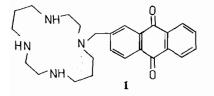
Control of the redox activity of anthraquinone through an appended nickel(II)-cyclam side chain. A two-site three-electron redox system


Giancarlo De Santis, Luigi Fabbrizzi*, Carlo Mangano, Antonio Poggi and Barbara Seghi Dipartimento di Chimica Generale, Università di Pavia, via Taramelli 12, 27100 Pavia (Italy)

(Received April 9, 1990; revised May 18, 1990)

Abstract

The conjugate system 1 has been prepared through reaction of 2-chloromethylanthraquinone with a five-fold excess of cyclam in chloroform at room temperature. Reaction of 1 with NiX₂·6H₂O (X=Cl, ClO₄) gave the corresponding Ni(1)X₂ complexes, in which the metal centre has been incorporated by the tetraaza-macrocyclic subunit. The redox behaviour of the nickel(II) complexes has been investigated in a CH₂Cl₂ solution of 0.1 M Bu₄NX, by voltammetric techniques. Two-phase reduction of the quinone subunit of the Ni(1)X₂ complex in CH₂Cl₂ by aqueous Cr^{II} takes place at a rate much higher than that observed for the simple anthraquinone molecule, but the reduced conjugate system partitions between CH₂Cl₂ and water.

The novel conjugate system 1, 1-anthraquinonyl-1,4,8,11-tetrazacyclotetradecane ($cyaqO_2$), has been synthesized, assembling the classical organic redox system anthraquinone [1] and the cyclam subunit, able to incorporate transition metal ions and to promote their redox activity [2], has been synthesized.

The aim of this work was to produce a two-site multi-electron redox system, in which two proximate redox centres could mutually control each other, which can be envisaged as a versatile carrier for the transport of electrons across liquid membranes. $cyaqO_2$ has been obtained through reaction of 2-chloromethylanthraquinone [3] with a five-fold excess of cyclam [4] in CHCl₃ (3 days, at room temperature). After solvent rotovaporation, $cyaqO_2$ was separated from excess cyclam through extraction by cold benzene. $cyaqO_2$ was obtained as a yellow solid, which was recrystallized from chlorobenzene (m.p. 138–140 °C; ¹H NMR in CDCl₃: 1.8 (m, 4H: CH₂ of cyclam not directly bonded to nitrogen atoms), 2.75 (m, 19H: NH and all other CH₂ of cyclam), 3.7 (s, 2H:

CH₂ bridge), 7.25 (s, 1H: anthraquinonyl subunit, aq), 7.75 (m, 3H: aq), 8.25 (m, 3H: aq)). Reaction with NiX₂·6H₂O (X = Cl, ClO₄) in refluxing ethanol gave the Ni(cyaqO₂)Cl₂ (purple, high-spin) and Ni(cyaqO₂)(ClO₄)₂ (yellow, low-spin) complexes, which are soluble in apolar or poorly polar noncoordinating solvents (C₆H₆, CH₂Cl₂, CHCl₃) and insoluble in water.

The redox behaviour of the above complexes was investigated by voltammetric techniques in a CH_2Cl_2 solution of 0.1 mol dm⁻³ in Bu₄NX, at 25 °C, using a platinum sphere as the working electrode.

In Fig. 1 the solid line displays the differential pulse voltammetric profile of a 5×10^{-4} mol dm⁻³ solution of the Ni^{II}(cyaqO₂)(ClO₄)₂ complex, while the dashed line profile was obtained with a reference solution of 5×10^{-4} mol dm⁻³ Ni^{II}(*N*-cetylcy-clam)(ClO₄)₂^{**} and 5×10^{-4} mol dm⁻³ 2-methylan-thraquinone (MeaqO₂). For both profiles, the more anodic one-electron peak corresponds to the Ni^{II} to Ni^{III} oxidation process. MeaqO₂ (dashed line) presents two distinct and reversible one-electron peaks, whereas for the Ni(cyaqO₂)(ClO₄)₂ complex (solid line) the uptake of the second electron by the quinone fragment anticipates the cathodic discharge. Similar electrochemical behaviour is displayed by the Ni^{II}(cyaqO₂)Cl₂ system, in a 0.1 mol dm⁻³ solution

^{*}Author to whom correspondence should be addressed.

^{**}*N*-Cetylcyclam: 1-hexadecyl-1,4,8,11-tetraazacyclotetradecane. Its Ni^{II} complexes are soluble in apolar and poorly polar media, such as CH_2Cl_2 [5].

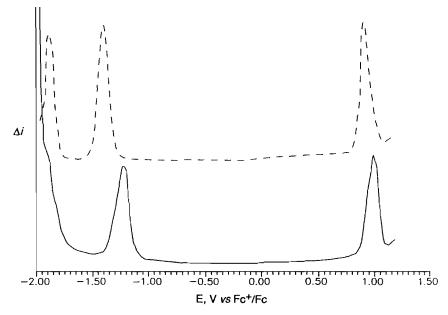


Fig. 1. Differential pulse voltammetry profiles of: (----) a CH_2Cl_2 solution of 5×10^{-4} mol dm⁻³ Ni^{II}(cyaqO₂)(ClO₄)₂ and 0.1 mol dm⁻³ Bu₄NClO₄; (-----) a CH_2Cl_2 solution of 5×10^{-4} Ni^{II}(*N*-cetylcyclam)(ClO₄)₂, 5×10^{-4} mol dm⁻³ Meaq and 0.1 mol dm⁻³ Bu₄NClO₄. Potential scan rate: 5 mV s⁻¹, pulse voltage 25 mV, 25 °C. The scale of potential is calibrated vs. the internal Fc⁺/Fc reference couple.

of Bu₄NCl. $E_{1/2}$ values pertinent to each redox event are reported in Table 1.

The following points should be noted: (i) for a given anion (chloride or perchlorate), oxidation of the metal centre is slightly more difficult in the conjugate system (more positive Ni^{III}/Ni^{II} potential) than in the N-cetylcyclam complex, probably due to a partial electron withdrawing effect exerted by the anthraquinonyl substituent; this effect is smaller when axial positions are held by the more electron donating Cl^{-} ions (+30 mV, to be compared to +70 mV for the perchlorate analogue*; (ii) the first oneelectron reduction of the anthraquinone fragment is easier (less negative potential) in the conjugate system than in the individual molecule: this could result from the stabilizing effect arising from the electrostatic interaction between the negatively charged organic subunit aqO_2^- and the neighbouring Ni^{II} metal centre. The advantage is substantially greater for the Ni^{II}(cyaqO₂)(ClO₄)₂ system (-170)mV) than for the Ni^{II}(cyaqO₂)Cl₂ system (-60 mV), probably due to the lower charge shielding effect

TABLE 1. Half-wave potential values measured in CH_2Cl_2 solution of 0.1 mol dm⁻³ Bu₄NX, at 25 °C (V, vs. Fc⁺/Fc)^a

	Ni ^{III} /Ni ^{II}	aqO_2/aqO_2^-
Ni(N-cetylcyclam)Cl ₂ ^b Ni(N-cetylcyclam)(ClO ₄) ₂ ^b	0.17 0.92	
MeaqO ₂ (Bu ₄ NCl) ^c MeaqO ₂ (Bu ₄ NClO ₄) ^c		- 1.43 - 1.42
Ni(cyaqO ₂)Cl ₂ ° Ni(cyaqO ₂)(ClO ₄)2°	0.21 0.99	- 1.37 - 1.25

^a±2 mV. ^bRef. 5. ^cThis work.

exerted on the Ni^{II} cation by the poorly donating axially bound ClO_4^- ions, compared with Cl^- ions.

Solubility in poorly polar solvents and insolubility in water, as well as the rich and concerted redox behaviour, suggests that the Ni^{II}(cyaqO₂)(ClO₄)₂ and Ni^{II}(cyaqO₂)Cl₂ systems may be considered as carriers for the transport of electrons across liquid membranes. Preliminary two-phase experiments were performed in a 1 cm spectrophotometric cuvette, filled with 2.0 cm³ of a CH₂Cl₂ solution, a 5×10^{-4} mol dm⁻³ solution of MeaqO₂ and with 1.0 cm³ of an aqueous solution of 0.1 mol dm⁻³ Cr^{II} and 1 mol dm⁻³ HClO₄. Spectra of the non-aqueous layer, magnetically stirred at a constant rate, were taken at defined time intervals. It was observed that the UV absorption band of the MeaqO₂ chromophore,

^{*}The very dramatic effect of the inorganic anion (chloride or perchlorate) on the potential associated to the oneelectron oxidation of the Ni^{II} centre in both *N*-cetylcyclam [5] and cyaqO₂ complexes reflects the much higher ligand field stabilization effect exerted by the axially coordinated Cl⁻ anions on the low-spin Ni^{III} cation, in the octahedrally elongated *trans*-diacido tetraaza-macrocyclic complexes, if compared with the ClO₄⁻ anions.

centred at 328 nm, slowly decreases with time, whereas a new composite band forms and develops in the 350–450 nm range, pertinent to the reduced 2-methyl-9,10-dihydroxyanthracene molecule, Meaq(OH)₂ [6]. Figure 2 reports the variation with time of the percent concentration of MeaqO₂ in the CH₂Cl₂ layer, calculated through the intensity of the 328 nm band. After 16 h, when the experiment was interrupted, 50% of MeaqO₂ had been reduced, through the half-reaction: MeaqO₂ + 2e⁻ + 2H⁺ = Meaq(OH)₂ [7].

The same experiment was performed using a CH_2Cl_2 solution of the Ni^{II}(cyaqO₂)(ClO₄)₂ complex: decrease of the intensity of the band at 328 nm is much faster than for the reference system (see Fig.

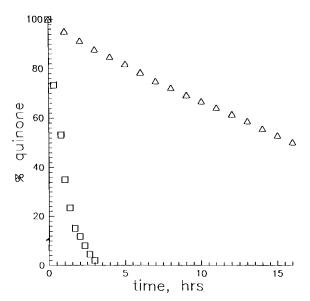


Fig. 2. Two-phase reduction of the anthraquinonyl fragment in MeaqO₂ and in Ni^{II}(cyaqO₂)(ClO₄)₂ by aqueous Cr^{II}. Percent concentration were obtained from the spectra of a stirred CH₂Cl₂ solution of 5×10^{-4} mol dm⁻³ in MeaqO₂ (\triangle) or Ni^{II}(cyaqO₂)(ClO₄)₂ (\square), in equilibrium with an aqueous solution of 0.1 mol dm⁻³ Cr^{II} and 1 mol dm⁻³ HClO₄, at 25 °C, recorded at selected time intervals.

2), indicating an extremely higher rate of the twophase reduction process, which is complete in about 2 h. The dramatic rate enhancement is ascribed to the presence of the hydrophilic metal-cyclam subunit, which is believed to facilitate the approach of the hydrophobic anthraquinone moiety to the CH₂Cl₂/ water interface, favouring the interaction with the aqueous reducing agent. This seems a very promising property which could enhance the rate of an anthraquinone mediated transport of electrons across liquid membranes [8]. However, detection of the band at 350-450 nm in the aqueous layer in the cuvette indicated that the species $Ni^{II}(cyaq(OH)_2)^{2+}$, after the facilitated two-phase reduction, is distributed between CH₂Cl₂ and water ([water]/[CH₂Cl₂] ratio = 60:40), owing to the combined hydrophilic effects of the metal centre and of the -OH groups. This prevents the use of $Ni^{II}(cyaqO_2)X_2$ systems as electron carriers in liquid membranes (analogous behaviour was observed with the Ni^{II}(cyaqO₂)Cl₂ complex). Design of supramolecular multi-electron carriers, assemblying: (i) a tetraaza-macrocyclic metal centre, (ii) the anthraquinone subunit and (iii) an appended definitively lipophilic group able to anchor the system to the liquid membrane, is currently being investigated in our laboratory.

References

- 1 B. R. Eggins, J. Chem. Soc. D, (1969) 1267.
- 2 L. Fabbrizzi, Comments Inorg. Chem., 4 (1985) 33.
- 3 G. Izoret, Ann. Chim., 7 (1962) 151.
- 4 E. K. Barefield, E. Wagner, A. W. Herlinger and A. R. Dahl, *Inorg. Synth.*, 16 (1976) 220.
- 5 G. De Santis, M. Di Casa, M. Mariani, B. Seghi and L. Fabbrizzi, J. Am. Chem. Soc., 111 (1989) 2422.
- 6 S. A. Carlson and D. M. Hercules, Anal. Chem., 45 (1973) 1794.
- 7 G. Scibona, P. R. Danesi and F. Orlandini, J. Phys. Chem., 70 (1966) 3403.
- 8 E. Ozeki, S. Kimura and Y. Imanishi, J. Chem. Soc., Chem. Commun., (1988) 1353.