further 2 h. After filtration, removal of the solvent *in vucuo* gave brown crystals of $[Mol(CO)_{3}(bipy)(BiPh_{3})]1(14)$ (yield = 0.67 g, 67%), which were recrystallised from $CH₂Cl₂$ (see Table I for physical and analytical data).

Reaction of (*WI~(CO),(NCMe)(BiPh,)/ with Two Equivalents of NaS₂CNMe₂* \cdot 2H₂O

To $[WI₂(CO)₃(NCMe)₂]$ (0.5 g, 0.828 mmol) dissolved in degassed $CH₂Cl₂$ (15 cm³) was added $BiPh_3$ (0.365 g, 0.829 mmol). After stirring the solution for 7 min $NaS_2CNMe_2.2H_2O$ (0.297 g, 1.657 mmol) in MeOH (5 cm^3) was added and the mixture was stirred for a further 30 min. After removal of the solvent *in vacuo* and redissolving in degassed CH_2Cl_2 , filtration to remove NaI, removal of the solvent in *vacuo* gave orange crystals of $[W(CO)_{3}(S_{2}CNMe_{2})_{2}]$ (yield = 0.36 g, 86%), which were recrystallised from CH_2Cl_2 . *Anal.* Calc. for $C_9H_{12}N_2O_3S_4W$: C, 21.2; H, 2.4; N, 5.5. Found: C, 21.8; H, 2.6; N, 5.4%. IR, $\nu(CO)$ (CHCl₃) = 2010(s), 1925(s) and 1910(sh). ¹H NMR (CDCl₃, +25 °C) δ = 3.25(s, Me).

Results and Discussion

The new triphenylbismuth complexes of the types $[MI₂(CO)₃(NCMe)(BiPh₃)]$ (M = Mo and W) (1 and 2), $[Mo(\mu-1)I(CO)_3(BiPh_3)]_2$ (3), $[MI_2(CO)_3(Bi-1)]_2$ $Ph_3)_2$] (4 and 5), $[MI_2(CO)_3L(BiPh_3)]$ (for M = Mo and W, $L = P(OPh)_{3}$ (6 and 7), PPh₃ (8 and 9), SbPh₃ (12 and 13); for $M = Mo$ only, $L = PPh₂Cy$ and AsPh₃ (10 and 11)) and $[MoI(CO)₃(bipy)(BiPh₃)]I (14)$ described in this paper have been characterised by elemental analysis (C, H and N) (Table I), IR (Table II) and in selected cases 'H NMR spectroscopy (Table III). The complexes 9, **10** and 13 are confirmed as either NCMe (9) or CH_2Cl_2 $(10$ and 13) solvates by repeated elemental analyses and 'H NMR spectroscopy. The triphenylbismuth compounds $(1 -$ 14) are all soluble in CHCl₃ or CH₂Cl₂. [MoI(CO)_{3} - $(bipy)(BiPh₃)]$ I is as expected insoluble in Et₂O and hydrocarbon solvents as it is ionic. The mixed triphenylphosphite compounds $[MI_2(CO)_3\{P(OPh)_3\}$ - $(BiPh₃)$] (7 and 8) are the most soluble complexes and are soluble in diethylether. All the complexes are moderately air-sensitive (particularly in solution) and thermally unstable (much less stable than their PPh_3 , AsPh₃ and SbPh₃ counterparts) [7, 18], however, they can be stored under nitrogen for several days at 0 "C.

Equimolar quantities of the complexes $[MI_2(CO)_3]$ - $(NCMe)_2$ $(M = Mo$ and W) and BiPh₃ react in $CH₂Cl₂$ at room temperature to give the monoacetonitrile complexes $[MI₂(CO)₃(NCMe)(BiPh₃)]$ (1 and 2) in good yield. These complexes are analogous to

TABLE II. Infrared Data^a for the Triphenylbismuth Complexes

Complex	ν (CO) (cm ⁻¹)	$\nu(CN)$ (cm ⁻¹)
1	$2045(s)$, $2015(s)$, $1936(s)$	2310(w)
$\mathbf{2}$	$2040(s)$, $2000(s)$, $1939(s)$	2310(w)
3	$2020(s)$, 1984(s), 1950(s)	
4	$2020(m)$, 1950(s), 1930(s)	
5	$2035(s)$, 1945(s), 1916(s)	
6	2045 (m), 1995(s), 1935(s)	
7	$2045(m)$, 1988(s), 1921(s)	
8	$2040(m)$, 1960(m), 1920(m)	
9	$2045(s)$, 1964(s), 1914(s)	2290(w)
10	$2020(w)$, 1990(w), 1920(s)	
11	$2045(s)$, 1977(s), 1923(s)	
12	$2030(m)$, 1960(m), 1920(m)	
13	$2040(m)$, 1940(m), 1915(m)	
14	$2040(s)$, 1970(s), 1930(m)	

 a Spectra recorded in CHCl₃ as thin films between NaCl plates; (w) weak; (m) medium; (s) strong.

TABLE III. ¹H NMR Data^a for Selected Triphenylbismuth Complexes

Complex	¹ H NMR (δ) (ppm)	
1	$2.45(s, 3H, Me)$, $7.35(m, 15H, Ph)$	
$\mathbf{2}$	$2.41(s, 3H, Me)$, $7.35(m, 15H, Ph)$	
9	$1.96(s, 3H, Me)$, 7.43(m, 30H, Ph)	
10	1.28(bm, 11H, Cy), 5.31(s, 2H, CH ₂), 7.38(m, $25H$, Ph)	
13	5.32(s, 2H, $CH2$), 7.35(m, 30H, Ph)	

^aSpectra recorded in CDCl₃ (+25 $^{\circ}$ C) and referenced to Me₄Si.

the $[MI_2(CO)_3(NCMe)L]$ (M = Mo and W; L = PPh₃ $AsPh₃$ and $SbPh₃$) compounds previously reported [18]. It is interesting to note that as expected the $BiPh₃$ ligand (with the largest donor atom) allows the molybdenum complex $[Mol_2(CO)_3(NCMe)(BiPh_3)]$ to dimerise to $[Mo(\mu-1)I(CO)₃(BiPh₃)]₂$ with loss of acetonitrile more readily than its PPh_3 , AsPh₃ and $SbPh₃$ counterparts. The order for the ease of dimerisation of $[MoI₂(CO)₃(NCMe)L]$ is BiPh₃ > $SbPh_3 > AsPh_3 > PPh_3$. The dimeric nature of the molybdenum complex $[Mo(\mu-I)I(CO)₃(BiPh₃)]₂$ was confirmed by molecular weight measurements by Rast's method [17] (see 'Experimental'). It is surprising that the tungsten complex $[WI_2(CO)_3(NCMe)]$ (BiPh,)] does not dimerise even after stirring in CH_2Cl_2 for 48 h in CH_2Cl_2 , only decomposition products and the unreacted monoacetonitrile complex $[WI_2(CO)_3(NCMe)(BiPh_3)]$ were isolated.

Two equivalents of BiPh₃ react with $[MI_2(CO)₃]$ $(NCMe)_2$] at room temperature in CH_2Cl_2 to give the expected substituted products $[MI_2(CO)_3]$ - $(BiPh₃)₂$. It is highly likely that these reactions occur via successive dissociative displacements of acetonitrile ligands since the complexes $[MI_2(CO)_3]$ - $(NCMe)_2$] and $[MI_2(CO)_3(NCMe)(BiPh_3)]$ (see previous section) are coordinatively saturated and are unlikely to gain a $BiPh_3$ ligand to give the 20 electron complexes $[MI_2(CO)_3(NCMe)_2(BiPh_3)]$. The proposed mechanism for these reactions is given in Scheme 1. Evidence to support these dissociative mechanism comes from some work by Tripathi and co-workers [19]. They described the reaction of $[Mo(CO),L]$ $(L = PPh₃, AsPh₃$ and SbPh₃) with X_2 ($X = C1$, Br and I) in hexane to give the coordinatively unsaturated compounds $[MoX_2(CO)₃L]$ which were isolated and characterised. These $[MoX₂ (CO)₃L$] compounds are analogous to the acetonitrile dissociated intermediates $[MI_2(CO)_3(NCMe)]$ and $[MI₂(CO)₃(BiPh₃)]$ resulting from loss of acetonitrile from either $[MI_2(CO)_3(NCMe)_2]$ or $[MI_2(CO)_3$ - $(NCMe)(BiPh₃)]$ (see Scheme 1).

$$
[Ml_2(CO)_3(NCMe)_2] \longrightarrow
$$

$$
[Ml_2(CO)_3(NCMe)] + NCMe \qquad (a)
$$

$$
[Ml_2(CO)_3(NCMe)] + BiPh_3 \longrightarrow
$$

$$
[Ml_2(CO)_3(NCMe)(BiPh_3)]
$$
 (b)

$$
[MI2(CO)3(NCMe)(BiPh3)] \longrightarrow
$$

$$
[MI2(CO)3(BiPh3)] + NCMe
$$
 (c)

 $[MI₂(CO)₃(BiPh₃)] + BiPh₃ \longrightarrow$ $[MI_2(CO)_3(BiPh_3)_2]$ (d)

Scheme 1. Proposed dissociative mechanisms for the reactions of $[MI₂(CO)₃(NCMe)₂]$ with BiPh₃.

Reaction of $[MI_2(CO)_3(NCMe)_2]$ with one equivalent $BiPh_3$ in CH_2Cl_2 at room temperature gives $[MI_2(CO)_3(NCMe)(BiPh_3)]$ which when reacted *in situ* with $P(OPh)_{3}$ gives the novel mixed ligand compounds $[MI_2(CO)_3 {P(OPh)_3} (BiPh_3)]$ (6 and 7). However, attempts to prepare other mixed ligand compounds of the type $[MI_2(CO)_3L(BiPh_3)]$ (L = PPh_3 , As Ph_3 and $SbPh_3$) were less successful by initial reaction of $[MI_2(CO)_3(NCMe)_2]$ with one equivalent of $BiPh_3$, since the $[MI_2(CO)_3(NCMe)$ - $(BiPh₃)$] complexes are less stable than their PPh₃, AsPh₃ and SbPh₃ counterparts. Reaction of $[MI₂ (CO)₃(NCMe)₂$] with one equivalent of L (L = PPh₃ and SbPh₃; $L = PPh_2Cy$ and AsPh₃ (for $M = Mo$ only)) gives [M12(CO)s(NCMe)L] which react *in situ* with an equimolar quantity of $BiPh₃$ to give the expected mixed ligand compounds $[MI_2(CO)_3L$ - $(BiPh₃)]$ (8–13) in good yield.

The structures of the mononuclear sevencoordinate complexes $(1, 2 \text{ and } 4-14)$ are highly likely to have capped octahedral geometry since most of the seven-coordinate complexes of the type $[MX_{2}(CO)_{3}L_{2}]$ have been shown by X-ray analysis to have capped octahedral geometry $[20-28]$. Also the infrared spectral properties $(\nu(CO))$ (see Table II) of 1, 2 and $4-14$ are similar to the complexes $[MX_2 (CO)_{3}L_{2}$] which have capped octahedral geometry. Colton and Kevekordes [29] have recently shown how ¹³C NMR spectroscopy can be used to suggest the geometry' of capped octahedral complexes from the carbonyl chemical shifts. For example, carbonyl resonances in the unique capping position in capped octahedral complexes appear at lower field than octahedral carbonyl resonances. The low temperature $(-70 \text{ °C}, CD_2Cl_2)$ ¹³C NMR spectrum of $[WI_2(CO)_3$ - $(BiPh₃)₂$] (5) shows a single resonance at δ = 208.31 ppm which suggests a structure with the $BiPh₃$ ligand in the unique capping position *(i.e.* no capping carbonyl ligand). Although it is possible that the complex is fluxional even at -70 °C. The structure of the dimeric complex $[Mo(\mu-1)I(CO)₃(BiPh₃)]₂(3)$ is likely to be based on two capped octahedra since Cotton and co-workers [30] determined the X-ray crystal structure of the related bromide-bridged carbonyl compound $[W(\mu-Br)Br(CO)_4]_2$, which has a structure based on two capped octahedra with bridging bromide ligands.

Equimolar quantities of $[MoI₂(CO)₃(NCMe)₂]$ and BiPh_3 react in CH_2Cl_2 to give $\text{[MoI}_2(\text{CO})_3$ -(NCMe)(BiPh,)] which upon reaction *in situ* with 2,2'-bipyridyl (bipy) afforded the cationic compound $[MoI(CO)₃(bipy)(BiPh₃)]I(14)$, which is analogous to the cationic complexes $[MI(CO)₃(\overline{N}N)L]I$ (M = Mo and W; $\overline{N}N = 2.2'$ -bipyridyl and 1,10-phenanthroline; $L = PPh_3$, AsPh₃ and SbPh₃) very recently described [31]. It is likely this reaction goes via successive displacement of acetonitrile and a weakly bonded iodide ligand.

Several attempts were made to prepare the monodithiocarbamate complexes $[MI(CO)₃(BiPh₃)(S₂ CNR₂$] (M = Mo and W; R = Me and Et) by reaction of $[MI₂(CO)₃(NCMe)(BiPh₃)]$ (prepared *in situ*) with one equivalent of $NaS_2CNR_2 \cdot nH_2O$ (for R = Me, $n =$ 2; $R = Et, n = 3$). These were unsuccessful mainly due to the instability of these $[MI(CO)_3(BiPh_3)(S_2 CNR₂$] complexes compared to the previously reported compounds $[MI(CO)_3L(S_2CNEt_2)]$ (M = Mo and W; $L = PPh_3$, AsPh₃ and SbPh₃) [32]. However, reaction of $[WI_2(CO)_3(NCMe)(BiPh_3)]$ (prepared *in* $situ)$ with two equivalents of $NaS₂CNMe₂·2H₂O$ eventually gave the non-triphenylbismuth containing product $[W(CO)_3(S_2CNMe_2)_2]$ previously reported, for example, by Broomhead and Young [33].

In summary although the synthesis of several new seven-coordinate complexes containing triphenylbismuth as attached ligands have been described herein, they are considerably less stable than their triphenylphosphine, triphenylarsine and triphenylantimony analogues.

Acknowledgements

We wish to thank Dr O. W. Howarth for measuring the low temperature $(-70 °C)$ NMR spectra of $[WI_2(CO)_3(BiPh_3)_2]$ at the University of Warwick, and we thank the SERC for support.

References

- 1 J. Lewis and R. Whyman, *J. Chem. Sot. A, II (1967).*
- *2* W. S. Tsang, D. W. Meek and A. Wojcicki, *Inorg.* Chem., 7, 1263 (1968).
- 3 M. R. Snow, P. Pauling and M. H. B. Stiddard, *Aust. J.* Chem., 22, 709 (1969).
- 4 M. H. B. Stiddard and R. E. Townsend, J. *Chem. Sot. A, 2355 (1969).*
- *5* R. Colton, *Coord.* Chem. *Rev.,* 6. 269 (1971), and refs. therein.
- 6 L. Bcncze, *J. Organomet. Chem., 37, C37 (1972).*
- *7* P. K. Baker and S. G. Fraser,Znorg. *Chim. Acta, 116,* Ll (1986).
- 8 L. Bencze and A. Kraut-Vass, *J. Mol. Catal.*, 28, 369 *(1985).*
- 9 L. Bencze, A. Kraut-Vass and L. Prókai, *J. Chem. Soc.*, *Chem. Commun., 911(1985).*
- 10 F. Hein and H. Pobloth, Z. *Anorg. Allg.* Chem., 284, 84 (1941).
- 11 J. Dcsnoyers and R. Rivest, *Can. J.* Chem., 43, 1879 (1965).
- 12 C. Barbeau, *Can. J.* Chem., 45, 161 (1967).
- 13 H. Schumann, Chem. *Ztg., 110.* 121 (1986).
- 14 P. K. Baker, S. G. Fraser and E. M. Keys, *J. Organomet.* Chem., 309, 319 (1986).
- 15 D. P. Tate, W. R. Knipple and J. M. Augl, *Znorg. Chem., I, 433 (1962).*
- 16 P. K. Baker and S. G. Fraser, *J. Coord.* Chem., 16, 97 (1987).
- 17 F. G. Mann and B. C. Saunders, 'Practical Organic Chemistry', Longman's Green, London/New York/ Toronto, 1954, pp. 342-344.
- 18 P. K. Baker and S. G. Fraser, *Transition Met. Chem.,* in press.
- 19 S. C. Tripathi, S. C. Srivastava and D. P. Pandey, *Transition Met. Chem., 2, 52 (1977)*
- 20 M. G. B. Drew. I. B. Tomkins and R. Colton. *Aust. J.* Chem., 23, 2517 (1970).
- 21 A. Mawby and G. E. Pringle, J. *Inorg. Nucl.* Chem., 34, 517 (1972).
- 22 M. G. B. Drew, *J. Chem. Sot., Dalton Trans., 626 (1972).*
- 23 M. G. B. Drew, *J. Chem. Sot., Dalton Trans.,* 1329 *(1972).*
- 24 *G.* Schmid, R. Boese and E. Wclz, *Chem. Ber., 108, 260 (1975).*
- 25 M. G. B. Drew and J. D. Wilkins, *J. Chem. Sot., Dalton Trans., 1984 (1975).*
- 26 R. Boese and U. Miiller, *Acta Crystallogr., Sect. B, 33, 205 (1977).*
- 27 M. G. B. Drew and J. D. Wilkins, *J. Chem. Sot., Dalton Trans., 557 (1977).*
- 28 M. G. B. Drew, A. P. Wolters and 1. B. Tomkins, J. *Chem. Sot., Dalton Trans., 974 (1977).*
- 29 R. Colton and J. Kevekordes, *Aust. J.* Chem., 35, 895 (1982).
- 30 F. A. Cotton, L. R. Falvello and J. H. Meadows, *Inorg.* Chem., 24, 514 (1985).
- 31 P. K. Baker, M. Bamber and G. W. Rogers, *J. Organomet. Chem.,* submitted for publication.
- 32 P. K. Baker and S. G. Fraser, *Transition Met.* Chem., *11,* 273 (1986).
- 33 J. A. Broomhead and C. G. Young, *Aust. J. Chem., 35, 277 (1982).*