# Preparation of the new species $[W_3(\mu_3-O)(\mu-Cl)_2(\mu-O_2CMe)_4Cl_3]^$ and $[Mo_3(\mu_3-O)(\mu-Cl)_4(\mu-O_2CMe)_2Cl_2(PMe_3)_2]^-$ that bracket, structurally, the very common $M_3(\mu_3-O)(\mu-X)_3(\mu-O_2CR_3)_3L_3$ type of cluster compound

F. Albert Cotton\*, Maoyu Shang and Zhong Sheng Sun

Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A&M University, College Station, TX 77843 (USA)

(Received January 21, 1993)

#### Abstract

Two new monocapped trinuclear molybdenum and tungsten clusters, which also contain different numbers of bridging halogen atoms and carboxylate groups, have been synthesized and characterized by X-ray diffraction, thus completing an entire series of monocapped trinuclear molybdenum and tungsten clusters with 1-6 bridging carboxylate ligands. Compound 1,  $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$ , was obtained as a byproduct in the reaction of  $(Et_4N)_3[W_2Cl_9]$  with acetic acid and acetic anhydride. Crystallographic data: space group  $P_{2,1,2,1,1}$ , a=12.795(3), b=15.685(3), c=19.436(3) Å, V=3901(1) Å<sup>3</sup>, Z=4, R=0.037. The W-W distances are 2.7280(7), 2.5754(8) and 2.5715(8) Å. The average oxidation state of the tungsten atoms is +3.33. Compound 2,  $(Et_4N)[Mo_3OCl_6(OAc)_2(PMe_3)_2]$ , was synthesized by the reaction of  $(Et_4N)[Mo_3OCl_6(OAc)_3]$  with Me<sub>3</sub>SiCl and PMe<sub>3</sub> in THF. Crystallographic data: space group  $Pna2_1$ , a=27.459(7), b=13.660(5), c=18.524(5) Å, V=6948 Å<sup>3</sup>, Z=8, R=0.052. The Mo-Mo distances are 2.627(4), 2.546(3) and 2.631(6) Å. The entire series of monocapped trinuclear molybdenum and tungsten clusters with 0-6  $\mu$ -CH<sub>3</sub>CO<sub>2</sub> groups is reviewed.

#### Introduction

There is, in principle, a series of seven structural prototypes for equilateral triangular  $M_3(\mu_3-Y)$  based cluster compounds (generally, though not necessarily, Y is an oxygen atom). The central member, which contains a  $M_3(\mu_3-Y)(\mu-X)_3(\mu-O_2CR)_3$  core, is most common [1]. The end members, one of which has six  $\mu$ -O<sub>2</sub>CR groups [2] and the other one no  $\mu$ -O<sub>2</sub>CR groups [3], are also known. Of the four possible intermediate structures, one has only a single example, i.e. the  $[W_3(\mu_3-O)(\mu-O_2CCH_3)_5(\mu-OMe)(H_2O)_3]^{2+}$  ion [2a]. The entire series of prototype structures is shown schematically in Fig. 1 and opposite to each prototype structures is shown one example of a corresponding real compound. Two of these real examples have only recently been obtained in this laboratory and are described here. It will be seen that with the addition of these two new species, each member of the entire set of seven prototype structures is now represented by at least one real compound.

0020-1693/93/\$6.00

It should be stressed at the outset that we are thinking here in terms of structure only, and therefore there are two forms of heterogeneity in the compounds we are classifying structurally. (1) The identity of the  $\mu_{3}$ -Y and  $\mu$ -X atoms varies considerably, with O, CR, S, Cl, Br and OR, being possible occupants of these two types of structural position. (2) The number of cluster electrons can vary, with 6, 8 or even 9 being the preferred number depending on the identities of Y and X [5].

#### Experimental

As a precautionary measure because of possible instability of intermediates, all preparations were carried out under an atmosphere of argon, and standard Schlenk and vacuum line techniques were used. Solvents were dried and deoxygenated by refluxing over appropriate reagents before use. Acetic acid and acetic anhydride were purchased from Aldrich Co. Starting material ( $Et_4N$ )[Mo<sub>3</sub>OCl<sub>6</sub>(OAc)<sub>3</sub>] was prepared by the literature method [1c].

<sup>\*</sup>Author to whom correspondence should be addressed.

M<sub>3</sub>X<sub>3</sub>(0<sub>2</sub>CR)<sub>3</sub>

Compound 4



Fig. 1. Seven prototype structures containing different numbers of bridging carboxylate ligands and a real example of each one. Compound 1:  $[W_3O(OAc)_6(H_2O)_3]ZnCl_4 \cdot 4H_2O$  [2a]. Compound 2:  $[W_3O(OAc)_5(OMe)(H_2O)_3]ZnCl_4$   $7H_2O$  [2a]. Compound 3:  $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$  (1). Compound 4:  $(Bu_4N)[Mo_3OCl_6(OAc)_3] \cdot Me_2CO$  [1f]. Compound 5:  $(Et_4N)[Mo_3OCl_6(OAc)_2(PMe_3)_2]$  (2). Compound 6:  $W_3O_3Cl_5(OAc)(PBu_3)_3$  0.5C7H<sub>8</sub> [4]. Compound 7.  $Cs_3[Mo_3O_4(C_2O_4)_3(H_2O)_3] - CF_3SO_3 \cdot 3H_2O$  [3a].

### Preparation of $(Et_4N)_3[W_2Cl_9]$

 $(Et_4N)_3[W_2Cl_9]$  was prepared by electrolysis of  $Na_2WO_4 \cdot 2H_2O$  with a minor modification of the literature method [6].  $Na_2WO_4$  (25 g) was dissolved in water (200 ml) and the solution was slowly added to an electrolytic cell which contained concentrated hydrochloric acid (300 ml) at 0 °C with rapid stirring. A slow flow of anhydrous hydrogen chloride was introduced during electrolysis (lead foil cathode, graphite plate anode, current density 3 A/dm<sup>2</sup>). The electrolysis was carried out until a brown–green solution was formed. Then three molar equivalents of  $Et_4NCl$  were added. The mixture was then filtered, the filtrate was evaporated to dryness, and the solid was stored in a dry box.

# Preparation of $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$ (1)

(Et<sub>4</sub>N)<sub>3</sub>[W<sub>2</sub>Cl<sub>9</sub>] (10.0 g, 9.29 mmol) was placed in a three-neck flask and allowed to react with a mixture of acetic acid (60 ml) and acetic anhydride (15 ml) at 80 °C for 2 days. A mixture of a light brown solution and a red-purple precipitate was formed. The mixture was separated, the filtrate discarded, and the red-purple precipitate was treated with acetone. A purple solution and a red-brown precipitate were formed. Following filtration, purple crystals were obtained from the filtrate by layering with hexane. These were characterized by X-ray crystallography as  $(Et_4N)[W_3OCl_6(OAc)_3]$ . Me<sub>2</sub>CO (yield c. 43%) [1c]. The red-brown precipitate was treated with dichloromethane to afford a red-brown solution, which was filtered and layered with hexane. Dark blue crystals were obtained after solvent diffusion. Yield c. 10%. These crystals were identified later by X-ray diffraction to be (Et<sub>4</sub>N)[W<sub>3</sub>OCl<sub>5</sub>(OAc)<sub>4</sub>]·3CH<sub>2</sub>Cl<sub>2</sub> (1).

# Preparation of $(Et_4N)[Mo_3OCl_6(OAc)_2(PMe_3)_2]$ (2)

The reaction of  $(Et_4N)[Mo_3OCl_6(OAc)_3]$  (1.00 g, 1.22 mmol) with three molar equivalents of chlorotrimethylsilane (0.47 ml, 3.66 mmol) and trimethylphosphine (0.36 ml, 3.66 mmol) in 25 ml of THF resulted in the formation of a brown precipitate. After filtration the brown precipitate was dissolved in 20 ml of acetone. The acetone solution was then filtered and layered with hexane. Dark brown crystals, which have the formula as shown above, appeared after diffusion was complete. Yield c. 52%.

## X-ray crystallography for $(Et_4N)[W_3OCl_5(OAc)_4]$ . $3CH_2Cl_2$ (1)

A dark blue crystal suitable for X-ray diffraction experiments was mounted on the top of a quartz fiber. X-ray diffraction intensity data for the crystal were collected on an Enraf-Nonius CAD4 diffractometer under a nitrogen stream at -53 °C. The unit cell dimensions were determined from 25 reflections. During data collection, three intensity standards were monitored every 2 h, and no decay was observed during a total of 55.3 h of exposure to X-rays. Systematic absences determined the space group as  $P2_12_12_1$ . Three independent W atoms were found based on the solution of a Patterson function [7]. The remaining non-hydrogen atoms were then located and refined by a combination of least-squares refinements and difference Fourier syntheses. All these non-hydrogen atoms were refined anisotropically except those from an interstitial dichloromethane solvent molecule, which were refined isotropically in the final least-squares refinement.

The final residuals were R = 0.037 and  $R_w = 0.048$  for the fit of 373 variables to 3642 data with  $F_o^2 \ge 3\sigma(F_o^2)$ . The residuals for the refinement of the alternative enantiomer were 0.043 and 0.054 for R and  $R_w$ , respectively, which was indicative of the correctness of the first choice. Pertinent crystallographic data are listed in Table 1, and the positional and thermal parameters are shown in Table 2.

# X-ray crystallography for $(Et_4N)[Mo_3OCl_6(OAc)_2-(PMe_3)_2]$ (2)

The intensity data were collected on a Rigaku AFC5R diffractometer. Systematic absences suggested two possible space groups Pna21 and Pnma, and both were tried. The acentric Pna2<sub>1</sub> was later fully confirmed by the successful solution and refinement of the structure. Positions of six crystallographically independent Mo atoms were obtained by the Patterson method [7]. The remaining non-hydrogen atoms were then located and refined by alternating least-squares refinements and difference Fourier syntheses. In order to keep an appropriate ratio of reflections (3042) to variables (440), only Mo, Cl, P and O atoms were refined anisotropically, and all the other non-hydrogen atoms were refined isotropically. The final residuals were 0.052 and 0.061 for R and  $R_w$ , respectively. No peaks with electron density larger than 0.95 e/Å<sup>3</sup> were found in the final difference Fourier map. Although there were two independent sets of trinuclear Mo molecules in the unit cell, there was no inversion or reflection that could connect them together to comply with a space group of higher symmetry. Crystallographic details are listed in Table 1, and the positional and thermal parameters are compiled in Table 3.

# **Results and discussion**

# Crystal structure of $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$ (1)

The results of X-ray crystallography show that the crystal structure consists of four formula units of  $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$  per unit cell. The con-

| n | 0  |
|---|----|
| ч | a. |
| / | v  |

|                                                      | 1                                                                               | 2                                                                                              |
|------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Formula                                              | W <sub>3</sub> Cl <sub>11</sub> O <sub>9</sub> NC <sub>19</sub> H <sub>38</sub> | Mo <sub>3</sub> Cl <sub>6</sub> P <sub>2</sub> O <sub>5</sub> NC <sub>18</sub> H <sub>44</sub> |
| Formula weight                                       | 1366.05                                                                         | 917 04                                                                                         |
| Space group                                          | $P2_{1}2_{1}2_{1}$                                                              | $Pna2_1$                                                                                       |
| a(Å)                                                 | 12.795(3)                                                                       | 27.459(7)                                                                                      |
| $b(\mathbf{A})$                                      | 15.685(3)                                                                       | 13 660(5)                                                                                      |
| c (Å)                                                | 19.436(3)                                                                       | 18.524(5)                                                                                      |
| $V(\dot{A}^3)$                                       | 3901(1)                                                                         | 6948(4)                                                                                        |
| Z                                                    | 4                                                                               | 8                                                                                              |
| $D_{\rm calc}$ (g/cm <sup>3</sup> )                  | 2 175                                                                           | 1.753                                                                                          |
| Crystal size (mm)                                    | $0.50 \times 0.20 \times 0.25$                                                  | $0.35 \times 0.30 \times 0.20$                                                                 |
| Radiation                                            | Mo K $\alpha$ ( $\lambda \alpha = 0.71073$ Å)                                   | Cu K $\alpha$ ( $\lambda \alpha = 1.54184$ Å)                                                  |
| $\mu(K\alpha)$ (cm <sup>-1</sup> )                   | 96.799 (Mo)                                                                     | 144.30 (Cu)                                                                                    |
| Data collection instrument                           | Enraf-Nonius CAD4                                                               | Rigaku AFC5R                                                                                   |
| Orientation reflections                              |                                                                                 |                                                                                                |
| No. range $(2\theta)$ (°)                            | 25, 30–37                                                                       | 25, 50-61                                                                                      |
| Temperature (°C)                                     | -53                                                                             | 20                                                                                             |
| Scan method                                          | ω-2θ                                                                            | ω-2θ                                                                                           |
| Data collection range $(2\theta)$ (°)                | 4-46                                                                            | 4-116                                                                                          |
| No. unique data, total with $F_0^2 > 3\sigma(F_0^2)$ | 4253, 3642                                                                      | 5033, 3046                                                                                     |
| No. parameters refined                               | 373                                                                             | 440                                                                                            |
| Transmission factors. max., min.                     | 0.9928, 0.6794                                                                  | 1.0000, 0.7481                                                                                 |
| $R^{a}, R_{w}^{b}$                                   | 0.037, 0.048                                                                    | 0.052, 0.061                                                                                   |
| Quality-of-fit indicator <sup>c</sup>                | 1.274                                                                           | 1.309                                                                                          |
| Largest shift/e.s.d. final cycle                     | 0.002                                                                           | 0.01                                                                                           |
| Largest peak (e/Å <sup>3</sup> )                     | 1.696                                                                           | 0.949                                                                                          |

TABLE 1. Crystallographic data for  $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$  (1) and  $(Et_4N)[(Mo_3OCl_6(OAc)_2)(PMe_3)_2]$  (2)

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}| \qquad {}^{b}R_{w} = [\Sigma w(|F_{o} - |F_{c}|)^{2}/\Sigma w|F_{o}|^{2}]^{1/2}; w = 1/\sigma(|F_{o}|). \qquad \text{Coulity-of-fit} = [\Sigma w(|F_{o}| - |F_{c}|)^{2}/(N_{obs} - N_{param})]^{1/2}.$ 

figuration of the trinuclear tungsten cluster anion is shown in Fig. 2, and some important bond distances and angles are listed in Table 4. In the cluster anion, on one side of the triangular plane formed by the three tungsten atoms there are an oxygen atom capping the triangle and three acetate groups bridging the three edges of the triangle, while on the other side of the plane two chloride ions and another acetate group bridge the three edges. There are also three terminal chloride ions on the other side of the plane to complete an octahedral coordination environment for each tungsten atom.

It is easily seen from conventional electron bookkeeping that this is a  $d^8$  system, in which the average oxidation state of the metal atoms is +3.33. Compared with the most common  $M_3X_{13}$  type [8] trinuclear molybdenum and tungsten clusters that contains three  $(Et_4N)[W_3(\mu_3-O)(\mu-Cl)_3(\mu$ bridging atoms, e.g. OAc)<sub>3</sub>Cl<sub>3</sub>]·Me<sub>2</sub>CO [1c], this structure belongs to an unprecedented M<sub>3</sub>X<sub>14</sub> type, and can be regarded as the product of substitution of one bridging atom in the above  $M_3X_{13}$  type compound by a fourth acetate group. As a consequence of such substitution, the coordination environment for each tungsten atom is seriously distorted, as can be seen from a sharp difference in the bond angles formed by the capping oxygen atom and the oxygen atoms of the two carboxylate groups that bridge the same W-W bond (W(1)-(W(2)) (79.0(4)°

127.9(4)° for O(1)-W(1)-O(2)versus for O(1)-W(1)-O(4), and 79.0(4)° for O(1)-W(2)-O(3) versus  $129.1(4)^{\circ}$  for O(1)–W(2)–O(5)). As another consequence, the former  $C_{3v}$  symmetry is reduced to a  $C_s$ symmetry, and the metal-metal bonding interactions may, therefore, be divided into two groups. The bond that is bridged by two acetate groups (2.7280(7) Å) is c. 0.15 Å longer than the other two that are related to each other by the mirror symmetry and each bridged by only one acetate group (2.5754(8) and 2.5715(8) Å). The average metal-metal bond distance is 2.63[7] Å, which is a little longer than that of the above  $M_3X_{13}$ type analogue (2.567[5] Å), which also has 8 d-electrons. Although a greater number of carboxylate groups may result in greater donation of electrons into antibonding metal-metal orbitals, as implied by molecular orbital calculations [9], the substitution of a bulkier carboxylate group for a chloride, and thus an increase in L-L repulsions, may also be expected to play a role. However, in spite of the perturbing effect of the fourth carboxylate group, a total of four pairs of M-M bonding electrons may still be assigned to this  $M_3X_{14}$  type structure, consistent with three short metal-metal bond lengths and the availability of four metal-based bonding molecular orbitals [5]. Apart from the perturbation of the metal-metal bonding interactions, other bonding interactions, such as M-L<sub>capping</sub>, M-L<sub>bridging</sub> and M-O<sub>OAc</sub>

TABLE 2. Positional and equivalent isotropic thermal parameters for  $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$ 

TABLE 3. Positional and equivalent isotropic thermal parameters for  $(Et_4N)[Mo_3OCl_6(OAc)_2(PMe_3)_2]$ 

| Atom     | x                                                                    | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | z                                   | $B_{eq}^{a}$<br>(Å <sup>2</sup> ) | Atom   | x           | у         | z          | $B_{eq}^{a}$<br>(Å <sup>2</sup> ) |
|----------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|--------|-------------|-----------|------------|-----------------------------------|
| W(1)     | -0.11758(4)                                                          | 0.83918(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.78698(3)                          | 1.73(1)                           | Mo(1)  | 0.23493(7)  | 0.8588(2) | 0.141      | 3.40(6)                           |
| W(2)     | 0.09458(4)                                                           | 0.83490(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80040(3)                          | 1.79(1)                           | Mo(2)  | 0.29080(8)  | 0.7317(2) | 0.2084(3)  | 3.34(7)                           |
| W(3)     | -0.02733(4)                                                          | 0.84302(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.90538(3)                          | 1.76(1)                           | Mo(3)  | 0.25753(7)  | 0.7005(2) | 0.0771(2)  | 3.18(5)                           |
| Cl(1)    | -0.1613(3)                                                           | 0.9459(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8739(2)                           | 2.45(8)                           | Mo(4)  | -0.00023(7) | 0.2046(2) | 0.2934(2)  | 3.37(5)                           |
| Cl(2)    | 0.1198(3)                                                            | 0.9403(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 8915(2)                           | 2.64(8)                           | Mo(5)  | -0.03707(8) | 0.2389(2) | 0.1647(3)  | 3.21(7)                           |
| Cl(3)    | -0.2830(3)                                                           | 0.8671(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 7294(2)                           | 2.90(9)                           | Mo(6)  | 0.01817(7)  | 0.3670(2) | 0.2281(2)  | 3 14(5)                           |
| Cl(4)    | 0.2754(3)                                                            | 0.8568(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7656(2)                           | 2.99(9)                           | Cl(1)  | 0.2135(3)   | 0.7888(6) | 0.2573(5)  | 4.6(2)                            |
| Cl(5)    | -0.0383(3)                                                           | 0.8989(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0210(2)                           | 3.00(9)                           | Cl(2)  | 0.1731(3)   | 0.7596(5) | 0.0788(7)  | 4.0(2)                            |
| O(1)     | -0.0194(9)                                                           | 0.7574(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8297(5)                           | 1.8(2)                            | Cl(3)  | 0.2445(2)   | 0.5858(6) | 0.1780(5)  | 4.5(2)                            |
| O(2)     | -0.0882(8)                                                           | 0.7586(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7055(5)                           | 1.9(2)                            | Cl(4)  | 0.2456(3)   | 0.9791(6) | 0.0493(5)  | 5.5(2)                            |
| O(3)     | 0.0844(9)                                                            | 0.7552(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7163(6)                           | 2.3(2)                            | Cl(5)  | 0.3068(3)   | 0.6598(6) | 0.3270(5)  | 5.3(2)                            |
| O(4)     | -0.0824(9)                                                           | 0 9443(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7271(7)                           | 2.9(3)                            | Cl(6)  | 0.2229(3)   | 0.5724(6) | -0.0029(5) | 5.2(2)                            |
| O(5)     | 0.0874(9)                                                            | 0.9412(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7369(6)                           | 2.7(3)                            | Cl(7)  | 0.0130(3)   | 0.0956(6) | 0.1917(5)  | 5.0(2)                            |
| O(6)     | -0.2135(8)                                                           | 0.7473(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8330(6)                           | 2.1(2)                            | Cl(8)  | 0.0822(3)   | 0.2725(7) | 0.2817(7)  | 5.0(2)                            |
| O(7)     | -0.1434(8)                                                           | 0.7606(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9379(6)                           | 2.3(2)                            | Cl(9)  | 0.0361(3)   | 0.3050(7) | 0.1102(5)  | 5.0(2)                            |
| O(8)     | 0.1713(8)                                                            | 0.7381(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8571(6)                           | 2.4(2)                            | Cl(10) | 0.0380(3)   | 0.0780(6) | 0.3692(5)  | 6.1(2)                            |
| O(9)     | 0.0711(8)                                                            | 0.7546(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9492(5)                           | 2.3(2)                            | Cl(11) | -0.0557(3)  | 0.1669(7) | 0.0467(5)  | 6.0(2)                            |
| C(1)     | 0.001(1)                                                             | 0.7281(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6892(8)                           | 2.5(3)                            | Cl(12) | 0.0103(3)   | 0.4836(6) | 0.3279(5)  | 5.3(2)                            |
| C(2)     | 0.004(2)                                                             | 0.662(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.634(1)                            | 4.2(4)                            | P(1)   | 0.1596(3)   | 0.9688(7) | 0.1692(5)  | 5.2(2)                            |
| C(3)     | 0.007(1)                                                             | 0.974(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7158(8)                           | 2.5(3)                            | P(2)   | 0.2846(3)   | 0.7687(7) | -0.0431(6) | 4.2(2)                            |
| C(4)     | 0.012(2)                                                             | 1.055(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.674(1)                            | 4.1(5)                            | P(3)   | -0.0249(3)  | 0.2698(7) | 0.4162(6)  | 4.6(2)                            |
| C(5)     | -0.207(1)                                                            | 0.725(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8945(8)                           | 2.0(3)                            | P(4)   | 0.0899(3)   | 0.4811(7) | 0.1976(5)  | 5.1(2)                            |
| C(6)     | -0.276(1)                                                            | 0.655(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9222(9)                           | 3.4(4)                            | O(1)   | 0.3001(5)   | 0.807(1)  | 0.117(1)   | 3.3(4)                            |
| C(7)     | 0.141(1)                                                             | 0.716(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9149(9)                           | 2.3(3)                            | O(2)   | 0.2765(7)   | 0.962(1)  | 0.206(1)   | 4.8(5)                            |
| C(8)     | 0.196(2)                                                             | 0.641(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9490(9)                           | 3.8(4)                            | O(3)   | 0.3283(6)   | 0 857(1)  | 0.251(1)   | 4.5(5)                            |
| N        | 0.494(1)                                                             | 0.6148(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7194(7)                           | 28(3)                             | O(4)   | 0.3530(6)   | 0.660(1)  | 0.178(1)   | 5.1(6)                            |
| C(9)     | 0.574(2)                                                             | 0.573(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.672(1)                            | 6.1(7)                            | O(5)   | 0.3232(6)   | 0.627(1)  | 0.067(1)   | 3.7(5)                            |
| C(10)    | 0.688(2)                                                             | 0.608(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.683(2)                            | 10(1)                             | O(6)   | -0.0461(5)  | 0.305(1)  | 0.2595(9)  | 2.8(4)                            |
| C(11)    | 0.388(2)                                                             | 0.576(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.701(1)                            | 5.4(6)                            | O(7)   | -0.0674(6)  | 0.125(1)  | 0 312(1)   | 4.1(5)                            |
| C(12)    | 0.297(2)                                                             | 0.611(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.747(2)                            | 6.3(7)                            | O(8)   | -0.0997(5)  | 0.166(1)  | 0.206(1)   | 3.8(5)                            |
| C(13)    | 0.518(2)                                                             | 0.599(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.796(1)                            | 5.7(6)                            | O(9)   | -0.0771(6)  | 0 356(2)  | 0.127(1)   | 4.4(5)                            |
| C(14)    | 0.531(2)                                                             | 0.499(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.813(1)                            | 4.6(5)                            | O(10)  | -0.0265(6)  | 0.467(1)  | 0.176(1)   | 4.2(5)                            |
| C(15)    | 0.489(2)                                                             | 0.715(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.713(2)                            | 6.4(8)                            | C(1)   | 0.312(1)    | 0.940(2)  | 0.246(2)   | 4.3(6)*                           |
| C(16)    | 0.455(3)                                                             | 0.739(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.633(2)                            | 7.9(9)                            | C(2)   | 0.340(1)    | 1.024(2)  | 0.277(2)   | 5.7(8)*                           |
| Cl(6)    | 0.0457(4)                                                            | 0.6619(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1349(2)                           | 4.1(1)                            | C(3)   | 0.358(1)    | 0.626(2)  | 0.111(2)   | 3.8(6)*                           |
| Cl(7)    | -0.0731(5)                                                           | 0.5691(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0319(3)                           | 4.9(1)                            | C(4)   | 0.406(1)    | 0.578(2)  | 0.086(2)   | 4.5(6)*                           |
| C(17)    | -0.066(2)                                                            | 0.665(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.079(1)                            | 3.9(4)                            | C(5)   | 0.129(1)    | 1.013(2)  | 0.091(2)   | 6.2(8)*                           |
| Cl(8)    | -0.0883(6)                                                           | 0.3708(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9439(4)                           | 6.9(2)                            | C(6)   | 0 110(1)    | 0.929(3)  | 0.229(3)   | 9(1)*                             |
| Cl(9)    | -0.3041(7)                                                           | 0.4152(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9659(4)                           | 8.1(2)                            | C(7)   | 0.177(1)    | 1.077(3)  | 0.217(3)   | 10(1)*                            |
| C(18)    | -0.219(2)                                                            | 0.363(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.913(1)                            | 6.7(8)                            | C(8)   | 0.236(1)    | 0.836(3)  | -0.098(2)  | 7.0(9)*                           |
| Cl(10)   | 0.337(1)                                                             | 0.583(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4979(8)                           | 15.7(5)*                          | C(9)   | 0.312(1)    | 0.671(3)  | -0.099(2)  | 6.2(8)*                           |
| Cl(11)   | 0 158(3)                                                             | 0.665(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.474(1)                            | 31(1)*                            | C(10)  | 0.334(1)    | 0.857(3)  | -0.040(2)  | 5.9(8)*                           |
| C(19)    | 0.228(2)                                                             | 0.577(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.442(2)                            | 12(1)*                            | C(11)  | -0.101(1)   | 0 123(2)  | 0.264(2)   | 3.9(6)*                           |
|          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                   | C(12)  | -0.149(1)   | 0.067(2)  | 0.281(2)   | 5.1(8)*                           |
| *Starred | atoms were refin                                                     | ned isotropical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ly. Anisotropic                     | cally refined                     | C(13)  | -0.067(1)   | 0.447(2)  | 0.142(2)   | 4.0(6)*                           |
| atoms a  | atoms are given in the form of the equivalent isotropic displacement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                   | C(14)  | -0.098(1)   | 0.528(3)  | 0 107(2)   | 6.6(9)*                           |
| parame   | ter defined as: (                                                    | $(4/3)[a^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11}+b^2\beta_{11$ | $\beta_{22} + c^2 \beta_{33} + ab($ | $\cos \gamma \beta_{12} +$        | C(15)  | 0.020(1)    | 0.312(3)  | 0.473(2)   | 6.3(8)*                           |

C(16)

C(17)

C(18)

C(19)

C(20)

N(1)

N(2)

C(21)

C(22)

C(23)

C(24)

-0.046(1)

-0.079(1)

0.125(1)

0.142(1)

0.071(2)

0.5366(6)

0.2898(8)

0.542(1)

0.521(2)

0.541(1)

0.590(1)

0.172(2)

0.361(3)

0.531(2)

0.413(3)

0.586(4)

0.285(2)

0.283(2)

0.242(3)

0.280(3)

0.202(3)

0.148(3)

0.478(2)

0.419(2)

0.267(2)

0.147(3)

0.150(3)

0.861(1)

0.017(1)

0.788(1)

0.717(2)

0.912(2)

0.912(2)

 $ac(\cos \beta)\beta_{13} + bc(\cos \alpha)\beta_{23}].$ 

bond distances, do not seem to have changed significantly.

# Crystal structure of $(Et_4N)[Mo_3OCl_6(OAc)_2(PMe_3)_2]$ (2)

X-ray crystallography has revealed another new type of molybdenum trinuclear cluster in  $(Et_4N)$ - $[Mo_3OCl_6(OAc)_2(PMe_3)_2]$ . There are two independent

8(1)\* (continued)

11(1)\*

5.7(8)\*

6.0(8)\* 6.2(8)\*

10(1)\*

12(2)\* 2.8(4)\*

4.5(6)\*

8(1)\* 9(1)\*

TABLE 3 (continued)

| Atom  | x         | у        | z         | $B_{eq}^{a}$<br>(Å <sup>2</sup> ) |
|-------|-----------|----------|-----------|-----------------------------------|
| C(25) | 0.571(1)  | 0.367(3) | 0.864(2)  | 12(1)*                            |
| C(26) | 0.565(1)  | 0 392(3) | 0 944(2)  | 9(1)*                             |
| C(27) | 0 4849(7) | 0.315(3) | 0 866(2)  | 9(1)*                             |
| C(28) | 0 442(1)  | 0 245(3) | 0.849(2)  | 7(1)*                             |
| C(29) | 0 299(1)  | 0.341(3) | 0.083(2)  | 9(1)*                             |
| C(30) | 0.279(2)  | 0.280(3) | 0.147(2)  | 9(1)*                             |
| C(31) | 0.243(1)  | 0.239(3) | -0.006(3) | 11(1)*                            |
| C(32) | 0.195(2)  | 0.297(5) | -0.004(4) | 18(3)*                            |
| C(33) | 0.326(2)  | 0.202(3) | 0.013(3)  | 13(2)*                            |
| C(34) | 0.332(2)  | 0.149(4) | -0.060(3) | 12(2)*                            |
| C(35) | 0.288(2)  | 0.349(4) | -0.046(3) | 17(2)*                            |
| C(36) | 0.335(1)  | 0.406(3) | -0.063(2) | 8(1)*                             |
|       |           |          |           |                                   |

<sup>a</sup>Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the equivalent isotropic displacement parameter defined as:  $(4/3)[a^2\beta_{11}+b^2\beta_{22}+c^2\beta_{33}+ab(\cos \gamma)\beta_{12}+ac(\cos \beta)\beta_{13}+bc(\cos \alpha)\beta_{23}].$ 



Fig. 2. Configuration of  $[W_3OCl_5(OAc)_4]^-$ . Thermal ellipsoids are shown at the 50% probability level.

molecules in an asymmetric unit of the unit cell. The configuration of one such molecule is shown in Fig. 3, and the other is basically similar. The central part of the cluster  $Mo_3(\mu_3-O)(\mu-Cl)_3$  is an apex-deficient cubane-like skeleton. The six coordination sites that are trans to the three bridging chloride atoms are occupied by two bridging acetate groups, one chloride atom and a trimethylphosphine, while the three positions that are *trans* to the capping oxygen atom are filled by two chloride atoms and another trimethylphosphine. Although each Mo atom has a distorted octahedral coordination environment, the cluster anion as a whole has no symmetry at all. As a consequence of this lack of symmetry, the lengths of the six metal-metal bonds in these two cluster anions are all different (Table 5), 2.546(3), 2.627(4), 2.631(6), 2.577(4), 2.597(4) and

2.597(4) Å. It can be seen that the three metal atoms altogether have 9 d-electrons and the average oxidation state of the three Mo atoms is +3. The average metal-metal distance in this structure is 2.60[3] Å, which 1s quite comparable to those of other Mo clusters that also have 9 d-electrons, three bridging chloride atoms, but one more bridging acetate group (2.59-2.61 Å) [1]. However, the one metal-metal bond in each of the two independent molecules that is not bridged by the acetate groups is found to be the shortest (2.546(3))and 2.577(4) Å), which is quite unusual, considering that an acetate group has a small and flexible bite and should engender less L-L repulsion than two separate ligands such as chloride ions or phosphines. Thus the origin of shortening should be sought in the electronic structure. From the results of molecular orbital calculations [4], the ninth electron would enter a degenerate metal-metal antibonding orbital (20e), if  $C_{3\nu}$ symmetry prevailed. With the orbital degeneracy destroyed in this case, localization of the ninth electron in an orbital covering the two acetate-bridged Mo-Mo bonds may cause a small increase in the lengths of these two metal-metal bonds because of the antibonding character of the ninth electron, but no increase in the length of the remaining Mo-Mo bond. Except for the above unusual feature of the metal-metal bond distances, other bond parameters, such as M-L<sub>capping</sub>, M-L<sub>bridging</sub> and M-O<sub>OAC</sub> bonds are all consistent with those of the more symmetrical analogues.

#### Remarks on the preparative chemistry

While we have accomplished the objective of supplying examples of the two previously unrealized prototype structures, it must be admitted that only in one case was this done by designed synthesis. Our isolation of a compound containing a  $M_3X_2(O_2CR)_4$  unit, namely  $(Et_4N)[W_3OCl_5(OAc)_4]$ , was unplanned – a happy accident. Thus, there is still a need for further research to see if a deliberate synthesis of this type system can be devised.

On the other hand, our preparation of  $(Et_4N)[Mo_3OCl_6(OAc)_2(PMe_3)_2]$  is an example of a deliberate synthesis based on a rational approach. The idea was to begin with a cluster having these  $\mu$ -OAc<sup>-</sup> groups and then replace one by Cl<sup>-</sup>, employing the following well-established type of reaction [10]:

$$\overset{K}{\overset{C}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\phantom{O}}}}}} + Me_{3}SiCl + PR'_{3} \longrightarrow Me_{3}SiOCOR + \overset{Cl}{\overset{PR'_{3}}{\overset{H}{\overset{O}{\phantom{O}}}} + \overset{Cl}{\overset{H}{\overset{H}{\overset{H}{\phantom{O}}}} + \overset{PR'_{3}}{\overset{H}{\overset{H}{\phantom{O}}} + M}$$

This chemistry was partly successful, but the actual reaction was more complicated. The OAc group was removed, as planned, but, in addition, an unplanned

TABLE 4. Selected bond lengths (Å) and angles (°) for [Et<sub>4</sub>N][W<sub>3</sub>OCl<sub>5</sub>(OAc)<sub>4</sub>]·3CH<sub>2</sub>Cl<sub>2</sub>

| Bond distances   |           |                  |           |                     |          |
|------------------|-----------|------------------|-----------|---------------------|----------|
| W(1)-W(2)        | 2 7280(7) | W(1)–O(6)        | 2.09(1)   | W(2)-O(8)           | 2.12(1)  |
| W(1)-W(3)        | 2.5754(8) | W(2) - W(3)      | 2.5715(8) | W(3)-Cl(1)          | 2.432(4) |
| W(1)-Cl(1)       | 2.443(4)  | W(2)-Cl(2)       | 2.443(4)  | W(3) - Cl(2)        | 2.438(4) |
| W(1)-Cl(3)       | 2.434(4)  | W(2)-Cl(4)       | 2.435(4)  | W(3) - Cl(5)        | 2 416(4) |
| W(1)–O(1)        | 1.98(1)   | W(2) - O(1)      | 1.98(1)   | W(3) - O(1)         | 1 99(1)  |
| W(1)–O(2)        | 2.06(1)   | W(2)-O(3)        | 2.06(1)   | W(3)-O(7)           | 2.07(1)  |
| W(1)-O(4)        | 2.07(1)   | W(2)–O(5)        | 2 08(1)   | W(3)–O(9)           | 2.06(1)  |
| Bond angles      |           |                  |           |                     |          |
| W(2)-W(1)-W(3)   | 57.92(2)  | Cl(2)-W(2)-O(1)  | 107.7(3)  | Cl(1)-W(3)-O(7)     | 89.2(3)  |
| Cl(1)-W(1)-Cl(3) | 89.8(1)   | Cl(2)-W(2)-O(3)  | 173.1(3)  | Cl(1) - W(3) - O(9) | 169.3(3) |
| Cl(1)-W(1)-O(1)  | 107 4(3)  | Cl(2)-W(2)-O(5)  | 83.9(3)   | Cl(2)-W(3)-Cl(5)    | 85.5(1)  |
| Cl(1)-W(1)-O(2)  | 173.4(3)  | Cl(2)-W(2)-O(8)  | 92.7(3)   | Cl(2)-W(3)-O(1)     | 107.5(3) |
| Cl(1)-W(1)-O(4)  | 83.8(4)   | Cl(4)-W(2)-O(1)  | 149.9(3)  | Cl(2)-W(3)-O(7)     | 168.4(3) |
| Cl(1)W(1)O(6)    | 92.4(3)   | Cl(4)-W(2)-O(3)  | 85 7(3)   | Cl(2)-W(3)-O(9)     | 89.7(3)  |
| Cl(3)-W(1)-O(1)  | 149.5(3)  | Cl(4)-W(2)-O(5)  | 76.3(3)   | Cl(5)-W(3)-O(1)     | 159.0(3) |
| Cl(3)-W(1)-O(2)  | 85.1(3)   | Cl(4)-W(2)-O(8)  | 78.8(3)   | Cl(5)-W(3)-O(7)     | 84.3(3)  |
| Cl(3)-W(1)-O(4)  | 77.7(3)   | O(1)-W(2)-O(3)   | 79.0(4)   | Cl(5)-W(3)-O(9)     | 84.0(3)  |
| Cl(3)-W(1)-O(6)  | 79 1(3)   | O(1)-W(2)-O(5)   | 129.1(4)  | O(1)-W(3)-O(7)      | 80.9(4)  |
| O(1)-W(1)-O(2)   | 79.0(4)   | O(1)-W(2)-O(8)   | 75.6(4)   | O(1)-W(3)-O(9)      | 79.7(4)  |
| O(1)-W(1)-O(4)   | 127.9(4)  | O(3)-W(2)-O(5)   | 90.7(4)   | O(7)-W(3)-O(9)      | 83.8(4)  |
| O(1)-W(1)-O(6)   | 75.3(4)   | O(3)-W(2)-O(8)   | 90.4(4)   | W(1)-Cl(1)-W(3)     | 63.8(1)  |
| O(2)-W(1)-O(4)   | 91 0(4)   | O(5)-W(2)-O(8)   | 154.9(4)  | W(2)-Cl(2)-W(3)     | 63.6(1)  |
| O(2)-W(1)-O(6)   | 90.7(4)   | W(1)-W(3)-W(2)   | 64.01(2)  | W(1)-O(1)-W(2)      | 87.1(4)  |
| O(4)-W(1)-O(6)   | 156.5(4)  | Cl(1)-W(3)-Cl(2) | 95.8(1)   | W(1)-O(1)-W(3)      | 80.8(4)  |
| W(1)-W(2)-W(3)   | 58.06(2)  | Cl(1)-W(3)-Cl(5) | 87.3(1)   | W(2)-O(1)-W(3)      | 80.6(4)  |
| Cl(2)-W(2)-Cl(4) | 88.9(1)   | CI(1)-W(3)-O(1)  | 107.3(3)  |                     |          |
|                  |           |                  |           |                     |          |

Numbers in parentheses are e.s.d.s in the least significant digit.



Fig. 3. Configuration of  $[Mo_3OCl_6(OAc)_2(PMe_3)_2]^-$ . Thermal ellipsoids are shown at the 50% probability level.

reduction occurred, so that the 8-electron cluster with which we started became a 9-electron cluster. Presumably, the reduction was caused by the excess PMe<sub>3</sub>. Thus, even here, more work will be required to get the synthetic chemistry fully under control.

Another observation concerning the preparative chemistry is also worthy of mention. It will be noted

in 'Experimental' that three equivalents of both Me<sub>3</sub>SiCl and PMe<sub>3</sub> were used per molar equivalent of the Mo<sub>3</sub> starting material, and yet only one  $\mu$ -OAc<sup>-</sup> group was removed. This is a reproducible result, and even with larger excesses of the reagents and more severe conditions it proved impossible to remove another  $\mu$ -OAc<sup>-</sup> group. This is yet another puzzling aspect of the chemistry that will require further study.

# Bridging carboxylate groups and metal-metal bonding interactions

It has been well documented that except for some bifunctional carboxylate groups, such as oxalate [3], carboxylate groups are good bridging ligands in the formation of transition metal clusters [11]. Paddle-wheel type tetracarboxylate compounds are one of the most important groups of multiply bonded dinuclear transition metal clusters. In the bicapped molybdenum and tungsten trinuclear cluster chemistry, hexacarboxylate compounds are also dominant. Now, with the two new compounds added to the category of molybdenum and tungsten trinuclear clusters, a complete series of monocapped molybdenum and tungsten clusters which contain from 0 to 6 bridging carboxylate groups on a trimer unit has been synthesized and characterized by X-ray diffraction. Important bond distances are comTABLE 5. Selected bond distances (Å) and bond angles (°) for (Et<sub>4</sub>N)[Mo<sub>3</sub>OCl<sub>6</sub>(OAc)<sub>2</sub>(PMe<sub>3</sub>)<sub>2</sub>]

| Bond distances                       |                      |                                        |                      |                                                              |          |
|--------------------------------------|----------------------|----------------------------------------|----------------------|--------------------------------------------------------------|----------|
| Mo(1) - Mo(2)                        | 2.627(4)             | Mo(2)–O(4)                             | 2.05(2)              | Mo(4)–O(7)                                                   | 2.17(2)  |
| Mo(1) - Mo(3)                        | 2.546(3)             | Mo(3)-Cl(2)                            | 2.456(7)             | Mo(5)-Mo(6)                                                  | 2.597(4) |
| $M_0(1)-C(1)$                        | 2,420(8)             | Mo(3)-Cl(3)                            | 2.464(9)             | Mo(5)-Cl(7)                                                  | 2.443(8) |
| $M_0(1)-Cl(2)$                       | 2,464(9)             | Mo(3) - Cl(6)                          | 2.482(9)             | Mo(5) - Cl(9)                                                | 2.424(8) |
| $M_0(1) - Cl(4)$                     | 2.388(9)             | $M_0(3) - P(2)$                        | 2 53(1)              | $M_0(5) - Cl(11)$                                            | 2.45(1)  |
| $M_0(1) - P(1)$                      | 2.607(9)             | $M_0(3) - O(1)$                        | 200(2)               | $M_{0}(5) - O(6)$                                            | 1.99(2)  |
| $M_0(1) = O(1)$                      | 1.98(2)              | $M_0(3) = O(5)$                        | 2.07(2)              | Mo(5)O(8)                                                    | 2.12(2)  |
| $M_0(1) = O(2)$                      | 2.17(2)              | $M_0(4) - M_0(5)$                      | 2.631(6)             | $M_{0}(5) - O(9)$                                            | 207(2)   |
| $M_0(2) - M_0(3)$                    | 2.631(6)             | $M_0(4) - M_0(6)$                      | 2577(4)              | $M_0(6) - Cl(8)$                                             | 2,397(9) |
| $M_0(2) - Cl(1)$                     | 2.031(0)<br>2.436(8) | $M_0(4) - Cl(7)$                       | 2.430(9)             | $M_0(6) - Cl(9)$                                             | 2 394(9) |
| $M_0(2) = Cl(1)$<br>$M_0(2) = Cl(3)$ | 2.430(8)             | $M_0(4) - Cl(8)$                       | 2 455(8)             | $M_0(6) - Cl(12)$                                            | 2.450(9) |
| $M_0(2) = Cl(5)$<br>$M_0(2) = Cl(5)$ | 2450(0)<br>245(1)    | $M_0(4) = Cl(10)$                      | 2.455(0)<br>2.461(9) | $M_0(6) - P(4)$                                              | 2,575(9) |
| $M_0(2) = O(1)$                      | 2 + 3(1)<br>2 00(2)  | $M_0(4) = P(3)$                        | 254(1)               | $M_0(6) = O(6)$                                              | 2.04(2)  |
| $M_0(2) = O(1)$                      | 200(2)               | $M_{0}(4) = I(5)$<br>$M_{0}(4) = O(6)$ | 1.06(2)              | $M_{0}(6) = O(10)$                                           | 2.04(2)  |
| MO(2) = O(3)                         | 2.14(2)              | MO(4)-O(0)                             | 1.90(2)              | MO(0)=O(10)                                                  | 207(2)   |
| Bond angles                          |                      |                                        |                      |                                                              |          |
| Mo(2)-Mo(1)-Mo(3)                    | 61.1(1)              | Cl(3)-Mo(2)-O(4)                       | 88.9(6)              | Cl(7)-Mo(4)-Cl(10)                                           | 87.0(3)  |
| Cl(1)-Mo(1)-Cl(2)                    | 91.9(3)              | Cl(5)-Mo(2)-O(1)                       | 161.0(5)             | Cl(7)-Mo(4)-P(3)                                             | 162.1(3) |
| Cl(1)-Mo(1)-Cl(4)                    | 159.3(3)             | Cl(5)-Mo(2)-O(3)                       | 84.4(6)              | Cl(7)-Mo(4)-O(6)                                             | 106.0(5) |
| Cl(1)-Mo(1)-P(1)                     | 82.0(3)              | Cl(5)-Mo(2)-O(4)                       | 84 8(7)              | Cl(7)–Mo(4)–O(7)                                             | 86.7(5)  |
| Cl(1)-Mo(1)-O(1)                     | 106.3(5)             | O(1)-Mo(2)-O(3)                        | 81 0(7)              | Cl(8)-Mo(4)-Cl(10)                                           | 85.6(3)  |
| Cl(1)-Mo(1)-O(2)                     | 83.9(6)              | O(1)Mo(2)O(4)                          | 84 4(8)              | Cl(8)-Mo(4)-P(3)                                             | 101.1(4) |
| Cl(2)-Mo(1)-Cl(4)                    | 97.2(3)              | O(3)-Mo(2)-O(4)                        | 94.7(7)              | Cl(8)-Mo(4)-O(6)                                             | 107.5(5) |
| Cl(2)-Mo(1)-P(1)                     | 82.1(3)              | Mo(1)-Mo(3)-Mo(2)                      | 60.9(1)              | Cl(8)-Mo(4)-O(7)                                             | 171.0(5) |
| Cl(2)-Mo(1)-O(1)                     | 108.4(5)             | Cl(2)-Mo(3)-Cl(3)                      | 93.6(3)              | Cl(10)-Mo(4)-P(3)                                            | 81.3(3)  |
| Cl(2)-Mo(1)-O(2)                     | 168.1(6)             | Cl(2)-Mo(3)-Cl(6)                      | 82.9(3)              | Cl(10)-Mo(4)-O(6)                                            | 161.0(5) |
| Cl(4)-Mo(1)-P(1)                     | 80.9(3)              | Cl(2)-Mo(3)-P(2)                       | 99.6(4)              | Cl(10)-Mo(4)-O(7)                                            | 85.6(5)  |
| Cl(4)-Mo(1)-O(1)                     | 88.4(5)              | Cl(2)-Mo(3)-O(1)                       | 108.0(5)             | P(3)-Mo(4)-O(6)                                              | 82 6(5)  |
| Cl(4)-Mo(1)-O(2)                     | 83.4(6)              | Cl(2)-Mo(3)-O(5)                       | 169.2(5)             | P(3)-Mo(4)-O(7)                                              | 78 9(6)  |
| P(1)-Mo(1)-O(1)                      | 165.9(5)             | Cl(3)-Mo(3)-Cl(6)                      | 87.1(3)              | O(6)-Mo(4)-O(7)                                              | 81 5(7)  |
| P(1)-Mo(1)-O(2)                      | 86.3(6)              | Cl(3)-Mo(3)-P(2)                       | 161.0(3)             | Mo(4)-Mo(5)-Mo(6)                                            | 59.1(1)  |
| O(1)-Mo(1)-O(2)                      | 83.4(7)              | Cl(3) - Mo(3) - O(1)                   | 105.4(6)             | Cl(7) - Mo(5) - Cl(9)                                        | 85.3(3)  |
| Mo(1) - Mo(2) - Mo(3)                | 57.9(1)              | Cl(3) - Mo(3) - O(5)                   | 83 4(5)              | Cl(7) - Mo(5) - Cl(11)                                       | 88.7(3)  |
| Cl(1) - Mo(2) - Cl(3)                | 83 9(3)              | Cl(6) - Mo(3) - P(2)                   | 81.2(3)              | Cl(7) - Mo(5) - O(6)                                         | 104.6(6) |
| Cl(1) - Mo(2) - Cl(5)                | 87 2(3)              | Cl(6) - Mo(3) - O(1)                   | 162.4(5)             | Cl(7) - Mo(5) - O(8)                                         | 90.5(5)  |
| Cl(1) - Mo(2) - O(1)                 | 105.3(5)             | Cl(6) - Mo(3) - O(5)                   | 86.5(5)              | Cl(7) - Mo(5) - O(9)                                         | 171.8(6) |
| Cl(1)-Mo(2)-O(3)                     | 91.5(5)              | P(2)-Mo(3)-O(1)                        | 83.4(6)              | Cl(9) - Mo(5) - Cl(11)                                       | 87.2(3)  |
| Cl(1)-Mo(2)-O(4)                     | 169.3(6)             | P(2)-Mo(3)-O(5)                        | 81.1(6)              | Cl(9) - Mo(5) - O(6)                                         | 107.6(5) |
| Cl(3) - Mo(2) - Cl(5)                | 88.4(3)              | $O(1) - M_0(3) - O(5)$                 | 82.8(7)              | Cl(9)-Mo(5)-O(8)                                             | 173.5(6) |
| $C_{1}(3) - M_{0}(2) - O(1)$         | 106.9(6)             | $M_0(5) - M_0(4) - M_0(6)$             | 59.8(1)              | Cl(9) - Mo(5) - O(9)                                         | 90.5(5)  |
| Cl(3)-Mo(2)-O(3)                     | 171.7(6)             | Cl(7)-Mo(4)-Cl(8)                      | 91.5(3)              | Cl(11)-Mo(5)-O(6)                                            | 160.6(5) |
| $C(11) = M_0(5) = O(8)$              | 87.9(6)              | $C(9) = M_0(6) = C(12)$                | 159 5(3)             | $M_0(1)-Cl(2)-M_0(3)$                                        | 62.3(2)  |
| Cl(11) - Mo(5) - O(9)                | 84.1(6)              | Cl(9) - Mo(6) - P(4)                   | 81.7(3)              | $M_0(2) - C(3) - M_0(3)$                                     | 65.0(2)  |
| $O(6) - M_0(5) - O(8)$               | 78.2(7)              | Cl(9) - Mo(6) - O(6)                   | 106 9(5)             | $M_0(2) = Cl(2) - M_0(5)$                                    | 65 4(2)  |
| O(6) - Mo(5) - O(9)                  | 83 3(7)              | $C_{1}(9) - M_{0}(6) - O(10)$          | 85.9(6)              | $M_{0}(4) = C_{1}(8) = M_{0}(6)$                             | 64 1(2)  |
| $O(8) - M_0(5) - O(9)$               | 931(7)               | Cl(12) = Mo(6) = P(4)                  | 80.8(3)              | $M_0(5) - Cl(9) - M_0(6)$                                    | 65 2(2)  |
| $M_0(4) - M_0(6) - M_0(5)$           | 611(1)               | Cl(12) = Mo(6) = O(6)                  | 88 8(5)              | $M_0(1) = O(1) = M_0(2)$                                     | 82 7(6)  |
| Cl(8) - Mo(6) - Cl(9)                | 92 1(4)              | C (12)-Mo(6)-O(10)                     | 82 7(6)              | $M_0(1) = O(1) = M_0(2)$                                     | 70 5(6)  |
| Cl(8) - Mo(6) - Cl(12)               | 95 8(4)              | $P(4) = M_0(6) = O(6)$                 | 167 2(5)             | $M_0(2) = O(1) = M_0(3)$                                     | 87 3(6)  |
| Cl(8)-Mo(6)-P(4)                     | 81 7(3)              | $P(4) = M_0(6) = O(10)$                | 87 3(5)              | $M_{0}(2) = O(1) = M_{0}(3)$<br>$M_{0}(4) = O(6) = M_{0}(6)$ | 80.0(6)  |
| Cl(8) - Mo(6) - O(6)                 | 107.0(5)             | $O(6) = M_0(6) = O(10)$                | 84 0(7)              | $M_0(5) = O(6) = M_0(6)$                                     | 80.0(0)  |
| Cl(8) = Mo(6) = O(10)                | 169.0(5)             | $M_0(1) - CI(1) - M_0(2)$              | 65 5(2)              | $M_0(4) = O(6) = M_0(5)$                                     | 83 5(6)  |
|                                      | 107 0(3)             | 110(1)-01(1)-110(2)                    | 05.5(2)              | MO(4)=O(0)=MO(3)                                             | 05.5(0)  |

Numbers in parentheses are e.s.d.s in the least significant digits.

piled in Table 6 for monocapped  $Mo_3$  and  $W_3$  cluster species in the order of increasing number of carboxylate groups.

It is possible to infer some rules of thumb concerning the influence of replacement of ligands on the metal-metal bonding interactions in the  $M_3X_{13}$  type structures [1b, 12b]. For example, replacement of a  $\mu_3$ -O atom by a  $\mu_3$ -S atom will increase the average Mo-Mo bond length by c. 0.1 Å. Upon replacement of three  $\mu$ -Cl atoms by three  $\mu$ -Br atoms the increase is only 0.02 Å, while for replacement of three  $\mu$ -O atoms by three  $\mu$ -S atoms the increase is 0.12–0.15 Å. Keeping TABLE 6. Monocapped molybdenum and tungsten trinuclear compounds that contain bridging carboxylate ligands

| Compounds                                                                                     | $n_d^a$ | $M-M^{b}$ | $M-L_c^c$ | $M-O_b^d$ | $M-L_b^a$ | Ref.       |
|-----------------------------------------------------------------------------------------------|---------|-----------|-----------|-----------|-----------|------------|
| $\overline{W_3(\mu_3\text{-}Cl)(\mu\text{-}O)_3(OAc)Cl_4(CBu^n_3)_3}$                         | 6       | 2.608[9]  | 2.468[7]  | 2.150[3]  | 1.94[2]   | 11         |
| $W_3S_4(OAc)(dtp)_3(py)^f$                                                                    | 6       | 2.721[3]  | 2.343[2]  | 2.17[2]   | 2.298[5]  | 12a        |
| $Mo_3S_4(O_2CEt)(dtp)_3(py)$                                                                  | 6       | 2.731[14] | 2.335     | _         | 2.288     | 12b        |
| $Mo_3S_4(O_2CH)(dtp)_3(py)$                                                                   | 6       | 2.740[31] | 2 332     |           | 2.287     | 12b        |
| $Mo_3S_4(OAc)(dtp)_3(py)$                                                                     | 6       | 2.739[37] | 2.334     |           | 2.293     | 12b        |
| $(Et_4N)_2[Mo_3OCl_8(OAc)_2]$                                                                 | 8       | 2.599[14] | 2.00[5]   | 2.09[4]   | 2.41[1]   | 13         |
| $(Et_4N)[Mo_3OCl_6(OAc)_2(PMe_3)_2]$                                                          | 9       | 2.602[32] | 2.00[2]   | 2.11[5]   | 2.43[2]   |            |
| $[Mo_3(\mu_3-CMe)Br_3(OAc)_3(H_2O)_3]ClO_4 \cdot 4H_2O$                                       | 8       | 2.594[1]  | 2.013[5]  | 2.09[1]   | 2.595[7]  | 1b         |
| (Me <sub>4</sub> N)[Mo <sub>3</sub> OCl <sub>6</sub> (OAc) <sub>3</sub> ] 2HOAc               | 8       | 2.570[3]  | 1.975[3]  | 2.063[4]  | 2.418[3]  | 1c         |
| $(Et_4N)[W_3OCl_6(OAc)_3] \cdot Me_2CO$                                                       | 8       | 2.567[5]  | 1.995[5]  | 2.065[6]  | 2.433[4]  | 1c         |
| $[Mo_3OCl_3(OAc)_3(H_2O)_3](ClO_4)Cl$                                                         | 8       | 2.550(2)  | 2.03(1)   | 2 065[3]  | 2.427[2]  | 1a         |
| $(Bu_4^nN)[Mo_3OCl_6(OAc)_3] \cdot Me_2CO$                                                    | 8       | 2 578[2]  | 1.980[3]  | 2.065[6]  | 2.415[3]  | 1d         |
| $(Bu_4^nN)[Mo_3OBr_6(OAc)_3] \cdot Me_2CO$                                                    | 8       | 2 597[2]  | 1.986[2]  | 2.072[8]  | 2.549[8]  | 1 <b>d</b> |
| $(Et_4N)[Mo_3OCl_6(O_2CH)_3]$                                                                 | 8       | 2.573[2]  | 1.984     | 2.086     | 2.410     | 1e         |
| $(Me_4N)[Mo_3OCl_6(O_2CH)_3]$                                                                 | 8       | 2.577[1]  | 1.982[1]  | 2.084     | 2.414     | 1e         |
| $(Me_4N)[Mo_3O(\mu-Br)_3Cl_3(O_2CH)_3]$                                                       | 8       | 2.596[2]  | 1.976     | 2.089     | 2.545     | 1e         |
| $(C_{5}H_{7}S_{2})[Mo_{3}OCl_{6}(OAc)_{3}]$                                                   | 8       | 2.577[7]  | 1.992[6]  | 2.075     | 2.419     | 1e         |
| $(C_5H_7S_2)[Mo_3O(\mu-Br)_3Cl_3(OAc)_3]$                                                     | 8       | 2.594[8]  | 1 970[4]  | 2.076     | 2.549     | 1e         |
| $(Et_4N)[Mo_3O(\mu-Cl)_3X_3(OAc)_3]^g$                                                        | 8       | 2.577[5]  | 1.976     | 2 068     | 2.415     | 1 <b>e</b> |
| $(Et_4N)[Mo_3OCl_6(O_2CEt)_3]$                                                                | 8       | 2.576[1]  | 1.965     | 2.064     | 2.448     | 1e         |
| $(Bu_4^nN)_2[Mo_3OCl_6(OAc)_3] \cdot Me_2CO$                                                  | 9       | 2.604[9]  | 1.984[9]  | 2.113[7]  | 2.437[5]  | 1f         |
| $(Bu_4^N)[Mo_3OCl_5(OAc)_3(PMe_3)] \cdot 2THF$                                                | 9       | 2.592[31] | 1.984[7]  | 2.099[6]  | 2.433[8]  | 1f         |
| $Mo_3OCl_4(OAc)_3(PMe_3)_2$                                                                   | 9       | 2.589[18] | 1.992[7]  | 2.10[1]   | 2.427[6]  | 1f         |
| [Mo <sub>3</sub> OCl <sub>4</sub> (OAc) <sub>3</sub> (PMe <sub>3</sub> ) <sub>2</sub> ] · THF | 9       | 2.591[17] | 1.986[5]  | 2.090[9]  | 2.44[1]   | 1f         |
| $Mo_3OCl_4(OAc)_3(THF)_2$                                                                     | 9       | 2.588[4]  | 1.98[1]   | 2.10[2]   | 2.44[1]   | 1g         |
| $(Bu^{n}_{4}N)_{2}[Mo_{3}OBr_{6}(OAc)_{3}] \cdot Me_{2}CO$                                    | 9       | 2.624[14] | 1.98[1]   | 2.11[2]   | 2.54[2]   | 1g         |
| $[Mo_3OBr_3(OAc)_3(PMe_3)_3]BF_4$                                                             | 9       | 2.613[11] | 1.999[4]  | 2.10[1]   | 2.573[4]  | 1g         |
| $(Et_4N)_2[W_3OCl_6(OAc)_3]$                                                                  | 9       | 2 591[15] | 2.01[5]   | 2.12[3]   | 2.449[8]  | 1g         |
| $(Et_4N)[W_3OCl_5(OAc)_4] \cdot 3CH_2Cl_2$                                                    | 8       | 2.625[73] | 1.983[5]  | 2.08[2]   | 2.439[5]  |            |
| $[W_{3}O(OAc)_{5}(OMe)(H_{2}O)_{3}]ZnCl_{4} \cdot 7H_{2}O$                                    | 8       | 2.622[90] | 1.95[3]   | 2.08[2]   |           | 2a         |
| $[W_3O(OAc)_6(H_2O)_3]ZnCl_4 4H_2O$                                                           | 8       | 2.699[9]  | 1.98[1]   | 2.07[2]   |           | 2a         |
| $[W_{3}O(OAc)_{6}(H_{2}O)_{3}]ZnBr_{4}\cdot 8H_{2}O$                                          | 8       | 2.710[7]  | 1.96[2]   | 2.07[1]   |           | 2Ь         |

 ${}^{a}n_{d}$  denotes number of d-electrons.  ${}^{b}Square$  brackets denote mean deviation from arithmatic mean.  ${}^{c}L_{c}$  denotes capping ligands.  ${}^{d}O_{b}$  denotes oxygen atoms from bridging carboxylate groups.  ${}^{c}L_{b}$  denotes bridging atoms.  ${}^{f}dtp$  denotes diethyldithiophosphate.  ${}^{g}X=0.5$  (Cl+Br).

these factors in mind, from the data listed in the Table we can see a relationship between the number of carboxylate groups and the lengths of the metal-metal bonds.

The first five compounds are 6-electron clusters that have only one bridging carboxylate ligand. While the significance of the first one is not clear, in the other four, which have all been prepared by a substitution reaction of  $M_3S_4(dtp)_4L$  (M=Mo, W; L=H<sub>2</sub>O, py) by carboxylate groups [12] the average metal-metal distances are reduced by more than 0.1 Å, compared with the values 2.754[14] Å for Mo<sub>3</sub>S<sub>4</sub>(dtp)<sub>4</sub>(H<sub>2</sub>O and 2.754[8] Å for Mo<sub>3</sub>S<sub>4</sub>(dtp)<sub>4</sub>(py). In all these d<sup>6</sup> structures the metal-metal bonds that are bridged by carboxylate groups are shorter than the other two without such a bridge. This is not surprising since  $RCO_2^-$  has a smaller bite than the  $(RO)_2PS_2^-$  ligand.

In the d<sup>8</sup> systems the average metal-metal bond distances are c. 2.60 Å for molybdenum dicarboxylate trinuclear compounds and c. 2.58 Å for their tricar-

boxylate derivatives. The metal-metal bond that is not bridged by a carboxylate group in the dicarboxylate compound  $(Et_4N)[Mo_3OCl_8(OAc)_2]$  is always longer than the other two [13]. It would appear that carboxylate groups enhance metal-metal bonding interactions in this type of cluster, and their small and flexible bites and small L-L repulsions (as compared with two monodentate ligands) may play an important role in this respect.

Upon addition of an electron to a  $d^8$  system, the metal-metal distances show a small increase due to the antibonding character of the ninth electron, as was indicated by theoretical studies [5].

Beginning with the  $M_3(\mu_3-X)(\mu-Y)_3(\mu-O_2CR)_3$  structure, each further increase in the number of bridging carboxylate groups will necessarily reduce the number of bridging halides, and the cluster type will change from  $M_3X_{13}$  to  $M_3X_{14}$ , and finally to  $M_3X_{16}$ , although each metal retains an octahedral coordination environment. It is seen that an increase in the number of carboxylate groups causes the average metal-metal bond distances to show a monotonic increase from 2.58 Å for the tricarboxylate clusters to the newly determined c. 2.63 Å for the tetracarboxylate structure, and to c. 2.71 Å for the hexacarboxylate ones. As mentioned above, both greater donation of electrons into antibonding metal-metal orbitals [9] and greater L-L repulsion from the greater number of carboxylate groups may contribute to this progressive increase in the metal-metal bond lengths.

It is also to be noted that while tungsten clusters display the whole range of carboxylate groups, no more than three bridging carboxylate groups have been found for any monocapped molybdenum cluster. Under similar reaction conditions attempts to prepare trinuclear molybdenum clusters with a larger number of carboxylate ligands have resulted, instead, in a number of very stable bicapped hexacarboxylate molybdenum trinuclear clusters with 4-6 d-electrons [11]. Despite the difference between molybdenum and tungsten in this respect, on the whole, they jointly maintain a narrow range of 2.55-2.74 Å for the metal-metal distances. The consistent occurrence of fairly strong metal-metal interactions in the monocapped carboxylate clusters implies that carboxylate groups are an excellent stabilizing factor in the formation of monocapped molybdenum and tungsten clusters with 6-9 d-electrons.

#### Supplementary material

Tables of positional parameters, bond lengths and angles, anisotropic thermal parameters, ORTEP drawings of unit cell contents for 1 and 2 (17 pages), and observed and calculated structure factors for 1 and 2 (35 pages) may be obtained from author F.A.C.

### Acknowledgement

We thank the National Science Foundation for financial support.

#### References

- (1) A Bino, F.A. Cotton and Z. Dori, *Inorg. Chum Acta, 33* (1979) L133, (b) A. Birnbaum, F.A. Cotton, Z. Dori, M. Kapon, D Marler, G.M. Reisner and W. Schwotzer, J Am. Chem. Soc., 107 (1985) 2405; (c) F.A. Cotton, M. Shang and Z. Sun, J Am Chem. Soc., 113 (1991) 3007; (d) F.A. Cotton, M. Shang and Z.S. Sun, J. Cluster Sci., 3 (1992) 109; (e) Jia Huang, Jin Huang, M. Shang, X. Lin, H. Zhang and D Wu, J Inorg Chem. (Chin.), 2 (1986) 27, (f) F.A. Cotton, M Shang and Z. Sun, J Am. Chem Soc., 113 (1991) 6917; (g) F.A. Cotton, M. Shang and Z.S. Sun, J. Cluster Sci., 3 (1992) 123.
- 2 (a) A Bino, F.A. Cotton, Z. Dori, M. Shaia-Gottlieb and M. Kapon, *Inorg Chem.*, 27 (1988) 3592; (b) M Ardon, F.A. Cotton, Z. Dori, A. Fang, M. Kapon, G.M. Reisner and M. Shaia, J. Am Chem Soc, 104 (1982) 5394.
- 3 (a) E. Benory, A. Bino, D. Gibson, F.A. Cotton and Z. Dori, Inorg Chem Acta, 99 (1985) 137; (b) FA Cotton, Z. Dori, R Llusar and W. Schwotzer, J Am Chem Soc, 107 (1985) 6734.
- 4 F.A. Cotton, T.R. Felthouse and D.G. Lay, *Inorg Chem*, 20 (1981) 2219.
- 5 F.A. Cotton and X Feng, Inorg. Chem., 30 (1991) 3666
- 6 T. Moeller, Inorg. Synth, 5 (1957) 139.
- 7 G M Sheldrick, SHELXS-86, program for X-ray crystal structure determination, University of Gottingen, Germany, 1986
- 8 A. Muller, R. Jostes and F.A. Cotton, Angew. Chem., Int Ed Engl, 19 (1980) 875.
- 9 B Bursten, F.A. Cotton, M.B. Hall and R.C. Najjar, Inorg Chem, 21 (1982) 302
- (a) F.A. Cotton, K.R. Dunbar and R. Poly, *Inorg. Chem*, 25 (1986) 3700; (b) P.A. Agaskar and F.A. Cotton, *Inorg Chem*, 23 (1984) 3383, (c) T.R. Ryan and R.E. McCarley, *Inorg Chem.*, 21 (1982) 2072.
- 11 F.A. Cotton, Polyhedron, 5 (1986) 3.
- (a) Y. Zheng, H. Zhan and X. Wu, *Acta Crystallogr., Sect C, 45* (1989) 1424; (b) Jia Huang, Jin Huang, M. Shang, S. Lu, X. Lin, M Huang, H. Zhuang and J. Lu, *Pure Appl. Chem, 60* (1988) 1185
- 13 M. Shang, J. Huang and J. Lu, Acta Crystallogr, Sect C, 40 (1984) 761.