

Structures of dialkyltin hypophosphites and phosphites: comments on the paper 'Synthesis and IR study of some tin(IV) hypophosphito adducts and compounds'

Tristram Chivers

Department of Chemistry, The University of Calgary, Calgary, Alta., T2N 1N4 (Canada)

(Received July 19, 1990; revised September 21, 1990)

In a recent paper Sall and Diop reported the synthesis of some tin(IV) hypophosphito complexes, including the series $R_2Sn(H_2PO_2)_2$ (R = Me, Ph, Bu), which they claim to be new [1]. These authors also proposed structures for dialkyltin hypophosphites and for di-n-butyltin phosphite, n-Bu₂SnHPO₃, solely on the basis of infrared spectroscopic data [1]. The purpose of this letter is to point out that the synthesis and structures of dialkyltin hypophosphites and phosphites have been investigated extensively more than 15 years ago [2] and that the conclusions drawn by Sall and Diop concerning the structures of n-Bu₂Sn(H₂PO₂)₂ and Bu₂SnHPO₃ are inconsistent with the previously published ¹¹⁹Sn Mössbauer data for these compounds [2].

In fact the synthesis of $Me_2Sn(H_2PO_2)_2 \cdot 2H_2O$ was first reported in 1959 [3]. Subsequently, the anhydrous compounds $R_2Sn(H_2PO_2)_2$ (R = Me, Et, "Bu) were assigned polymeric structures with hexacoordinate tin, bridging bidentate $H_2PO_2^-$ ligands and *trans*methyl groups (Fig. 1) on the basis of ¹¹⁹Sn Mössbauer and infrared spectroscopic data [2]. In particular, the positive value of the Mössbauer quadruple coupling constant ($\Delta E_Q = +4.36 \text{ mm s}^{-1}$) and the value of the asymmetry parameter ($\eta \approx 0$) for Me₂Sn(H₂PO₂)₂ are consistent with a *trans*-octahedral structure. Similar structures have been proposed for R₂Sn(O₂PF₂)₂ [4] and Me₂Sn(O₂PCl₂) [5].

Sall and Diop also attribute this geometrical arrangement to Me₂Sn(H₂PO₂)₂ [1]. However, in the case of ⁿBu₂Sn(H₂PO₂)₂ they suggest a structure involving tetrahedral tin and a bent SnC₂ group on the basis of an infrared band at 530 cm⁻¹ assigned to $\nu_s(SnC_2)$ [1]. This infrared band was not observed in the previous work [2] and, in disagreement with the suggestion of Sall and Diop, we point out that the ¹¹⁹Sn Mössbauer parameters for ⁿBu₂Sn(H₂PO₂)₂ ($\Delta E_Q = 4.47 \text{ mm s}^{-1}$) are essentially the same as those found for the methyl and ethyl derivatives [2] and leave little doubt that ⁿBu₂Sn(H₂PO₂)₂ has the *trans*-octahedral structure depicted in Fig. 1.

We also draw attention to an earlier paper by Ridenour and Flagg in which compounds of the type ⁿBu₂Sn[O₂PR₂]₂ ($R = C_5H_{11}$, C_6H_{13}) were found to be dimeric in solution [6]. The symmetric SnC₂ stretching frequency was *extremely weak* in the infrared spectrum, two signals were observed in the ³¹P NMR spectrum and ¹¹⁹Sn Mössbauer data were consistent with octahedral tin. Consequently, the authors proposed the structure illustrated in Fig. 2 [6].

Sall and Diop also describe the formation of ${}^{n}Bu_{2}SnHPO_{3}$ from the reaction of ${}^{n}Bu_{3}SnCl$ with $H_{2}PO_{2}^{-}$ in ethanol and they ascribe a tetrahedral structure to the product on the basis of infrared spectroscopic data [1]. The disproportionation of $(Me_{3}Sn)_{2}HPO_{3}$ into $Me_{2}SnHPO_{3}$ has been reported previously [7] and the structures of $R_{2}SnHPO_{3}$ (R = Me, Et, ${}^{n}Bu$) and $Me_{2}SnFPO_{3}$ have been investigated in detail by ${}^{119}Sn$ Mössbauer as well as by infrared spectroscopy [2]. The ${}^{119}Sn$ Mössbauer quadruple splittings of $3.8-4.0 \text{ mm s}^{-1}$ for $R_{2}SnHPO_{3}$ and 4.16 mm s^{-1} for $Me_{2}SnFPO_{3}$ are too large for a tetrahedral structure [8] and indicate a polymeric

Fig. 2. Suggested structures of $R_2Sn(R'_2PO_2)$ ($R = {}^{n}Bu$; $R' = C_5H_{11}$, C_6H_{13}).

Fig. 1. Structure of $R_2Sn(H_2PO_2)_2$ (R = Me, Et, ⁿBu).

penta- or hexa-coordinated structure with a nonlinear C-Sn-C arrangement. The presence of a *weak* band for $\nu_s(SnC_2)$ in the infrared spectra of R₂SnHPO₃ also indicates a small distortion of the C-Sn-C group from linearity. The magnetic hyperfine Mössbauer spectrum of Me₂SnFPO₃ is consistent with either a distorted *trans*-octahedral (Fig. 3(a)) or a distorted trigonal bipyramidal structure (with both apical or both equatorial methyl groups, see Fig. 3(b) and (c) and, in view of the similarity of the ¹¹⁹Sn Mössbauer parameters, these possibilities must also be considered for R₂SnHPO₃.

In summary, the analysis of structures of organotin derivatives of oxyacids on the basis of infrared spec-

Fig. 3. Possible geometrical arrangements around the tin atom in R_2SnHPO_3 .

troscopic data alone can often lead to erroneous conclusions. ¹¹⁹Sn Mössbauer spectroscopy provides additional, more detailed structural information, but does not always lead to an unambiguous structural assignment. X-ray crystallography is necessary in most cases to define the structures with certainty. However, organotin derivatives of *inorganic* phosphorus oxyacids are usually polymeric, intractable powders unsuitable for X-ray crystallography. An exception is $(Me_2Sn)_3(PO_4)_2 \cdot 8H_2O$ which consists of a polymer ribbon with one tin atom in a regular octahedral environment and the other two tin atoms in highly distorted octahedral arrangements [9].

Acknowledgement

We thank NSERC (Canada) for financial support.

References

- 1 A. S. Sall and L. Diop, Inorg. Chim. Acta, 171 (1990) 53.
- 2 T. Chivers, J. H. G. van Roode, J. N. R. Ruddick and J. R. Sams, *Can. J. Chem.*, 51 (1973) 3702.
- 3 D. Seyferth and F. G. A. Stone, J. Am. Chem. Soc., 79 (1959) 515.
- 4 T. H. Tan, J. R. Dalziel, P. A. Yeats, J.R. Sams, R. C. Thompson and F. Aubke, *Can J. Chem.*, 50 (1972) 1843.
- 5 K. Dehnicke, R. Schmitt, A. F. Shihada and J. Pebler, Z. Anorg. Allg. Chem., 404 (1974) 249.
- 6 R. E. Ridenour and E. E. Flagg, J. Organomet. Chem., 16 (1969) 393.
- 7 T. Chivers, J. H. G. van Roode, J. N. Ruddick and J. R. Sams, Can. J. Chem., 54 (1976) 2184.
- 8 G. M. Bancroft and R. H. Platt, Adv. Inorg. Chem. Radiochem., 15 (1972) 59.
- 9 J. P. Ashmore, T. Chivers, K. A. Kerr and J. H. G. van Roode, *Inorg. Chem.*, 16 (1977) 191.