Structural investigations of the hexavanadium core  $\{V_6O_{19}\}$  in 'oxidized', mixed valence and 'reduced' clusters of the type  $[V_{6-n}^{V}V_n^{IV}O_{13-n}(OH)_n\{(OCH_2)_3CR\}_2]^{2-}$ , n=0, 3 and 6

Qin Chen and Jon Zubieta\*

Department of Chemistry, Syracuse University, Syracuse, NY 13244 (USA)

### Abstract

The reactions of  $[(n-C_4H_9)_4N]_3[H_3V_{10}O_{28}]$  with the tris(hydroxymethyl)methane derived ligands (HOCH<sub>2</sub>)\_3CR yield hexavanadate clusters of the type  $[(n-C_4H_9)_4N]_2[V_6O_{13}\{(OCH_2)_3CR\}_2]$  (R = -NHC(O)CHCH<sub>2</sub> (1) and -NO<sub>2</sub> (1a)) and  $[C_5H_5NH]_2[V_6O_{13}\{(OCH_2)_3CCH_3\}_2] \cdot 2Me_2NCOH$  (2). These V(V) clusters are readily reduced by organohydrazines to yield the mixed valence V(V)/V(IV) cluster  $[(n-C_4H_9)_4N]_2[V_3^VV_3^VO_{10}(OH)_3\{(OCH_2)_3-CNO_2\}_2] \cdot 0.67CH_2Cl_2$  (3) and the reduced V(IV) cluster  $[(n-C_4H_9)_4N]_2[V_6^{VO}(OH)_6\{(OCH_2)_3-CCH_3\}_2] \cdot 2HNPhNHPh$  (4). Complexes 1-4 share the common hexametalate core  $\{M_6O_{19}\}$  which is, however, distorted from the regular octahedral symmetry adopted by  $[Mo_6O_{19}]^{2-}$  and  $[Nb_6O_{19}]^{8-}$  because of the substitution of doubly-bridging oxo groups of the parent structure type by alkoxy donor oxygens and as a consequence of the reduction of metal sites in 3 and 4. Crystal data: 1, space group  $P2_1/c$ , a = 10.602(3), b = 17.774(5), c = 16.451(6) Å,  $\beta = 95.42(2)^\circ$ , V = 3086(2) Å<sup>3</sup>, Z = 2,  $D_{calc} = 1.44$  g/cm<sup>3</sup>; R = 0.060 based on 2631 reflections. 2, orthorhombic *Pbca*, a = 16.966(4), b = 20.235(4), c = 11.524(2) Å, V = 3956(2) Å<sup>3</sup>, Z = 4,  $D_{calc} = 1.77$  g/cm<sup>3</sup>; R = 0.034 based on 2729 reflections; 3, triclinic P1, a = 13.526(2), b = 27.032(5), c = 12.950(2) Å,  $\alpha = 100.70(1)$ ,  $\beta = 104.33(1)$ ,  $\gamma = 75.56(1)^\circ$ , V = 4403(2) Å<sup>3</sup>, Z = 3,  $D_{calc} = 1.52$  g/cm<sup>3</sup>; R = 0.058 based on 4494 reflections. 4, monoclinic  $P2_1/c$ , a = 13.357(2), b = 14.416(2), c = 21.584(4) Å,  $\beta = 105.83(2)^\circ$ , V = 3998(2) Å<sup>3</sup>, Z = 2,  $D_{calc} = 1.33$  g/cm<sup>3</sup>; R = 0.058 based on 2972 reflections.

### Introduction

While an extensive chemistry has been developed for both the polyoxoanions [1, 2] and transition metal alkoxides [3-6], the polyoxoalkoxo metalates represent an emerging structural variety. The prototypes for this structural class are  $[Ti_7O_4(OEt)_{20}]$ [7] and [Nb<sub>8</sub>O<sub>18</sub>(OEt)<sub>20</sub>] [8], species whose structures are related to those of the polyoxoanions [Mo<sub>7</sub>O<sub>24</sub>]<sup>6-</sup> [9] and  $[H_2W_{12}O_{42}]^{10-}$  [10], respectively. The chemistry of oxoalkoxide-titanium clusters has been extended recently description of the structures with the of  $[Ti_8O_6(OCH_2C_6H_5)_{20}]$  and  $[Ti_{10}O_8(OEt)_{24}]$  [11].

In contrast to these oxoalkoxide oligomers of Ti and Nb which exhibit d<sup>0</sup> metal centers, the molybdenum and vanadium oxoalkoxides may possess a variety of reduced and mixed valence metal cores [12–18] as well as the more common fully oxidized cluster types [19–23]. As part of our investigations of polyoxoalkoxovanadium species, we have described the structures of oxidized, mixed valence and reduced clusters of the type  $[V_6O_{13-n}(OH)_n\{(OCH_2)_3CCH_3\}_2]^{2-}$ , n=0, 2, 4 and 6 [24]. Here, we describe the structures of four members

of this class of hexavanadium species  $(TBA)_2$ -  $[V_6^VO_{13}\{(OCH_2)_3CNHC(O)CHCH_2\}_2]$  (1),  $(HNC_5H_5)_2$ -  $[V_6^VO_{13}\{(OCH_2)_3CCH_3\}_2] \cdot 2Me_2NCOH$  (2),  $(TBA)_2$ -  $[V_3^VV_3^{IV}VO_{10}(OH)_3\{(OCH_2)_3CNO_2\}_2] \cdot 0.67CH_2Cl_2$  (3) and  $(TBA)_2[V_6^{IV}O_7(OH)_6\{(OCH_2)_3CCH_3\}_2] \cdot 2HN (C_6H_5)NH(C_6H_5)$  (4)  $(TBA = (n-C_4H_5)_4N^+).$ 

### Experimental

All chemicals were obtained from either Aldrich, Alfa or Eastman. The precursor isopolyoxovanadate  $[H_3V_{10}O_{28}]^{3-}$  was prepared by the literature method [25]. All manipulations were carried out under purified N<sub>2</sub> by using standard Schlenk techniques. Methanol and methylene chloride were dried over magnesium methoxide and CaH<sub>2</sub>, respectively. Anhydrous ether was passed through activated alumina prior to use. Elemental analyses were performed by Desert Analytics, Tucson, AZ. The ligands RC(CH<sub>2</sub>OH)<sub>3</sub> (R = - CH<sub>3</sub>, - CH<sub>2</sub>CH<sub>3</sub>, -NH<sub>2</sub>, -NO<sub>2</sub> and NHC(O)CHCH<sub>2</sub> were purchased from Aldrich Chemical Co.

The following instruments were used in this work: IR, Perkin-elmer 283B IR spectrophotometer; UV-Vis,

<sup>\*</sup>Author to whom correspondence should be addressed.

Varian DMSO 90 UV-Vis spectrophotometer; X-ray crystallography, Siemens R3m/V diffractometer and Rigaku AFC5S diffractometer; electrochemistry, BAS100 electroanalytical system; NMR, Varian XL-300 spectrometer.

Cyclic voltammetric studies were carried out in acetonitrile or dimethylformamide solution  $1.0 \times 10^3$  M in complex and 0.1 M in  $(n-C_4H_9)_4NPF_6$  as supporting electrolyte. Platinum bead and platinum mesh working electrodes were used in the cyclic voltammetry. All potentials are referenced to the ferrocene/ferrocenium couple.

Preparation of

# $[(\hat{n}-C_{4}H_{9})_{4}N]_{2}[V_{6}O_{13}\{(OCH_{2})_{3}CNHC(O)CHCH_{2}\}_{2}$ (1)

Tris(hydroxymethyl)methylacrylamide (0.53 g, 3.0 mmol) was added to a solution of [(n- $C_4H_9_4N_3[H_3V_{10}O_{28}]$  (1.69 g, 1.0 mmol) in CH<sub>3</sub>CN (50 ml) with stirring. The yellow-brown solution obtained upon refluxing for 24 h was cooled to room temperature and reduced in volume to 25 ml by rotary evaporation. Upon addition of 25 ml of diethyl ether, a reddish brown powder was obtained (1.25 g). Recrystallization from DMF/CH<sub>3</sub>CN/diethyl ether (1:2:2 vol./vol./vol.) yielded red crystals in 45% yield. The crystalline product is indefinitely stable when exposed to the atmosphere, while solutions of the complex decompose over a period of days when exposed to the atmosphere at room temperature. Anal. Calc. for C46H92N4O21V6: C, 41.1; H, 6.85; N, 4.17. Found: C. 40.9; H, 6.73; N, 4.06%. IR (KBr pellet,  $cm^{-1}$ ): 3302(m), 2961(m), 2888(m), 1687(m), 1062(s), 956(s), 809(s), 723(s), 560(m).

The complex  $[(n-C_4H_9)_4N]_2[V_6O_{13}\{(CH_2)_3CNO_2\}_2]$ (1a) was prepared in an analogous fashion from  $(HOCH_2)_3CNO_2$  and  $[(n-C_4H_9)_4N]_3[H_3V_{10}O_{28}]$ .

### Preparation of

# $[C_{5}H_{5}NH]_{2}[V_{6}O_{13}\{(OCH_{2})_{3}CCH_{3}\}_{2}] \cdot 2Me_{2}NCOH$ (2)

Tris(hydroxymethyl)ethane (0.36 g, 3.0 mmol) was added to a solution of  $[(n-C_4H_9)_4N]_3[H_3V_{10}O_{28}]$  (1.69 g, 1.0 mmol) in CH<sub>3</sub>CN (50 ml) with stirring. After refluxing for 24 h, the yellow-brown solution obtained was treated with (CH<sub>3</sub>)<sub>3</sub>SiCl (1 ml) in a pyridine-dimethyl formamide mixture (5 ml, 1:1 volume). Upon standing for 3 days, red crystals of 2 were obtained in 35% yield. Anal. Calc. for C<sub>26</sub>H<sub>42</sub>N<sub>4</sub>O<sub>21</sub>V<sub>6</sub>: C, 30.00; H, 3.99; N, 5.32. Found: C, 29.8; H, 3.86; N, 5.03%. IR (KBr pellet, cm<sup>-1</sup>): 2337(w), 1654(w), 1485(w), 1262(w), 1127(w), 1027(s), 958(s), 789(s), 704(s), 584(w).

### Preparation of

# $[(n-C_4H_9)_4N]_2[V_6O_{10}(OH)_3\{(OCH_2)_3CNO_2\}_2] \cdot 0.69CH_2Cl_2 (3)$

Tris(hydroxymethyl)nitromethane (0.45 g, 3.0 mmol) was added to a solution of  $[(n-C_4H_9)_4N]_3[H_3V_{10}O_{28}]$ (1.69 g, 1.0 mmol) in CH<sub>3</sub>CN (50 ml) with stirring. The yellow-brown solution obtained upon refluxing for 24 h was cooled to room temperature and reduced in volume to 25 ml by rotary evaporation. Upon addition of 25 ml of diethyl ether, a reddish brown powder of  $[(n-C_4H_9)_4N]_2[V_6O_{13}\{(OCH_2)_3CNO_2\}_2]$  was obtained (1.25 g). A portion of the  $[(n-C_4H_9)_4N]_2[V_6O_{13} \{(OCH_2)_3CNO_2\}_2\}$  (0.65 g, 0.5 mmol) was placed in a rigorously dried, argon-purged Schlenk flask. Upon dropwise addition with stirring of a solution of 1,1methylphenylhydrazine (0.18 g, 1.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 ml), the red hexavanadate slowly dissolved to give a dark blue-green solution. After stirring for 5 h at room temperature under argon, the solution was concentrated to 15 ml and layered with 15 ml of anhydrous diethyl ether. After standing for 3 days at 4 °C, blue needles of 3 were collected in 30% yield. Anal. Calc. for C<sub>40.67</sub>H<sub>88.34</sub>N<sub>4</sub>O<sub>23</sub>Cl<sub>1.34</sub>V<sub>6</sub>: C, 40.0; H, 6.59; N, 4.13. Found: C, 39.8; H, 6.33; N, 4.01%. IR (KBr pellet, cm<sup>-1</sup>: 2961(m), 2871(m), 1532(s), 1466(m), 1380(w), 1338(w), 1095(s), 950(s), 723(s), 577(m).

### Preparation of

# $[(n-C_4H_9)_4N]_2[V_6O_7(OH)_6\{(OCH_2)_3CCH_3\}_2]$ · 2PhNHNHPh (4)

Methylene chloride (30 ml) was added slowly with stirring to  $[(n-C_4H_9)_4N]_2[V_6O_{13}{(OCH_2)_3CCH_3}_2]$  (0.61) g, 0.5 mmol), prepared as previously described [24], and 1,2-diphenylhydrazine (0.28 g, 1.5 mmol), resulting in a dark green solution. After 10 h stirring at room temperature, the solution turned dark brown, whereupon it was concentrated to 10 ml and layered with 15 ml of diethyl ether. After standing for 1 week at 4 °C, brown block-shaped crystals of  $[(n-C_4H_9)_4N]_2[V_6O_{13}{(OCH_2)_3CCH_3}_2] \cdot 0.5PhNNPh \cdot$ 2CH<sub>2</sub>Cl<sub>2</sub> [24] were collected in 20% yield. The filtrate was stored at 4 °C for two months whereupon lustrous  $[(n-C_4H_9)_4N]_2[V_6O_7(OH)_6$ purple crystals of  $\{(OCH_2CCH_3)_3\}_2$  · 2PhNNHPh (4) were isolated in 40% yield. Anal. Calc. for C<sub>68</sub>H<sub>120</sub>N<sub>6</sub>O<sub>19</sub>V<sub>6</sub>: C, 49.3; H, 7.47; N, 5.23. Found: C, 48.9; H, 7.68; N, 5.01%. IR (KBr pellet, cm<sup>-1</sup>): 2960(m), 2873(w), 1602(s), 1495(s), 1381(w), 1241(w), 1139(m), 1055(s), 949(s), 693(m), 609(w), 567(s).

## X-ray crystallographic studies

The details of the crystal data, data collection methods and refinement procedures are summarized in Table 1. In all cases, data were collected at -20 °C at scan speeds of 1 to 15° min<sup>-1</sup>. The refinements proved unexceptional. Although some disorder of the terminal

TABLE 1. Summary of experimental details for the X-ray diffraction studies of  $[(n-C_4H_9)_4N]_2[V_6O_{13}\{(OCH_2)_3CNHC(O)CHCH_2\}_2]$ (1,  $[C_5H_5NH]_2[V_6O_{13}\{(OCH_2)_3CCH_3\}_2] \cdot 2Me_2NCOH$  (2),  $[(n-C_4H_9)_4N]_2[V_6O_9(OH)_4\{(OCH_2)_3CNO_2\}_2] \cdot 0.67CH_2Cl_2$  (3) and  $[(n-C_4H_9)_4N]_2[V_6O_7(OH)_6\{(OCH_2)_3CCH_3\}_2] \cdot 2PhNHNHPh$  (4)

|                                                  | 1                              | 2                              | 3                                 | 4                      |
|--------------------------------------------------|--------------------------------|--------------------------------|-----------------------------------|------------------------|
| Cell parameters                                  |                                |                                | -                                 |                        |
| a (Å)                                            | 10.602(3)                      | 16.966(4)                      | 13.526(2)                         | 13.357(2)              |
| b (Å)                                            | 17.774(5)                      | 20.235(4)                      | 27.032(5)                         | 14.416(2)              |
| c (Å)                                            | 16.451(6)                      | 11.524(2)                      | 12.950(2)                         | 21.584(4)              |
| α (°)                                            | 90.00                          | 90.00                          | 100.70(1)                         | 90.00                  |
| β(°)                                             | 95.42(2)                       | 90.00                          | 104.33(1)                         | 105.83(2)              |
| $\gamma$ (°)                                     | 90.00                          | 90.00                          | 75.56(1)                          | 90.00                  |
| $V(Å^3)$                                         | 3086(2)                        | 3956(2)                        | 4403(2)                           | 3998(2)                |
| Space group                                      | $P2_1/c$                       | Pbca                           | $P\bar{1}$                        | $P2_1/c$               |
| ż                                                | 2                              | 4                              | 3                                 | 2                      |
| $D_{\text{calc}}$ (g/cm <sup>3</sup> )           | 1.44                           | 1.77                           | 1.52                              | 1.33                   |
| $\mu$ (cm <sup>-1</sup> )                        |                                |                                |                                   |                        |
| Measurement of intensity data                    |                                |                                |                                   |                        |
| Crystal shape                                    | block                          | block                          | needle                            | needle                 |
| Crystal color                                    | red                            | red                            | blue–green                        | purple                 |
| Crystal dimensions (mm)                          | $0.35 \times 0.27 \times 0.32$ | $0.31 \times 0.30 \times 0.35$ | $0.26 \times 0.44 \times 0.21$    | 0.19×0.37×0.22         |
| Instrument                                       |                                | Rigaku                         | AFC5S                             |                        |
| Radiation                                        |                                | Μο Κα (λ                       | =0.71073 Å)                       |                        |
| Scan range (°)                                   |                                | 0≤2                            | 2θ≤50                             |                        |
| Scan mode                                        |                                | ω                              | $\sqrt{2\theta}$                  |                        |
| Standards                                        |                                | three taken eve                | ry 200 reflections                |                        |
| No. reflections collected                        | 4479                           | 3886                           | 12792                             | 5773                   |
| No. reflections used<br>$(I_o \ge 3\sigma(I_o))$ | 2631                           | 2729                           | 4494                              | 2972                   |
| Reduction of intensity data and                  | d summary of structure solu    | ution and refinement           |                                   |                        |
| Corrections                                      | data treated for back          | kground, attenuators, Lore     | ntz and polarization effect       | s in the usual fashion |
| Absorption correction                            | in all cases                   | based on $\psi$ scans for 5 re | flections with $\chi$ angles near | ar 90° or 270°         |
| Structure solution                               |                                | direct                         | methods                           |                        |
| Structure refinement                             | least-squa                     | ares refinement; all non-hy    | drogen atoms anisotropica         | lly refined            |
| Atom scattering factors                          | 1                              | neutral atomic scattering fa   | actors were used throughout       | ut                     |
| Anomalous dispersion                             |                                | applied to all no              | on-hydrogen atoms                 |                        |
| Final discremance factors                        |                                |                                |                                   |                        |

| Goodness of fit          | 1.94  | 1.72  | 1.62  | 1.90  |
|--------------------------|-------|-------|-------|-------|
| $R_{w}$                  | 0.069 | 0.046 | 0.067 | 0.066 |
| R                        | 0.060 | 0.034 | 0.058 | 0.058 |
| That discrepancy factors |       |       |       |       |

carbon atoms of the cations was apparent in the large parameters associated with these atoms, no further attempts to model the disorder were introduced.

Upon full-matrix least-squares refinement using anisotropic temperature factors for all non-hydrogen atoms of 1, all hydrogen atom positions were clearly visible on the difference Fourier map. The ligand, solvent, hydrogen, and cation atoms were introduced as fixed contributors at idealized positions and several cycles of full-matrix least-squares refinement were performed to give an R of 0.037 upon convergence of this model. For  $[(n-C_4H_9)_4N]_2[V_6O_{10}(OH)_3\{(OCH_2)_3CNO_2\}_2$ .

 $0.67 CH_2 Cl_2$  (3), the hydrogen positions of the cluster containing V(4)–V(9) were located from the difference Fourier maps. After full-matrix least-squares refinement cycles using anisotropic thermal parameters for all nonhydrogen atoms of the anion and the cation and fixed isotropic temperature factors for the hydrogen atoms of the cation (positioned at idealized C-H distances of 0.96 Å), a difference Fourier synthesis exhibited electron density maxima located at positions consistent with O2 and O6 as the protonation sites. The locations of the hydrogen atoms were confirmed by high-angle  $(2\theta > 37^{\circ})$  refinement of the non-hydrogen atoms followed by difference Fourier synthesis based on inner shell data. This procedure clearly revealed all but three hydrogen atoms of the cation and all hydrogen atoms of the anion. Hydrogen atoms bonded to O14, O15 and O18 were included in the structural model and refinement as independent isotropic atoms in the final least-squares cycles. In contrast, only the H atom bonded to O(3) of the cluster containing V(1)-V(3) and sitting on the center of symmetry could be unambiguously identified. Another H atom with a partial population of 0.4-0.5 appears to be associated with O(6) but could not be adequately refined.

The protonation sites on  $[(n-C_4H_9)_4N]_2$ -[V<sub>6</sub>O<sub>7</sub>(OH)<sub>6</sub>{(OCH<sub>2</sub>)<sub>3</sub>CCH<sub>3</sub>}<sub>2</sub>]·2PhNHNHPh (4) were also apparent on the difference Fourier maps calculated based upon anisotropic refinement of all non-hydrogen atoms of the cation and anion. The hydrogen atom positions were again confirmed by high-angle refinement of non-hydrogen atoms, followed by difference Fourier synthesis of the inner shell data.

### **Results and discussion**

Atomic positional parameters and isotropic thermal parameters, and selected bond lengths and angles are given in Tables 2 and 3, 4 and 5, 6 and 7, 8 and 9 for 1, 2, 3 and 4, respectively.

TABLE 2. Atomic positional parameters and isotropic thermal parameters  $(Å^2 \times 10^3)$  for  $[(n-C_4H_9)_4N]_2[V_6O_{13}\{(OCH_2)_3-CNHC(O)CHCH_2\}_2$  (1)

| Atom  | r          | v           | 7          | B       | 010-000          |
|-------|------------|-------------|------------|---------|------------------|
| Atom  | *          | y           | <u> </u>   | Deq     | N1 C1            |
| V(1)  | 0.1023(1)  | 0.01050(9)  | 1,12602(8) | 3.38(7) | 141-C1           |
| V(2)  | -0.1708(1) | -0.02439(9) | 1.06554(8) | 3.34(7) | O1V1O2           |
| V(3)  | -0.0207(1) | 0.12509(8)  | 1.0057(1)  | 3.41(7) | O1-V1-O6         |
| O(1)  | 0.1870(5)  | 0.0108(3)   | 1.2111(3)  | 4.1(3)  | O1–V1–O7         |
| O(2)  | -0.0582(5) | -0.0137(3)  | 1,1543(3)  | 3.6(3)  | O1–V1–O8         |
| O(3)  | -0.1226(4) | -0.1208(3)  | 1.0464(3)  | 3.5(3)  | O1-V1-O10        |
| O(4)  | -0.3052(5) | -0.0359(3)  | 1.1028(3)  | 4.1(3)  | O2-V1-O6         |
| O(5)  | -0.0531(5) | 0.2126(3)   | 1.0082(4)  | 4.2(3)  | O2V1O7           |
| 0(6)  | 0.0650(5)  | 0.1078(3)   | 1.1071(3)  | 3.6(3)  | O2-V1-O8         |
| 0(7)  | 0          | 0           | 1.0000     | 2.7(3)  | O2-V1-O10        |
| 0(8)  | 0.1225(4)  | -0.1003(3)  | 1,1005(3)  | 3.1(3)  | O6–V1–O7         |
| 0(9)  | 0.1769(5)  | -0.0868(3)  | 0.9460(3)  | 3.3(3)  | O6–V1–O8         |
| O(10) | 0.2433(4)  | 0.0201(3)   | 1.0537(3)  | 3.0(2)  | O6-V1-O10        |
| O(11) | 0.4119(6)  | -0.2633(4)  | 1.0625(5)  | 6.8(4)  | O7–V1–O8         |
| N(1)  | 0.4659(6)  | -0.1404(4)  | 1.0790(4)  | 3.9(4)  | O7-V1-O10        |
| C(1)  | 0.3374(7)  | -0.1058(5)  | 1.0614(5)  | 3.8(4)  | O8-V1-O10        |
| C(2)  | 0.2444(8)  | -0.1371(5)  | 1.1186(5)  | 4.0(5)  | O2V2O3           |
| C(3)  | 0.3583(7)  | -0.0211(5)  | 1.0743(5)  | 3.7(4)  | O2-V2-O4         |
| C(4)  | 0.2954(7)  | -0.1237(5)  | 0.9713(6)  | 4.1(5)  | O2–V2–O7         |
| C(5)  | 0.4915(9)  | -0.2135(6)  | 1.0705(6)  | 4.4(5)  | O2–V2–O9         |
| C(6)  | 0.6298(8)  | -0.2304(6)  | 1.0743(6)  | 4.6(5)  | O2–V2–O10        |
| C(7)  | 0.670(1)   | -0.2987(7)  | 1.0705(7)  | 6.5(7)  | O3–V2–O4         |
| N(2)  | 0.1410(7)  | 0.3326(4)   | 1.1833(4)  | 4.6(2)  | O3V2O7           |
| C(11) | 0.2137(9)  | 0.2715(6)   | 1.1435(6)  | 4.9(2)  | O3-V2-O9         |
| C(12) | 0.312(1)   | 0.2331(7)   | 1.1991(8)  | 8.3(3)  | O3–V2–O10        |
| C(13) | 0.405(1)   | 0.1857(8)   | 1.1593(8)  | 8.8(4)  | O4–V2–O7         |
| C(14) | 0.513(2)   | 0.160(2)    | 1.210(2)   | 11.6(7) | O4-V2-O9         |
| C(15) | 0.2293(9)  | 0.3954(6)   | 1.2141(6)  | 5.1(2)  | V1-07-V3         |
| C(16) | 0.297(1)   | 0.4366(7)   | 1.1507(7)  | 6.9(3)  | V107V2           |
| C(17) | 0.410(1)   | 0.4802(9)   | 1.192(1)   | 10.3(4) | V1-07-V2         |
| C(18) | 0.478(2)   | 0.523(1)    | 1.135(1)   | 14.0(6) | V1-07-V3         |
| C(19) | 0.043(1)   | 0.3594(6)   | 1.1172(6)  | 5.7(2)  | V1-07-V3         |
| C(20) | -0.041(1)  | 0.4243(7)   | 1.1431(7)  | 7.7(3)  | V2-07-V2         |
| C(21) | -0.145(1)  | 0.444(1)    | 1.073(1)   | 10.2(4) | V2-07-V3         |
| C(22) | -0.247(2)  | 0.386(2)    | 1.068(2)   | 12.1(8) | V2-07-V3         |
| C(23) | 0.081(1)   | 0.3023(6)   | 1.2570(6)  | 5.2(2)  | $v_2 = 07 = v_3$ |
| C(24) | -0.020(1)  | 0.2428(7)   | 1.2389(7)  | 6.5(3)  | V2-07-V3         |
| C(25) | -0.033(1)  | 0.1946(8)   | 1.3132(8)  | 8.3(3)  | V1 09 V2         |
| C(26) | -0.141(1)  | 0.142(1)    | 1.302(1)   | 11.3(5) | v1-08- v3        |

TABLE 3. Selected bond lengths (Å) and angles (°) for  $[(n-C_4H_9)_4N]_2[V_6O_{13}\{(OCH_2)_3CNHC(O)CHCH_2\}_2]$  (1)

|   | V1-01         | 1 590(5) | N1-C5                  | 1.34(1)            |
|---|---------------|----------|------------------------|--------------------|
| l | V1_01         | 1.550(5) | C1 C2                  | 1.54(1)            |
| l | V1-02         | 1.657(5) | CI-C2                  | 1.55(1)            |
|   | V1-O6         | 1.795(6) | C1C3                   | 1.53(1)            |
|   | V1-07         | 2.255(2) | C1–C4                  | 1.54(1)            |
| • | V1-08         | 2.029(6) | C5-C6                  | 1.49(1)            |
|   | V1_010        | 2.004(5) | C6-C7                  | 1 20(1)            |
|   | V1-010        | 2.004(5) | C0-C7                  | 1.29(1)            |
|   | v2-02         | 1.807(5) | N2-C11                 | 1.52(1)            |
|   | V2-O3         | 1.824(6) | N2C15                  | 1.51(1)            |
|   | V2-O4         | 1.615(5) | N2-C19                 | 1.51(1)            |
|   | V2-07         | 2.236(1) | N2-C23                 | 1.52(1)            |
|   | V2-09         | 1 986(6) | $C_{11}$ $C_{12}$      | 1 48(1)            |
|   | V2-09         | 1.900(0) | C11-C12                | 1.40(1)            |
|   | V2-010        | 2.039(5) | C12-C13                | 1.50(2)            |
| ; | V3–O3         | 1.815(5) | C13–C14                | 1.42(3)            |
| ) | V3-O5         | 1.594(6) | C15–C16                | 1.51(1)            |
|   | V3-O6         | 1.848(5) | C16–C17                | 1.53(2)            |
|   | V3-07         | 2 237(2) | C17 - C18              | 1.45(2)            |
|   | V2 08         | 2.237(2) | $C_{10}$ $C_{20}$      | 1.45(2)            |
|   | V3-08         | 2.014(5) | C19 - C20              | 1.54(1)            |
|   | V3-09         | 2.021(5) | C20–C21                | 1.56(2)            |
|   | O8–C2         | 1.454(9) | C21C22                 | 1.49(3)            |
|   | O9–C4         | 1.443(9) | C23-C24                | 1.52(1)            |
| - | O10-C3        | 1.435(9) | C24-C25                | 1.51(2)            |
|   | 011 C5        | 1.33(2)  | $C_{24} C_{25} C_{26}$ | 1.31(2)<br>1.48(2) |
| _ | VI CI         | 1.22(1)  | C2J-C20                | 1.40(2)            |
|   | NI-CI         | 1.50(1)  |                        |                    |
|   | 01 - V1 - 02  | 103 6(2) | 04 - V2 - 010          | 96.0(2)            |
|   | 01 V1 02      | 103.0(2) | 07 V2 010              | 77.4(1)            |
|   | 01 - v1 - 00  | 104.5(5) | 07-72-09               | 77.4(1)            |
|   | 01-V1-0/      | 172.9(2) | O7-V2-O10              | 77.2(1)            |
|   | O1–V1–O8      | 97.1(3)  | O9-V2-O10              | 82.2(2)            |
|   | O1-V1-O10     | 97.6(2)  | O3-V3-O5               | 104.2(3)           |
|   | O2-V1-O6      | 94.3(2)  | O3-V3-O6               | 93 3(2)            |
|   | 02-V1-07      | 80 7(2)  | 03-V3-07               | 813(2)             |
|   | 02 - 1 - 07   | 9(.7(2)) | 03 - V3 - 07           | 31.3(2)            |
|   | 02-01-08      | 80.8(2)  | 03-V3-08               | 89.1(2)            |
|   | O2-V1-O10     | 157.1(2) | O3–V3–O9               | 157.6(3)           |
|   | O6–V1–O7      | 80.9(2)  | O5V3O6                 | 103.2(3)           |
|   | O6-V1-O8      | 157.7(2) | O5V3O7                 | 173.2(2)           |
|   | O6-V1-O10     | 88 8(2)  | 05-V3-08               | 97 8(3)            |
|   | 07 - V1 - 08  | 77.3(1)  | 05 V3 00               | 07.5(3)            |
|   | 07 V = 00     | 77.3(1)  | 03 - V3 - 09           | 97.5(5)            |
|   | 0/-v1-010     | 77.4(1)  | 06-73-07               | 80.3(2)            |
|   | O8-V1-O10     | 82.0(2)  | O6–V3–O8               | 157.6(2)           |
|   | O2V2O3        | 93.7(2)  | O6–V3–O9               | 86.6(2)            |
|   | O2-V2-O4      | 104.2(3) | O7-V3-O8               | 78.0(2)            |
|   | O2-V2-O7      | 82 3(2)  | 07V309                 | 767(2)             |
|   | $02 V_{2} 00$ | 80 2(2)  | $O_{8}$ V3 $O_{9}$     | 82.8(2)            |
|   | 02 - V2 = 03  | 150.0(2) | V1 02 V2               | 02.0(2)            |
|   | 02 - V2 - 010 | 159.0(2) | V1-02-V2               | 111.9(3)           |
|   | 03-02-04      | 102.6(3) | V2-O3-V3               | 112.5(3)           |
|   | O3V2O7        | 81.1(2)  | V1O6V3                 | 113.5(3)           |
|   | O3-V2-O9      | 157.7(2) | V1-07-V1               | 180.00             |
|   | O3-V2-O10     | 87.5(2)  | V1-07-V2               | 85 07(6)           |
|   | 04 - V2 - 07  | 1721(2)  | $V_{1} = 07 + V_{2}$   | 04.03(6)           |
|   | 0 + 12 - 07   | 172.1(2) | V1-07-V2               | 94.93(0)           |
|   | 04-72-09      | 98.1(3)  | V1-0/-V3               | 85.38(5)           |
|   | V1-07-V3      | 94.62(5) | C3C1C4                 | 111.1(7)           |
|   | V1O7V2        | 94.93(6) | O8C2C1                 | 108.8(7)           |
|   | V1O7V2        | 85.07(6) | O10-C3-C1              | 111.1(6)           |
|   | V107V3        | 94.62(5) | 09C4C1                 | 110.3(7)           |
|   | V1-07-V3      | 85 38(5) | 011-C5-N1              | 124 8(0)           |
|   | V2_07_V2      | 180.00   | 011 05 06              | 127.0(5)           |
|   | V2-07-V2      | 100.00   |                        | 122(1)             |
|   | v2-07-V3      | 94.90(5) | N1-C5-C6               | 113.5(9)           |
|   | V2-07-V3      | 85.10(5) | C5-C6-C7               | 121(1)             |
|   | V207V3        | 85.10(5) | C11-N2-C15             | 110.4(7)           |
|   | V207V3        | 94.90(5) | C11-N2-C19             | 105.0(7)           |
|   | V307V3        | 180.00   | C11-N2-C23             | 111.0(7)           |
|   | V1_08_V3      | 109 5(2) | $C15_N2_C10$           | 111 9(9)           |
|   | 1-00-45       | 109.3(2) | 015-142-019            | 111.0(0)           |
|   |               |          |                        | (continued)        |

TABLE 3. (continued)

| V108C2  | 120.3(5) | C15-N2-C23  | 106.6(7) |  |
|---------|----------|-------------|----------|--|
| V3O8C2  | 118.2(5) | C19-N2-C23  | 112.1(7) |  |
| V2O9V3  | 110.6(2) | N2-C11-C12  | 114.8(9) |  |
| V209C4  | 120.0(5) | C11-C12-C13 | 116(1)   |  |
| V3O9C4  | 117.2(5) | C12C13C14   | 117(2)   |  |
| V1O10V2 | 109.9(2) | N2-C15-C16  | 116.5(8) |  |
| V1010C3 | 118.8(4) | C15-C16-C17 | 110(1)   |  |
| V2O10C3 | 118.7(4) | C16-C17-C18 | 113(1)   |  |
| C1N1C5  | 124.7(7) | N2-C19-C20  | 114.4(9) |  |
| N1C1C2  | 111.0(7) | C19-C20-C21 | 110(1)   |  |
| N1C1C3  | 105.1(7) | C20-C21-C22 | 110(2)   |  |
| N1C1C4  | 106.0(7) | N2-C23-C24  | 115.5(8) |  |
| C2C1C3  | 111.4(7) | C23-C24-C25 | 111(1)   |  |
| C2C1C4  | 111.8(7) | C24-C25-C26 | 113(1)   |  |
|         |          |             |          |  |

TABLE 4. Atomic positional parameters and isotropic temperature factors  $(A^2 \times 10^3)$  for  $[C_5H_5NH]_2[V_6O_{13}\{(OCH_2)_3-CCH_3\}_2] \cdot 2Me_2NCOH$  (2)

| Atom  | x          | У           | <i>z</i>   | Beq     |
|-------|------------|-------------|------------|---------|
| V(1)  | 0.40623(4) | 0.04125(3)  | 0.61771(5) | 1.92(3) |
| V(2)  | 0.53198(4) | 0.10614(3)  | 0.46683(5) | 1.93(3) |
| V(3)  | 0.57339(4) | -0.00852(3) | 0.65983(5) | 1.90(3) |
| O(1)  | 0.3310(2)  | 0.0670(1)   | 0.6893(2)  | 2.7(1)  |
| O(2)  | 0.4498(2)  | 0.1205(1)   | 0.5600(2)  | 2.2(1)  |
| O(3)  | 0.4686(1)  | 0.0893(1)   | 0.3368(2)  | 2.2(1)  |
| O(4)  | 0.5665(2)  | 0.1783(1)   | 0.4389(2)  | 2.8(1)  |
| O(5)  | 0.6330(2)  | 0.0065(1)   | 0.7680(2)  | 2.7(1)  |
| O(6)  | 0.4823(1)  | 0.0314(1)   | 0.7238(2)  | 2.0(1)  |
| O(7)  | 1/2        | 0           | 1/2        | 1.5(1)  |
| O(8)  | 0.3497(1)  | 0.0352(1)   | 0.4610(2)  | 1.9(1)  |
| O(9)  | 0.3995(1)  | -0.0853(1)  | 0.3973(2)  | 1.8(1)  |
| O(10) | 0.3831(1)  | -0.0549(1)  | 0.6222(2)  | 1.9(1)  |
| O(11) | 0.2181(2)  | 0.2556(2)   | 0.2091(3)  | 5.4(2)  |
| N(1)  | 0.1236(2)  | 0.3210(2)   | 0.0626(3)  | 3.6(2)  |
| N(2)  | 0.3430(2)  | 0.2449(2)   | 0.2759(4)  | 4.2(2)  |
| C(1)  | 0.2690(2)  | -0.0655(2)  | 0.4888(3)  | 2.2(2)  |
| C(2)  | 0.2705(2)  | 0.0081(2)   | 0.4593(3)  | 2.3(2)  |
| C(3)  | 0.3020(2)  | -0.0765(2)  | 0.6109(3)  | 2.2(2)  |
| C(4)  | 0.3173(2)  | -0.1039(2)  | 0.3998(3)  | 2.2(2)  |
| C(5)  | 0.1832(2)  | -0.0896(2)  | 0.4845(4)  | 3.0(2)  |
| C(6)  | 0.1241(3)  | 0.3094(2)   | -0.0513(5) | 4.4(3)  |
| C(7)  | 0.0852(3)  | 0.3496(3)   | -0.1261(4) | 4.3(2)  |
| C(8)  | 0.0443(4)  | 0.4019(3)   | -0.0819(4) | 5.2(3)  |
| C(9)  | 0.0427(3)  | 0.4123(3)   | 0.0375(4)  | 4.9(3)  |
| C(10) | 0.0832(3)  | 0.3711(2)   | 0.1078(4)  | 3.4(2)  |
| C(11) | 0.2893(4)  | 0.2723(2)   | 0.2112(4)  | 4.6(3)  |
| C(12) | 0.4241(4)  | 0.2673(4)   | 0.2790(7)  | 8.7(5)  |
| C(13) | 0.3233(4)  | 0.1906(4)   | 0.3513(7)  | 8.2(4)́ |
| H(1)  | 0.163(4)´  | 0.295(4̀)   | 0.113(ć)   | 10(2)   |

| TABLE                             | 5.    | Selected                            | bond        | lengths             | (Å)               | and | angles | (°) | for |
|-----------------------------------|-------|-------------------------------------|-------------|---------------------|-------------------|-----|--------|-----|-----|
| [C <sub>5</sub> H <sub>5</sub> NH | I]2[\ | / <sub>6</sub> O <sub>13</sub> {(OC | $(H_2)_3CO$ | $[H_3]_2] \cdot 21$ | Me <sub>2</sub> N | СОН | (2)    |     |     |

| V1-01 | 1,607(3) |
|-------|----------|
| V1-O2 | 1.887(3) |
| V1–O6 | 1.788(2) |
|       |          |

(continued)

TABLE 5. (continued)

| V1_07     | 2 2511(7) |
|-----------|-----------|
| V1-08     | 2.048(3)  |
| V1-010    | 1.986(3)  |
| V2-02     | 1.783(3)  |
| V2-03     | 1.876(3)  |
| V2-04     | 1.606(3)  |
| V2-07     | 2 2479(7) |
| V2-07     | 2.2475(7) |
| V2-09     | 2.050(2)  |
| V2-010    | 2.000(3)  |
| V3-05     | 1.704(3)  |
| V3-05     | 1.005(5)  |
| V3-00     | 1.694(3)  |
| V3-07     | 2.2299(7) |
| V3-08     | 1.983(2)  |
| V3-09     | 2.001(3)  |
| 08-02     | 1.452(4)  |
| 09-04     | 1.440(4)  |
| 010-C3    | 1.449(4)  |
| UII-CII   | 1.254(6)  |
| NI-Co     | 1.333(6)  |
| N1-C10    | 1.331(6)  |
| N2-C11    | 1.302(6)  |
| N2-C12    | 1.450(7)  |
| N2-C13    | 1.439(7)  |
| C1C2      | 1.526(6)  |
| C1-C3     | 1.530(5)  |
| C1-C4     | 1.525(5)  |
| C1-C5     | 1.537(5)  |
| C6-C7     | 1.357(7)  |
| C7–C8     | 1.364(7)  |
| C8–C9     | 1.392(7)  |
| C9–C10    | 1.351(6)  |
| O1-V1-O2  | 102.5(1)  |
| O1-V1-O6  | 105.0(1)  |
| O1V1O7    | 172.4(1)  |
| O1-V1-O8  | 95.8(1)   |
| O1-V1-O10 | 98.5(1)   |
| O2-V1-O6  | 93.0(1)   |
| O2-V1-O7  | 79.97(8)  |
| O2-V1-O8  | 85.6(1)   |
| O2-V1-O10 | 156.8(1)  |
| O6-V1-O7  | 82.00(8)  |
| O6-V1-O8  | 159.0(1)  |
| O6-V1-O10 | 90.9(1)   |
| O7-V1-O8  | 77.14(7)  |
| O7-V1-O10 | 78.01(7)  |
| O8-V1-O10 | 82.6(1)   |
| O2-V2-O3  | 93.6(1)   |
| O2-V2-O4  | 104.9(1)  |
| O2V2-O7   | 82.21(8)  |
| O2V2O9    | 91.0(1)   |
| O2-V2-O10 | 158.9(1)  |
| O3-V2-O4  | 102.4(1)  |
| O3-V2-O7  | 79.87(8)  |
| O3-V2-O9  | 157.3(1)  |
| O3-V2-O10 | 84.9(1)   |
| O4-V2-O7  | 172.2(1)  |
| O4-V2-O9  | 97.9(1)   |
| O4-V2-O10 | 95.9(1)   |
| O7–V2–O9  | 78.75(1)  |
|           |           |

TABLE 5. (continued)

| 07 - V2 - 010                    | 76 82(7)             | {(OCH <sub>2</sub> | $(11)_{3}$ (11)      |                        |                        |
|----------------------------------|----------------------|--------------------|----------------------|------------------------|------------------------|
| $O_{-V_{2}-O_{10}}$              | 82 9(1)              |                    |                      |                        |                        |
| 03-V3-05                         | 104.9(1)             | Atom               | r                    | v                      | 7                      |
| O3-V3-O6                         | 93.3(1)              | - Hom              | ~                    | <i>y</i>               | 2                      |
| O3-V3-O7                         | 82.29(8)             | V(1)               | 1.1279(2)            | -0.0531(1)             | 0.9170(2)              |
| O3V3O8                           | 91.6(1)              | V(2)               | 0.8871(2)            | -0.0387(1)             | 0.8715(2)              |
| O3-V3-O9                         | 160.1(1)             | V(3)               | 1.0225(2)            | -0.0604(1)             | 1.1131(2)              |
| O5-V3-O6                         | 101.6(1)             | V(4)               | 0.9448(2)            | 0.2591(1)              | 0.7698(2)              |
| O5V3O7                           | 172.3(1)             | V(5)               | 0.8529(2)            | 0.2418(1)              | 0.9641(2)              |
| O5–V3–O8                         | 97.9(1)              | V(6)               | 0.7832(2)            | 0.3525(1)              | 0.8684(2)              |
| O5–V3–O9                         | 94.8(1)              | V(7)               | 1.0160(2)            | 0.3635(1)              | 0.9221(2)              |
| O6–V3–O7                         | 80.37(7)             | V(8)               | 1.0913(2)            | 0.2524(1)              | 1.0171(2)              |
| O6-V3-O8                         | 157.9(1)             | V(9)               | 0.9323(2)            | 0.3422(1)              | 1.1115(2)              |
| O6-V3-O9                         | 85.0(1)              | O(1)               | 1.2251(8)            | -0.0843(4)             | 0.8684(8)              |
| 07–V3–O8                         | 78.94(7)             | O(2)               | 1.0182(8)            | -0.0739(4)             | 0.8325(8)              |
| 07-V3-09                         | 77.84(7)             | O(3)               | 0.8886(8)            | 0.0171(4)              | 0.7985(8)              |
| 08-V3-09                         | 83.1(1)              | O(4)               | 0.8038(8)            | -0.0666(4)             | 0.7861(8)              |
| V1-O2-V2                         | 112.3(1)             | O(5)               | 1.0344(8)            | -0.1051(4)             | 1.1842(8)              |
| V203V3                           | 112.2(1)             | O(6)               | 1.1337(8)            | -0.0925(4)             | 1.0303(8)              |
| V1-O6-V3                         | 111./(1)             | O(7)               | 1.0000               | 0                      | 1.0000                 |
| VI-0/-VI                         | 180.00               | O(8)               | 1.0990(8)            | 0.0087(4)              | 0.8425(8)              |
| V1-07-V2                         | 83.34(3)             | O(9)               | 1.0837(8)            | 0.0852(4)              | 1.0127(8)              |
| V1-07-V2<br>V1 07 V2             | 94.00(3)             | O(10)              | 1.20/8(8)            | -0.0095(4)             | 1.0409(8)              |
| V1-07-V3                         | 03.73(3)<br>04.27(3) | O(11)              | 1.312(1)             | 0.094/(5)              | 0.846(1)               |
| V1-07-V2                         | 94.27(3)             | O(12)              | 1.415(1)             | 0.0605(6)              | 0.978(1)               |
| V1-07-V2                         | 85 34(3)             | O(13)              | 0.9002(8)            | 0.2320(4)              | 0.0531(9)              |
| V1_07_V3                         | 94 27(3)             | O(14)              | 0.07/4(0)            | 0.2123(4)<br>0.2079(4) | 0.0146(0)              |
| V1-07-V3                         | 85 73(3)             | O(15)              | 0.9999(8)            | 0.2079(4)              | 0.0840(0)              |
| V207V2                           | 180.00               | O(10)              | 0.7943(8)            | 0.2014(4)<br>0.3873(4) | 0.9049(9)              |
| V2-07-V3                         | 94.56(2)             | O(17)              | 0.8109(8)            | 0.3050(4)              | 0.0247(9)<br>0.7415(8) |
| V2-07-V3                         | 85.44(2)             | O(19)              | 0.9346(9)            | 0.2992(4)              | 0.9390(9)              |
| V2-07-V3                         | 85.44(2)             | O(20)              | 1.0814(8)            | 0.2235(4)              | 0.8591(8)              |
| V2-O7-V3                         | 94.56(2)             | O(21)              | 1.1385(8)            | 0.3094(4)              | 0.9772(8)              |
| V3-O7-V3                         | 180.00               | O(22)              | 1.0183(8)            | 0.3167(4)              | 0.7800(8)              |
| V1-O8-V3                         | 109.1(1)             | O(23)              | 1.299(1)             | 0.2243(5)              | 0.687(1)               |
| V1O8C2                           | 117.9(2)             | O(24)              | 1.360(1)             | 0.2806(6)              | 0.804(1)               |
| V3O8C2                           | 119.8(2)             | O(25)              | 0.9204(9)            | 0.3717(4)              | 1.2273(9)              |
| V209V3                           | 108.4(1)             | O(26)              | 0.9938(8)            | 0.3862(4)              | 1.0584(9)              |
| V2-O9-C4                         | 119.4(2)             | O(27)              | 0.8751(8)            | 0.3913(4)              | 0.8569(9)              |
| V3-09-C4                         | 117.5(2)             | O(28)              | 1.080(1)             | 0.4024(4)              | 0.905(1)               |
| V1-O10-V2                        | 110.1(1)             | O(29)              | 1.2039(8)            | 0.2199(4)              | 1.0602(8)              |
| V1-010-C3                        | 118.7(2)             | O(30)              | 1.0559(8)            | 0.2941(4)              | 1.1387(8)              |
| V2-010-03                        | 118.1(2)<br>121 5(4) | O(31)              | 0.7943(9)            | 0.3789(4)              | 1.0248(9)              |
| $C_{11} N_{2} C_{12}$            | 121.3(4)             | O(32)              | 0.7303(8)            | 0.2937(4)              | 0.9002(8)              |
| C11 - N2 - C12<br>C11 - N2 - C13 | 120.6(5)             | O(33)              | 0.8529(8)            | 0.2883(4)              | 1.1052(9)              |
| C12 - N2 - C13                   | 116 3(5)             | 0(34)              | 0.506(1)             | 0.3838(0)<br>0.3317(7) | 1.184(1)               |
| $C_{2}-C_{1}-C_{3}$              | 109 9(3)             | N(1)               | 1.300(1)             | 0.3317(7)              | 1.008(1)               |
| C2-C1-C4                         | 109.9(3)             | N(2)               | 1.331(1)<br>1 294(1) | 0.0091(0)<br>0.2557(6) | 0.919(1)<br>0.762(1)   |
| C2-C1-C5                         | 108.6(3)             | N(2)               | 0.577(1)             | 0.3490(6)              | 1114(1)                |
| C3C1C4                           | 110.4(3)             | N(4)               | 0.620(1)             | 0.1271(5)              | 0.699(1)               |
| C3C1C5                           | 109.2(3)             | N(5)               | 0.020(1)             | 0.2132(5)              | 0.364(1)               |
| C4C1C5                           | 108.9(3)             | N(6)               | 0.266(1)             | 0.4600(5)              | 0.194(1)               |
| O8-C2-C1                         | 112.3(3)             | C(1)               | 1.243(1)             | 0.0494(6)              | 0.942(1)               |
| O10-C3-C1                        | 112.7(3)             | C(2)               | 1.184(1)             | 0.0276(6)              | 0.833(1)               |
| 09-C4-C1                         | 113.4(3)             | C(3)               | 1.288(1)             | 0.0096(6)              | 1.019(1)               |
| N1C6C7                           | 121.1(5)             | C(4)               | 1.172(1)             | 0.0970(6)              | 0.991(1)               |
| C6-C7-C8                         | 118.4(4)             | C(5)               | 1.198(1)             | 0.2694(7)              | 0.813(1)               |
| C7-C8-C9                         | 119.8(5)             | C(6)               | 1.171(1)             | 0.2172(6)              | 0.817(1)               |
| C8-C9-C10                        | 119.3(5)             | C(7)               | 1.111(1)             | 0.3015(7)              | 0.739(1)               |
| N1-C10-C9                        | 119.8(4)             |                    |                      |                        |                        |
| 011–C11–N2                       | 124.7(5)             |                    |                      |                        |                        |

TABLE 6. Atomic positional parameters and isotropic temperature factors  $(Å^3 \times 10^3)$  for  $[(n-C_4H_9)_4N]_2[V_6O_{10}(OH)_3-{(OCH_2)_3CNO_2}_2]$  (3)

 $B_{eq}$ 

2.0(1)

2.0(1)

2.0(1)

2.2(2)

1.9(1)

2.2(1) 2.4(2)

1.9(1)

2.4(2) 2.4(2)

1.7(2)

2.3(2)

2.3(2)

2.4(2)

1.6(2) 1.4(3)

2.2(2)

1.8(2)

1.9(2)

4.5(3)

6.8(4)

2.7(2)

1.9(2)

2.4(2)

2.9(3)

2.6(2)

2.4(2)

2.1(2)

1.8(2)

2.0(2) 2.0(2)

4.8(3) 7.0(4)

2.9(3)

2.4(2)

2.4(2)

3.4(3)

2.5(2)

2.1(2)

2.8(3)

2.1(2)

2.4(2)

6.8(4)

8.7(5)

3.8(4)

4.5(4)

3.7(4)

2.4(3)

2.3(3)

2.2(3)

2.1(3) 2.7(4)

2.3(3)

2.6(4)

3.1(4)

(*continued*)

TABLE 6. (continued)

TABLE 7. Selected bond lengths (Å) and angles (°) for  $[(n\text{-}C_4H_9)_4N]_2[V_6O_9(OH)_4\{(OCH_2)_3CNO_2\}]$  (3)

| Atom  | x                    | У                      | z                    | $B_{eq}$         |                 |                     |
|-------|----------------------|------------------------|----------------------|------------------|-----------------|---------------------|
| C(8)  | 1 226(1)             | 0.2980(6)              | 0.927(1)             | 27(4)            | V101            | 1.58(1)             |
| C(0)  | 1.220(1)             | 0.2360(0)              | 1.927(1)             | 2.7(4)           | V1-02           | 1.76(1)             |
| C(10) | 0.073(1)             | 0.3500(0)              | 1.005(1)<br>1.065(1) | 2.2(4)           | V1-06<br>V1-07  | 1.94(1)             |
| C(10) | 0.757(1)             | 0.3002(0)<br>0.3014(6) | 1.005(1)<br>1 140(1) | 2.4(4)           | V1-07           | 2.305(3)            |
| C(12) | 0.737(1)<br>0.643(1) | 0.3014(0)              | 0.950(1)             | 2.3(3)<br>2 4(4) | V1-08<br>V1 010 | 1.99(1)             |
| C(21) | 0.635(1)             | 0.3101(0)<br>0.1300(6) | 0.930(1)<br>0.820(1) | 2.7(4)           | V1-010<br>V2-02 | 2.05(1)             |
| C(21) | 0.035(1)             | 0.1559(0)<br>0.1553(7) | 0.820(1)             | 2.7(4)           | V2-02           | 1.93(1)             |
| C(22) | 0.559(1)             | 0.1555(7)<br>0.1637(7) | 0.800(1)             | 3.3(4)           | V2-03           | 1.93(1)             |
| C(24) | 0.300(1)<br>0.475(2) | 0.1057(7)              | 1.041(2)             | 7.0(7)           | V204<br>V207    | 1.60(1)             |
| C(25) | 0.473(2)             | 0.0836(6)              | 0.659(1)             | 29(4)            | V2-07           | 2.230(3)            |
| C(26) | 0.505(1)             | 0.0000(0)              | 0.055(1)             | 2.9(4)           | V2-09<br>V2-010 | 2.04(1)             |
| C(27) | 0.560(1)             | -0.0093(7)             | 0.765(1)             | 3.6(4)           | V2-010<br>V3-02 | 1.99(1)             |
| C(28) | 0.566(1)             | 0.0005(9)              | 0.601(1)             | 7.0(6)           | V3-05           | 1.91(1)             |
| C(29) | 0.726(1)             | 0.1152(6)              | 0.672(1)             | 2.6(4)           | V3-06           | 1.01(1)             |
| C(30) | 0.729(1)             | 0.1002(7)              | 0.556(2)             | 3.7(4)           | V3-07           | 1.99(1)<br>2 307(3) |
| C(31) | 0.840(2)             | 0.0911(8)              | 0.538(2)             | 5.5(5)           | V3-08           | 2.307(3)<br>2.00(1) |
| C(32) | 0.849(2)             | 0.073(1)               | 0.422(2)             | 7.2(7)           | V3-09           | 2.00(1)<br>2.02(1)  |
| C(33) | 0.546(1)             | 0.1725(7)              | 0.642(1)             | 3.2(4)           | V4-013          | 2.02(1)<br>1 59(1)  |
| C(34) | 0.585(1)             | 0.2226(7)              | 0.670(1)             | 3.8(4)           | V4-014          | 1.07(1)             |
| C(35) | 0.514(1)             | 0.2607(7)              | 0.597(2)             | 4.2(4)           | V4-018          | 1.97(1)<br>1.92(1)  |
| C(36) | 0.537(2)             | 0.312(1)               | 0.621(2)             | 7.0(6)           | V4-019          | 2.28(1)             |
| C(37) | 0.176(1)             | 0.1937(6)              | 0.294(1)             | 2.1(3)           | V4-020          | 2.04(1)             |
| C(38) | 0.289(1)             | 0.1769(6)              | 0.353(1)             | 2.2(3)           | V4-022          | 2.01(1)             |
| C(39) | 0.360(1)             | 0.1584(6)              | 0.273(1)             | 2.7(4)           | V5-014          | 2.02(1)             |
| C(40) | 0.473(1)             | 0.1454(6)              | 0.321(1)             | 3.2(4)           | V5015           | 1.99(1)             |
| C(41) | 0.121(1)             | 0.1879(6)              | 0.465(1)             | 2.5(4)           | V5016           | 1.59(1)             |
| C(42) | 0.119(1)             | 0.1318(6)              | 0.444(1)             | 2.9(4)           | V5-O19          | 2.23(1)             |
| C(43) | 0.176(2)             | 0.106(1)               | 0.552(2)             | 6.3(6)           | V5-O32          | 2.00(1)             |
| C(44) | 0.179(2)             | 0.052(1)               | 0.531(2)             | 9.7(9)           | V5-O33          | 2.02(1)             |
| C(45) | -0.010(1)            | 0.2019(6)              | 0.289(1)             | 2.4(3)           | V6017           | 1.59(1)             |
| C(46) | -0.104(1)            | 0.2199(7)              | 0.341(1)             | 3.3(4)           | V6–O18          | 1.94(1)             |
| C(47) | -0.188(2)            | 0.1911(7)              | 0.278(2)             | 4.2(5)           | V6019           | 2.28(1)             |
| C(48) | -0.290(2)            | 0.2103(8)              | 0.319(2)             | 5.7(5)           | V6O27           | 1.86(1)             |
| C(49) | 0.077(1)             | 0.2709(6)              | 0.394(1)             | 2.7(4)           | V6-O31          | 2.00(1)             |
| C(50) | 0.169(1)             | 0.2918(6)              | 0.457(1)             | 2.7(4)           | V6-O32          | 2.04(1)             |
| C(51) | 0.137(1)             | 0.3519(7)              | 0.484(1)             | 3.8(4)           | V7–O21          | 2.00(1)             |
| C(52) | 0.229(2)             | 0.3733(8)              | 0.548(2)             | 5.4(5)           | V7O22           | 2.03(1)             |
| C(53) | 0.298(1)             | 0.4464(6)              | 0.087(1)             | 2.7(4)           | V7–O26          | 1.83(1)             |
| C(54) | 0.269(1)             | 0.4908(7)              | 0.023(2)             | 3.7(4)           | V7–O27          | 1.91(1)             |
| C(55) | 0.291(2)             | 0.4745(9)              | -0.088(2)            | 6.2(6)           | V7-O28          | 1.59(1)             |
| C(50) | 0.402(3)             | 0.451(1)               | -0.090(3)            | 8(1)             | V8-015          | 1.95(1)             |
| C(57) | 0.146(1)             | 0.4743(7)              | 0.179(1)             | 3.6(4)           | V8019           | 2.28(1)             |
| C(50) | 0.102(2)             | 0.4757(7)              | 0.274(2)             | 3.8(4)           | V8-O20          | 2.03(1)             |
| C(59) | -0.014(2)            | 0.4966(7)              | 0.234(2)<br>0.343(2) | 4.7(5)           | V8-021          | 2.00(1)             |
| C(00) | -0.003(2)            | 0.4900(8)              | 0.343(2)<br>0.251(1) | 2.4(3)           | V8-029          | 1.58(1)             |
| C(61) | 0.309(1)<br>0.272(1) | 0.4117(0)<br>0.3627(7) | 0.251(1)<br>0.194(1) | 2.5(4)           | V8-030          | 1.85(1)             |
| C(62) | 0.272(1)<br>0.305(2) | 0.3027(7)              | 0.194(1)<br>0.263(2) | 5.3(4)           | V9-019          | 2.52(1)             |
| C(64) | 0.303(2)             | 0.3021(8)              | 0.205(2)             | 5.6(5)           | V9-025          | 1.09(1)             |
| C(65) | 0.313(1)             | 0.5040(6)              | 0.267(1)             | 3.0(3)           | V9-020          | 1.91(1)             |
| C(66) | 0.430(2)             | 0.4964(7)              | 0.285(2)             | 4.5(5)           | V9-031          | 2.04(1)             |
| C(67) | 0.470(2)             | 0.5379(7)              | 0.369(2)             | 3.9(4)           | V9-033          | 2.04(1)             |
| C(68) | 0.585(2)             | 0.530(1)               | 0.396(2)             | 7.0(6)           | 08-C2           | 1 42(2)             |
| CI(1) | 0.684(1)             | 0.3659(5)              | 0.425(1)             | 10.1(4)          | 09-C4           | 1.41(2)             |
| Cl(2) | 0.869(1)             | 0.3953(5)              | 0.564(1)             | 11.1(4)          | 010-C3          | 1.41(2)<br>1.42(2)  |
| C(20) | 0.797(2)             | 0.357(1)               | 0.541(2)             | 9.4(8)           | 011-N1          | 1.20(2)             |
| H(3)  | 0.9151               | 0.0027                 | 0.7335               | 2.6              | O12-N1          | 1.20(2)             |
| H(14) | 0.8113               | 0.2107                 | 0.7655               | 2.2              | O20-C6          | 1.41(2)             |
| H(15) | 1.0067               | 0.2032                 | 1.0960               | 2.7              | O21-C8          | 1.43(2)             |
| H(18) | 0.8099               | 0.3249                 | 0.6854               | 2.8              | O22–C7          | 1.42(2)             |
|       |                      |                        |                      |                  |                 |                     |

(continued)

TABLE 7. (continued)

TABLE 7. (continued)

| O23–N2             | 1.17(2)            | C61-C62               | 1.53(2)                              |
|--------------------|--------------------|-----------------------|--------------------------------------|
| O24–N2             | 1.21(2)            | C62–C63               | 1.50(2)                              |
| O31C10             | 1.43(2)            | C63–C64               | 1.49(3)                              |
| O32C12             | 1.42(2)            | C65-C66               | 1.51(2)                              |
| O33-C11            | 1.42(2)            | C66–C67               | 1.52(2)                              |
| O34-N3             | 1.19(2)            | C67-C68               | 1.47(3)                              |
| O35-N3             | 1.21(2)            | Cl1-C20               | 1.86(3)                              |
| N1C1               | 1.53(2)            | Cl2-C20               | 1.53(3)                              |
| N2C5               | 1.53(2)            | O1–V1–O2              | 106.1(5)                             |
| N3C9               | 1.55(2)            | O1–V1–O6              | 102.2(5)                             |
| N4-C21             | 1.52(2)            | O1V1O7                | 172.4(4)                             |
| N4-C25             | 1.52(2)            | O1–V1–O8              | 97.1(5)                              |
| N4-C29             | 1.49(2)            | O1–V1–O10             | 96.9(5)                              |
| N4-C33             | 1.55(2)            | O2–V1–O6              | 94.1(4)                              |
| N5C37              | 1.54(2)            | O2-V1-O7              | 81.2(3)                              |
| N5-C41             | 1.51(2)            | O2–V1–O8              | 91.5(4)                              |
| N5-C45             | 1.56(2)            | O2-V1-O10             | 156.9(5)                             |
| N5-C49             | 1.51(2)            | O6–V1–O7              | 79.3(3)                              |
| N6-C53             | 1.50(2)            | O6-V1-O8              | 157.6(4)                             |
| N6-C57             | 1.54(2)            | O6-V1-O10             | 82.9(4)                              |
| N6-C61             | 1.53(2)            | O7V1O8                | 80.1(3)                              |
| N6-C65             | 1.53(2)            | O7-V1-O10             | 75.8(3)                              |
| C1C2               | 1.53(2)            | O8-V1-O10             | 83.5(4)                              |
| C1–C3              | 1.51(2)            | O2V2O3                | 87.9(4)                              |
| C1-C4              | 1.54(2)            | O2V2O4                | 103.2(5)                             |
| C5-C6              | 1.56(2)            | O2-V2-O7              | 79.1(3)                              |
| C5-C7              | 1.52(2)            | O2-V2-O9              | 89.6(4)                              |
| C5–C8              | 1.54(2)            | O2-V2-O10             | 157.1(4)                             |
| C9-C10             | 1.53(2)            | O3–V2–O4              | 101.7(5)                             |
| C9–C11             | 1.54(2)            | O3–V2–O7              | 81.0(3)                              |
| C9–C12             | 1.50(2)            | O3-V2-O9              | 161.2(4)                             |
| C21C22             | 1.49(2)            | O3-V2-O10             | 90.1(4)                              |
| C22-C23            | 1.52(2)            | O4–V2–O7              | 176.5(4)                             |
| C23-C24            | 1.50(3)            | O4-V2-O9              | 97.0(5)                              |
| C25-C26            | 1.54(2)            | O4–V2–O10             | 99.5(5)                              |
| C26-C27            | 1.51(2)            | O7–V2–O9              | 80.3(3)                              |
| C27-C28            | 1.46(3)            | O7-V2-O10             | 78.1(3)                              |
| C29-C30            | 1.49(2)            | 09-V2-010             | 85.0(4)                              |
| C30-C31            | 1.53(3)            | O3-V3-O5              | 104.1(5)                             |
| C31-C32            | 1.52(3)            | 03-V3-06              | 89.2(4)                              |
| C33-C34            | 1.53(2)            | 03-V3-07              | 80.0(3)                              |
| C34-C35            | 1.52(2)            | 03V308                | 88.1(4)                              |
| C35-C36            | 1.40(3)            | 03-V3-09              | 159.2(4)                             |
| $C_{3}/-C_{3}$     | 1.53(2)            | 05-V3-06              | 100.4(5)                             |
| C30-C39            | 1.51(2)            | 05-V3-07              | 175.8(4)                             |
| C39-C40<br>C41 C42 | 1.46(2)            | $05 - \sqrt{3} - 08$  | 101.3(5)                             |
| C41 = C42          | 1.49(2)            | $05 - \sqrt{3} - 09$  | 96.6(5)                              |
| C42-C45            | 1.01(3)            | $06 - \sqrt{3} - 07$  | 78.3(3)                              |
| C45-C44            | 1.44(3)            | $06 - \sqrt{3} - 08$  | 158.2(4)                             |
| C45-C40            | 1.52(2)            | $00 = \sqrt{3} = 09$  | 89.2(4)<br>70.0(2)                   |
| C47-C48            | 1.51(2)            | 07-V3-09              | 79.9(3)                              |
| C49-C50            | 1.33(3)<br>1.49(2) | 08-1/3-09             | 79.4( <i>3</i> )<br>85.8( <i>A</i> ) |
| C50-C51            | 1 57(2)            | $013 V_{-} V_{-} 014$ | 03.0(4)                              |
| C51-C52            | 1.50(2)            | 013_V4_014            | 102.0(3)                             |
| C53-C54            | 1.50(2)            | 012-V4-019            | 175 8(5)                             |
| C54-C55            | 1.51(3)            | 013-V4-020            | 90 3(5)                              |
| C55-C56            | 1.48(4)            | 013-V4-022            | 97 4(5)                              |
| C57-C58            | 1.49(2)            | 014-V4-018            | 88 2(4)                              |
| C58-C59            | 1.50(2)            | 014-V4-019            | 80 4(4)                              |
| C59-C60            | 1.48(3)            | O14-V4-O20            | 87.0(4)                              |
|                    |                    |                       |                                      |

(continued)

(continued)

TABLE 7. (continued)

| 014-V4-022   159,4(5)   020-V9-036   110,7(5)     018-V4-020   157,4(5)   019-V9-026   80,2(4)     018-V4-020   75,4(4)   019-V9-026   80,0(4)     019-V4-022   79,2(4)   019-V9-030   80,0(4)     019-V4-022   79,2(4)   019-V9-031   78,4(4)     020-V4-022   85,5(4)   025-V9-030   105,5(5)     014-V5-015   87,7(4)   025-V9-031   98,2(5)     014-V5-016   100,8(5)   025-V9-031   98,2(5)     014-V5-032   89,4(4)   026-V9-031   157,5(5)     015-V5-016   99,4(5)   026-V9-033   88,8(5)     015-V5-016   99,4(4)   030-V9-033   88,8(5)     016-V5-032   100,1(5)   V2-03-V3   111,1(5)     016-V5-033   88,4(4)   014-V2-033   88,8(5)     016-V5-033   88,3(5)   015-V5-033   88,8(6)     016-V5-032   100,1(5)   V2-03-V3   111,1(5)     016-V5-033   88,3(5)   016-V5-033   88,8(6)     016-V5-033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                     |                        |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|------------------------|------------|
| $\begin{array}{c} 018-V4-019 & 79.5(4) & 019-V9-025 & 17.1(5) \\ 018-V4-020 & 157.4(5) & 019-V9-026 & 88.2(4) \\ 018-V4-022 & 91.3(4) & 019-V9-03 & 80.0(4) \\ 019-V4-022 & 72.2(4) & 019-V9-03 & 78.0(4) \\ 019-V4-022 & 72.2(4) & 019-V9-03 & 78.0(4) \\ 019-V4-022 & 85.6(4) & 025-V9-03 & 103.5(5) \\ 014-V5-015 & 87.9(4) & 025-V9-03 & 98.2(5) \\ 014-V5-015 & 87.9(4) & 025-V9-03 & 98.2(5) \\ 014-V5-016 & 100.8(5) & 025-V9-03 & 98.2(5) \\ 014-V5-016 & 99.4(5) & 025-V9-03 & 98.2(5) \\ 014-V5-033 & 160.8(5) & 026-V9-03 & 95.3(5) \\ 014-V5-033 & 160.8(5) & 026-V9-03 & 95.3(5) \\ 014-V5-033 & 160.8(5) & 026-V9-03 & 95.3(5) \\ 015-V5-019 & 80.4(4) & 030-V9-03 & 85.8(6) \\ 015-V5-019 & 80.4(4) & 030-V9-03 & 85.8(6) \\ 016-V5-033 & 85.1(5) & 021-033 & 85.8(6) \\ 016-V5-033 & 85.1(5) & 021-033 & 85.8(6) \\ 016-V5-033 & 85.1(5) & V1-07-V3 & 111.1(6) \\ 016-V5-033 & 85.1(5) & V1-07-V1 & 118.000 \\ 019-V5-033 & 85.1(5) & V1-07-V2 & 94.4(1) \\ 017-V6-018 & 102.6(5) & V1-07-V2 & 94.4(1) \\ 017-V6-027 & 92.0(5) & V2-07-V3 & 97.9(1) \\ 018-V6-027 & 92.0(5) & V2-07-V3 & 97.9(1) \\ 018-V6-027 & 92.0(5) & V2-07-V3 & 97.9(1) \\ 018-V6-032 & 85.4(4) & V2-07-V3 & 87.9(1) \\ 018-V6-032 & 85.4(4) & V2-07-V3 & 92.1(1) \\ 018-V6-032 & 85.4(4) & V2-07-V3 & 92.1(1) \\ 018-V6-032 & 85.4(4) & V2-07-V3 & 92.1(1) \\ 018-V6-032 & 93.3(5) & V1-01-C3 & 117.7(9) \\ 022-V7-026 & 193.8(5) & V1-01-C3 & 117.7(9) \\ 022-V7-026 & 193.8(5) & V2-01-C3 & 117.7(9) \\ 022-V7-026 & 193.8(4) & V2-01-V3 & 193.8(6) \\ 015-V8-021 & 73.8(4) & V2-01-V3 & 193.8(6) \\ 015-V8-021 & 73.8(4) & V2-01-V3 & 193.8(6) \\ 015-V8-021 & 73.$                                                                                                             | O14-V4-O22                                       | 159.4(5)            | Q29-V8-Q30             | 103 7(5)   |
| OTB-VI-020   1574(2)   OTB-VI-026   B80(4)     OTB-VI-022   91.3(4)   OTB-VI-030   B80(4)     OTB-VI-022   78.0(4)   OTB-VI-030   B80(4)     OTB-VI-022   78.0(4)   OTB-VI-030   B80(4)     OTB-VI-022   85.6(4)   OZS-VI-033   185.4(4)     OZB-VI-022   85.6(4)   OZS-VI-030   103.6(5)     OTH-VI-015   87.9(4)   OZS-VI-030   93.3(5)     OTH-VI-023   89.4(4)   OZS-VI-031   85.2(5)     OTH-VI-033   160.8(5)   OZE-VI-033   185.0(5)     OTS-VI-019   89.4(4)   O30-VI-033   89.8(5)     OTS-VI-019   89.4(4)   O30-VI-033   89.8(5)     OTS-VI-019   178.7(5)   VI-02-V2   114.1(5)     OTS-VI-019   178.7(5)   VI-02-V2   114.1(5)     OTS-VI-019   183.9(4)   VI-07-V2   85.6(1)     OTS-VI-019   178.7(5)   VI-07-V2   85.6(1)     OTS-VI-019   178.7(5)   VI-07-V2   85.6(1)     OTS-VI-020 <t< td=""><td>O18-V4-O19</td><td>79.5(4)</td><td>019 - V9 - 025</td><td>105.7(5)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O18-V4-O19                                       | 79.5(4)             | 019 - V9 - 025         | 105.7(5)   |
| 018-V4-022 97.2(4) 019-V9-030 80.0(4)<br>019-V4-022 72.2(4) 019-V9-031 78.0(4)<br>019-V4-022 72.2(4) 019-V9-031 78.0(4)<br>019-V4-022 85.6(4) 025-V9-026 1102.7(5)<br>014-V5-015 87.9(4) 025-V9-031 198.2(5)<br>014-V5-015 87.9(4) 025-V9-031 98.2(5)<br>014-V5-019 80.5(4) 025-V9-031 98.2(5)<br>014-V5-015 99.4(5) 026-V9-031 98.2(5)<br>014-V5-033 160.8(5) 026-V9-031 157.5(5)<br>015-V5-015 89.4(4) 030-V9-031 157.5(5)<br>015-V5-019 80.4(4) 030-V9-031 88.8(4)<br>015-V5-019 178.7(5) V1-02-V2 114.1(5)<br>016-V5-032 100.1(5) V2-03-3 88.8(4)<br>016-V5-032 100.1(5) V2-03-3 88.8(4)<br>016-V5-032 100.1(5) V2-03-3 88.8(4)<br>016-V5-032 100.1(5) V2-03-3 88.8(4)<br>016-V5-032 80.0(4) V1-07-V2 85.6(1)<br>016-V5-033 88.3(5) V1-06-V3 112.0(5)<br>019-V5-033 88.3(4) V1-07-V2 85.6(1)<br>017-V6-019 178.7(5) V1-07-V3 90.0(1)<br>017-V6-019 178.7(5) V1-07-V3 90.0(1)<br>017-V6-021 97.8(4) V2-07-V3 87.9(1)<br>018-V6-027 92.0(5) V2-07-V2 180.00<br>018-V6-027 92.0(5) V2-07-V3 87.9(1)<br>018-V6-027 92.0(5) V2-07-V3 92.1(1)<br>018-V6-021 75.8(4) V2-07-V3 87.9(1)<br>018-V6-021 77.8(4) V4-019-V5 98.8(4)<br>02-V7-028 98.8(5) V2-016-C3 117.2(9)<br>02-V7-028 98.8(5) V2-016-C3 117.2(9)<br>02-V7-028 98.8(5) V2-016-C3 117.2(9)<br>02-V7-028 98.8(5) V2-016-C3 117.2(9)<br>02-V7-028 99.8(5) V2-016-C3 117.2(9)<br>02-V7-028 99.8(5) V2-016-C3 117.2(9)                                                            | O18-V4-O20                                       | 157.4(5)            | O19-V9-O26             | 80.2(4)    |
| 019-V4-020 78.0(4) 019-V9-031 78.0(4)<br>019-V4-022 79.2(4) 019-V9-033 78.4(4)<br>020-V4-022 85.6(4) 025-V9-026 102.7(5)<br>014-V5-015 87.9(4) 025-V9-030 103.6(5)<br>014-V5-016 109.8(5) 025-V9-031 98.2(5)<br>014-V5-032 89.4(4) 026-V9-031 185.0(5)<br>015-V5-016 99.4(5) 026-V9-031 185.0(5)<br>015-V5-016 99.4(4) 030-V9-031 185.0(5)<br>015-V5-016 99.4(4) 030-V9-031 185.0(5)<br>015-V5-032 160.4(4) 030-V9-033 88.8(4)<br>016-V5-032 160.4(4) 030-V9-033 88.8(4)<br>016-V5-033 89.0(4) 031-V9-033 88.8(4)<br>016-V5-033 89.0(4) V1-07-V1 180.00<br>016-V5-033 89.3(5) V1-06-V3 111.1(5)<br>016-V5-033 89.3(5) V1-06-V3 112.0(6)<br>016-V5-033 89.3(5) V1-07-V3 12.0(6)<br>016-V5-033 89.3(5) V1-07-V2 85.6(1)<br>017-V6-018 102.6(5) V1-07-V2 85.6(1)<br>017-V6-018 102.6(5) V1-07-V2 85.6(1)<br>017-V6-018 102.6(5) V1-07-V2 85.6(1)<br>017-V6-027 102.5(5) V1-07-V2 85.6(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>017-V6-032 97.3(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>018-V6-032 83.4(4) V2-07-V3 87.9(1)<br>018-V6-032 83.4(4) V2-07-V3 87.9(1)<br>018-V6-031 179.9(4) V2-07-V3 87.9(1)<br>018-V6-031 179.9(4) V2-07-V3 87.9(1)<br>018-V6-031 97.9(5) V1-07-V3 199.5(5)<br>019-V6-032 83.4(4) V2-07-V3 87.9(1)<br>018-V6-031 97.9(5) V1-07-V3 199.5(5)<br>019-V6-032 83.4(4) V2-07-V3 87.9(1)<br>018-V6-031 97.9(5) V1-07-V3 199.5(5)<br>019-V6-032 83.4(4) V2-07-V3 87.9(1)<br>018-V6-031 97.9(5) V1-07-V3 199.5(5)<br>019-V6-032 83.9(4) V3-07-V3 180.00<br>027-V6-031 97.9(5) V1-08-V3 118.7(9)<br>021-V7-022 83.8(4) V2-07-V3 87.9(1)<br>018-V6-031 97.9(5) V1-08-V3 199.5(5)<br>021-V7-023 97.3(5) V1-014-V2 111.7(5)<br>022-V7-023 97.3(5) V1-014-V2 111.7(9)<br>022-V7-023 97.3(5) V1-014-V2 111.7(9)<br>022-V7-023 97.3(5) V1-014-V2 111.7(9)<br>022-V7-024 97.9(4) V2-01-V3 198.4(4)<br>021-V7-025 97.3(5) V1-014-V2 111.7(9)<br>022-V7-026 97.9(4) V4-019-V9 98.4(1)<br>015-V8-020 77.9(4) V4-019-V9 99.8(4)<br>015-V8-020 77.9(4) V4-                                                            | O18-V4-O22                                       | 91.3(4)             | O19-V9-O30             | 80.0(4)    |
| 019-V4-022 72(4) 019-V9-033 78.4(4)<br>019-V4-022 85.6(4) 025-V9-026 102.7(5)<br>014-V5-015 87.9(4) 025-V9-030 103.6(5)<br>014-V5-019 80.5(4) 025-V9-031 88.2(5)<br>014-V5-023 89.4(4) 025-V9-031 85.0(5)<br>014-V5-033 160.8(5) 026-V9-031 157.5(5)<br>015-V5-016 99.4(5) 026-V9-033 88.8(4)<br>015-V5-019 80.4(4) 030-V9-033 88.8(4)<br>015-V5-033 89.0(4) 031-V9-033 88.8(4)<br>015-V5-033 89.0(4) 031-V9-033 88.8(4)<br>016-V5-032 100.1(5) V2-03-V2 114.1(5)<br>016-V5-033 98.3(5) V1-02-V2 114.1(5)<br>016-V5-033 89.3(4) V1-02-V2 144.1(5)<br>016-V5-033 89.3(4) V1-07-V2 85.6(1)<br>019-V5-033 80.3(4) V1-07-V2 85.6(1)<br>019-V5-033 80.3(4) V1-07-V2 85.6(1)<br>017-V6-019 174.7(5) V1-07-V2 85.6(1)<br>017-V6-019 174.7(5) V1-07-V2 85.6(1)<br>017-V6-019 174.7(5) V1-07-V2 85.6(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-027 102.5(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 80.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>018-V6-031 97.9(5) V1-07-V3 90.0(1)<br>018-V6-031 97.9(5) V1-07-V3 80.0(1)<br>018-V6-027 92.0(5) V2-07-V3 87.79(1)<br>018-V6-027 82.4(4) V2-07-V3 87.79(1)<br>018-V6-021 77.9(4) V2-07-V3 89.9(4)<br>015-V8-020 87.2(4) V4-019-V9 87.79(4)<br>022-V7-028 99.8(5) V2-010-C3 117.2(9)<br>022-V7-028 99.8(5) V2-010-C3 117.2(9)<br>022-V7-028 99.8(5) V2-010-                                                            | O19-V4-O20                                       | 78.0(4)             | O19-V9-O31             | 78.0(4)    |
| C26-V4-C22   85.6(4)   C25-V9-C26   102.7(5)     Ol4-V5-O15   57.9(4)   C25-V9-O31   98.2(5)     Ol4-V5-O16   100.8(5)   C25-V9-O31   98.2(5)     Ol4-V5-O32   89.4(4)   C26-V9-O30   99.3(5)     Ol4-V5-O32   89.4(4)   C26-V9-O31   85.0(5)     Ol5-V5-O16   99.4(4)   C30-V9-O31   85.0(5)     O15-V5-O32   160.4(4)   C30-V9-O33   83.8(4)     O15-V5-O32   160.4(4)   C30-V9-O33   83.8(4)     O15-V5-O33   89.0(4)   C1-O2-V2   114.1(5)     O16-V5-O33   89.3(5)   V1-O6-V3   112.0(5)     O16-V5-O33   80.3(4)   V1-O7-V1   18.00     O15-V5-O33   80.3(4)   V1-O7-V2   94.4(1)     O17-V6-O18   102.6(5)   V1-O7-V2   94.4(1)     O17-V6-O18   102.5(5)   V1-O7-V2   94.4(1)     O17-V6-O27   102.5(5)   V1-O7-V2   85.6(1)     O17-V6-O31   97.9(5)   V1-O7-V3   90.0(1)     O18-V6-O32   97.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O19-V4-O22                                       | 79.2(4)             | O19-V9-O33             | 78.4(4)    |
| 014-VS-015 879(4) 025-V9-030 193,6(5)<br>014-VS-019 80,5(4) 025-V9-031 98,2(5)<br>014-VS-033 160,8(5) 026-V9-031 98,3(5)<br>014-VS-033 160,8(5) 026-V9-031 157,5(5)<br>015-VS-016 99,4(5) 026-V9-033 157,5(5)<br>015-VS-019 80,4(4) 030-V9-033 88,8(5)<br>015-VS-033 89,0(4) 031-V9-033 88,8(6)<br>015-VS-032 160,4(4) 030-V9-033 88,8(6)<br>015-VS-032 160,4(4) 030-V9-033 88,8(6)<br>015-VS-032 106,1(5) V2-03-V2 114,1(5)<br>016-VS-032 106,1(5) V2-03-V3 111,0(5)<br>016-VS-032 80,0(4) V1-07-V1 180,00<br>016-VS-033 89,3(5) V1-06-V3 112,0(5)<br>015-VS-033 89,3(6) V1-07-V2 85,6(1)<br>015-VS-033 87,2(4) V1-07-V2 85,6(1)<br>017-V6-018 102,6(5) V1-07-V2 85,6(1)<br>017-V6-019 174,7(5) V1-07-V2 85,6(1)<br>017-V6-019 174,7(5) V1-07-V2 85,6(1)<br>017-V6-019 174,7(5) V1-07-V2 85,6(1)<br>017-V6-011 97,9(5) V1-07-V2 85,6(1)<br>017-V6-031 97,9(5) V1-07-V2 85,6(1)<br>017-V6-031 97,9(5) V1-07-V3 90,0(1)<br>017-V6-031 97,9(5) V1-07-V3 90,0(1)<br>018-V6-031 175,8(5) V2-07-V3 90,0(1)<br>018-V6-031 175,8(5) V2-07-V3 87,9(1)<br>018-V6-031 175,8(5) V2-07-V3 87,9(1)<br>018-V6-031 175,8(5) V2-07-V3 87,9(1)<br>018-V6-032 77,9(4) V2-07-V3 87,9(1)<br>018-V6-032 117,9(9)<br>022-V7-027 83,8(6) V1-018-V3 117,8(9)<br>021-V7-028 93,3(6) V2-09-V3 116,1(5)<br>021-V7-028 93,3(6) V2-09-V3 116,1(5)<br>022-V7-027 84,8(4) V2-09-V3 116,1(5)<br>022-V7-028 103,1(6) V4-018-V5 91,3(4)<br>015-V8-030 90,7(5) V5-018-V8 90,6(4)<br>015-V8-030 90,7(5) V5-018-V8 90,6(4)<br>015-V8-030 90,7(5) V5-018-V8 90,6(4)<br>015-V8-020 78,0(4) V5-018-V9 90,7(4)<br>022-V7-027 84,8(4) V4-018-V5 90,8(4)<br>015-V8-020                                                           | O20-V4-O22                                       | 85.6(4)             | O25-V9-O26             | 102.7(5)   |
| 014-V5-016 100.8(5) 025-V9-031 98.2(5)<br>014-V5-032 89.4(4) 025-V9-033 98.2(5)<br>014-V5-032 100.8(5) 026-V9-033 157.9(5)<br>015-V5-016 99.4(5) 026-V9-031 157.9(5)<br>015-V5-032 100.1(5) 026-V9-031 157.9(5)<br>015-V5-033 89.0(4) 031-V9-033 89.8(5)<br>015-V5-033 89.0(4) 031-V9-033 89.8(5)<br>015-V5-032 100.1(5) V7-02-V2 114.1(5)<br>016-V5-032 80.0(4) V1-07-V2 112.0(5)<br>015-V5-033 80.3(6) V1-06-V3 111.1(5)<br>016-V5-033 80.3(6) V1-07-V2 85.6(1)<br>016-V5-033 80.3(6) V1-07-V2 85.6(1)<br>016-V5-033 80.3(6) V1-07-V2 85.6(1)<br>017-V6-018 102.6(5) V1-07-V3 90.0(1)<br>017-V6-019 174.7(5) V1-07-V2 94.4(1)<br>017-V6-019 174.7(5) V1-07-V2 85.6(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>018-V6-032 87.4(4) V2-07-V3 85.6(1)<br>018-V6-032 87.4(4) V2-07-V3 87.9(1)<br>018-V6-031 157.8(5) V2-07-V3 87.9(1)<br>018-V6-031 157.8(5) V2-07-V3 87.9(1)<br>018-V6-031 157.8(5) V2-07-V3 87.9(1)<br>018-V6-031 157.9(4) V2-07-V3 87.9(1)<br>018-V6-031 157.9(4) V2-07-V3 87.9(1)<br>018-V6-032 83.4(4) V2-07-V3 87.9(1)<br>018-V6-031 157.9(5) V1-08-V3 109.5(5)<br>027-V6-031 157.9(5) V1-08-V3 109.5(5)<br>027-V6-031 157.9(5) V1-08-V3 109.5(5)<br>027-V6-031 157.9(5) V1-08-V3 109.5(5)<br>027-V6-031 157.9(6) V2-07-V3 87.9(1)<br>019-V6-031 79.9(4) V2-07-V3 87.9(1)<br>019-V6-031 79.9(4) V2-07-V3 87.9(1)<br>019-V6-031 79.9(4) V2-07-V3 87.9(1)<br>019-V6-031 173.9(6) V1-08-V3 109.5(5)<br>027-V7-032 83.3(4) V2-09-V3 108.5(5)<br>027-V7-032 83.9(4) V3-08-C2 117.4(9)<br>022-V7-026 138.4(6) V2-09-V3 108.5(5)<br>027-V7-032 83.9(4) V3-08-C2 117.4(9)<br>022-V7-027 84.8(4) V2-09-V3 108.5(5)<br>027-V7-038 97.3(5) V1-010-C3 117.3(9)<br>022-V7-028 98.3(5) V4-010-V3 111.7(8)<br>022-V7-028 98.3(5) V4-010-V3 111.7(8)<br>022-V7-028 98.3(5) V4-010-V3 111.7(8)<br>022-V7-028 103.1(5) V4-019-V8 99.8(4)<br>015-V8-021 75.9(4) V4-019-V9 91.8(4)<br>015-V8-021 75.9(5) V4-020-C6 115.1(6)<br>020-V7-028 99.6(                                                            | O14-V5-O15                                       | 87.9(4)             | O25-V9-O30             | 103.6(5)   |
| 014-V5-019 80.5(4) 025-V9-033 98.2(5)<br>014-V5-032 89.4(4) 026-V9-030 93.3(5)<br>015-V5-016 99.4(5) 026-V9-031 157.5(5)<br>015-V5-019 80.4(4) 030-V9-033 89.8(5)<br>015-V5-033 89.0(4) 030-V9-033 89.8(5)<br>015-V5-033 89.0(4) 031-V9-033 89.8(5)<br>015-V5-032 100.1(5) V2-03-V3 111.1(5)<br>016-V5-032 100.1(5) V2-03-V3 111.0(5)<br>016-V5-032 80.0(4) V1-07-V1 180.00<br>016-V5-033 89.3(5) V1-06-V3 112.0(5)<br>019-V5-033 89.3(5) V1-06-V3 112.0(5)<br>019-V5-033 80.3(4) V1-07-V2 85.6(1)<br>032-V5-033 80.3(4) V1-07-V2 85.6(1)<br>032-V5-033 80.3(4) V1-07-V2 85.6(1)<br>032-V5-033 80.3(4) V1-07-V3 90.0(1)<br>017-V6-018 102.6(5) V1-07-V3 90.0(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-019 79.5(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>017-V6-031 97.9(5) V1-07-V3 90.0(1)<br>018-V6-071 102.5(5) V1-07-V3 90.0(1)<br>018-V6-071 125.5(5) V1-07-V3 90.0(1)<br>018-V6-071 125.5(5) V1-07-V3 90.0(1)<br>018-V6-071 82.4(4) V2-07-V3 82.1(1)<br>018-V6-071 82.4(4) V2-07-V3 87.9(1)<br>018-V6-071 82.4(4) V2-07-V3 87.9(1)<br>018-V6-071 82.4(4) V2-07-V3 87.9(1)<br>018-V6-071 82.4(4) V2-07-V3 87.9(1)<br>018-V6-071 82.4(4) V2-07-V3 87.9(1)<br>018-V6-072 83.8(4) V2-09-V3 108.1(5)<br>022-V7-022 83.8(4) V2-09-V3 108.1(5)<br>022-V7-022 83.8(4) V2-09-V3 108.1(5)<br>022-V7-022 83.8(4) V2-09-V3 108.1(5)<br>022-V7-024 97.3(5) V1-08-V2 117.8(9)<br>022-V7-025 156.8(6) V1-01-023 117.2(9)<br>022-V7-026 158.4(6) V1-010-C3 117.2(9)<br>022-V7-027 84.8(4) V2-09-V3 108.1(5)<br>022-V7-028 97.3(5) V4-018-V6 111.8(5)<br>022-V7-027 84.8(4) V2-019-V3 99.8(4)<br>021-V7-028 97.3(5) V4-018-V6 99.8(4)<br>021-V7-028 97.3(5) V4-018-V6 99.8(4)<br>021-V7-028 97.3(5) V4-018-V6 99.8(4)<br>021-V7-028 98.3(6) V4-019-V9 99.8(4)<br>021-V7-028 99.8(5) V7-021-V8 99.8(4)<br>021-V7-028 99.8(5) V7-021-V8 99.8(4)<br>021-V8-020 78.0(4) V4-019-V9 99.8(4)<br>021-V8-020 78.0(4 | O14-V5-O16                                       | 100.8(5)            | O25-V9-O31             | 98.2(5)    |
| 014-V5-032 89.4(4) 026-V9-031 85.0(5)<br>015-V5-016 99.4(5) 026-V9-031 157.5(5)<br>015-V5-018 80.4(4) 030-V9-031 157.5(5)<br>015-V5-032 160.4(4) 030-V9-033 85.8(4)<br>016-V5-033 89.0(4) 01-V9-033 85.8(4)<br>016-V5-032 100.1(5) V2-03-V3 111.1(5)<br>016-V5-033 98.3(5) V1-02-V2 114.1(5)<br>016-V5-033 98.3(6) V1-07-V1 180.00<br>019-V5-033 80.3(4) V1-07-V1 88.0(1)<br>019-V5-033 80.3(4) V1-07-V2 85.6(1)<br>017-V6-018 102.6(5) V1-07-V2 85.6(1)<br>017-V6-018 102.6(5) V1-07-V2 85.6(1)<br>017-V6-018 102.6(5) V1-07-V3 90.0(1)<br>017-V6-018 102.6(5) V1-07-V3 90.0(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-031 97.5(5) V1-07-V2 85.6(1)<br>017-V6-032 97.3(5) V1-07-V3 90.0(1)<br>017-V6-031 97.5(5) V1-07-V3 90.0(1)<br>018-V6-032 97.3(5) V1-07-V3 90.0(1)<br>018-V6-031 97.8(4) V2-07-V3 87.9(1)<br>018-V6-031 157.8(5) V2-07-V3 87.9(1)<br>018-V6-032 83.4(4) V2-07-V3 87.9(1)<br>018-V6-031 157.8(5) V1-08-V3 100.00<br>018-V6-031 97.9(4) V2-07-V3 87.9(1)<br>019-V6-031 97.9(4) V2-07-V3 87.9(1)<br>019-V6-031 97.9(4) V2-07-V3 87.9(1)<br>019-V6-031 99.8(5) V1-08-V2 118.7(9)<br>018-V6-032 85.9(4) V3-07-V3 108.1(5)<br>027-V6-032 90.8(5) V1-08-V2 117.7(9)<br>021-V7-022 85.3(4) V2-09-V3 108.1(5)<br>021-V7-022 85.3(4) V3-09-C4 115.2(9)<br>021-V7-022 85.3(4) V3-09-C4 115.2(9)<br>021-V7-023 99.8(5) V3-09-C4 115.2(9)<br>022-V7-026 198.4(6) V3-010-C3 117.3(9)<br>022-V7-028 99.8(5) V3-09-C4 115.8(9)<br>021-V7-028 99.8(5) V3-09-C4 115.8(9)<br>021-V7-028 99.8(5) V3-09-C4 115.8(9)<br>021-V7-028 99.8(5) V3-09-C4 115.8(9)<br>022-V7-028 99.8(5) V3-09-C4 115.8(9)<br>022-V7-028 99.8(5) V3-09-C4 115.8(9)<br>022-V7-028 99.8(5) V3-010-C3 117.3(9)<br>022-V7-028 99.8(5) V3-010-C3 117.3(9)<br>022-V7-028 99.8(5) V3-010-V3 99.8(4)<br>015-V8-029 103.1(5) V4-019-V9 98.9(4)<br>015-V8-020 78.8(4) V4-019-V9 98.9(4)<br>015-V8-021 78.8(4) V4-019-V9 98.9(4)<br>015-V8-021 78.8(4) V4-019-V9 98.9(4)<br>015-V8-021 78.8(4) V4-019-V9 98.9                                                            | O14-V5-O19                                       | 80.5(4)             | O25–V9–O33             | 98.2(5)    |
| 014-VS-033 108.8(5) 026-V9-031 157.9(5)<br>015-VS-019 80.4(4) 030-V9-031 157.9(5)<br>015-VS-023 189.4(4) 031-V9-033 88.8(5)<br>015-VS-033 89.8(5)<br>015-VS-033 89.4(4) 031-V9-033 88.8(4)<br>016-VS-019 178.7(5) V1-02-V2 114.1(5)<br>016-VS-032 100.1(5) V2-03-V3 112.0(5)<br>016-VS-033 80.3(4) V1-07-V1 180.00<br>019-VS-033 80.3(4) V1-07-V2 85.6(1)<br>019-VS-033 80.3(4) V1-07-V2 85.6(1)<br>015-VS-033 80.3(4) V1-07-V2 94.4(1)<br>017-V6-018 102.6(5) V1-07-V3 90.0(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-019 174.7(5) V1-07-V2 85.6(1)<br>017-V6-019 174.7(5) V1-07-V2 85.6(1)<br>017-V6-019 174.7(5) V1-07-V3 90.0(1)<br>017-V6-019 97.8(4) V1-07-V3 90.0(1)<br>018-V6-031 97.8(5) V1-07-V3 90.0(1)<br>018-V6-031 97.8(5) V2-07-V3 92.1(1)<br>018-V6-031 157.8(5) V2-07-V3 92.1(1)<br>018-V6-031 157.8(5) V2-07-V3 87.9(1)<br>018-V6-031 157.8(5) V2-07-V3 87.9(1)<br>018-V6-031 157.8(5) V2-07-V3 87.9(1)<br>018-V6-031 195.9(4) V3-07-V3 180.00<br>027-V6-031 97.9(4) V3-07-V3 180.00<br>027-V6-031 97.9(4) V3-07-V3 180.00<br>027-V6-031 99.9(4) V3-07-V3 180.00<br>027-V6-031 99.9(4) V3-08-C2 117.4(9)<br>021-V7-022 83.3(4) V3-08-C2 117.4(9)<br>021-V7-022 83.3(4) V3-09-V3 180.00<br>027-V6-031 99.5(5) V3-09-V3 180.00<br>027-V7-028 98.5(5) V3-09-V3 180.00<br>027-V7-028 98.5(5) V3-09-V3 180.00<br>027-V7-028 98.5(5) V3-09-V3 180.00<br>021-V7-027 84.8(4) V3-010-V3 117.2(9)<br>022-V7-028 98.5(5) V3-09-V3 180.00<br>022-V7-028 98.5(5) V3-019-V8 98.4(4)<br>015-V8-029 103.1(5) V4-019-V9 89.5(4)<br>015-V8-020 87.2(4) V4-019-V9 89.5(4)<br>015-V8-020 87.2(4) V4-019-V9 89.5(4)<br>015-V8-020 87.2(4) V4-019-V9 80.7(4)<br>019-V8-021 99.8(4                                                        | O14-V5-O32                                       | 89.4(4)             | O26-V9-O30             | 93.3(5)    |
| 015-V5-016   99.4(5)   026-V9-033   157.5(5)     015-V5-019   80.4(4)   030-V9-033   858.(5)     015-V5-032   160.4(4)   030-V9-033   858.(5)     015-V5-033   89.0(4)   021-V9-033   858.(4)     016-V5-033   98.3(5)   V1-02-V2   114.1(5)     016-V5-033   98.3(5)   V1-06-V3   112.0(5)     015-V5-033   80.3(4)   V1-07-V1   180.00     015-V5-033   80.3(4)   V1-07-V2   85.6(1)     015-V5-033   80.3(4)   V1-07-V2   85.6(1)     017-V6-018   102.6(5)   V1-07-V2   94.4(1)     017-V6-019   174.7(5)   V1-07-V2   94.4(1)     017-V6-019   174.7(5)   V1-07-V2   94.4(1)     017-V6-019   178.9(4)   V1-07-V3   90.0(1)     018-V6-027   92.0(5)   V2-07-V3   90.0(1)     018-V6-021   157.8(5)   V1-07-V3   90.0(1)     018-V6-031   179.9(4)   V2-07-V3   87.9(1)     018-V6-031   179.9(4) </td <td>O14-V5-O33</td> <td>160.8(5)</td> <td>O26-V9-O31</td> <td>85.0(5)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O14-V5-O33                                       | 160.8(5)            | O26-V9-O31             | 85.0(5)    |
| 015-V5-019   80.4(4)   030-V9-031   157.9(5)     015-V5-032   160.4(4)   030-V9-033   88.8(5)     015-V5-033   89.0(4)   031-V9-033   88.8(5)     016-V5-019   178.7(5)   V1-02-V2   114.1(5)     016-V5-032   100.1(5)   V2-03-V3   111.0(5)     016-V5-032   80.0(4)   V1-07-V1   180.00     019-V5-033   80.3(4)   V1-07-V2   85.6(1)     032-V5-033   87.2(4)   V1-07-V2   85.6(1)     017-V6-018   102.6(5)   V1-07-V2   85.6(1)     017-V6-019   174.7(5)   V1-07-V2   85.6(1)     017-V6-019   174.7(5)   V1-07-V2   85.6(1)     017-V6-019   78.8(4)   V1-07-V3   90.0(1)     018-V6-027   92.0(5)   V2-07-V3   92.1(1)     018-V6-031   157.8(5)   V2-07-V3   87.9(1)     018-V6-031   79.9(4)   V2-07-V3   87.9(1)     018-V6-031   79.9(4)   V2-07-V3   87.9(1)     018-V6-031   79.9(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O15V5O16                                         | 99.4(5)             | O26-V9-O33             | 157.5(5)   |
| O15-V5-032   160.4(4)   O30-V9-033   89.8(5)     O15-V5-033   89.0(4)   O31-V9-033   83.8(4)     O16-V5-019   178.7(5)   V1-02-V2   114.1(5)     O16-V5-033   98.3(5)   V1-06-V3   112.0(5)     O16-V5-033   80.0(4)   V1-07-V1   180.00     O19-V5-033   80.3(4)   V1-07-V2   85.6(1)     O17-V6-018   102.6(5)   V1-07-V3   90.0(1)     O17-V6-018   102.6(5)   V1-07-V2   94.4(1)     O17-V6-018   102.6(5)   V1-07-V3   90.0(1)     O17-V6-018   102.6(5)   V1-07-V2   94.4(1)     O17-V6-021   102.5(5)   V1-07-V3   90.0(1)     O18-V6-031   97.9(5)   V1-07-V3   90.0(1)     O18-V6-032   83.4(4)   V2-07-V3   87.9(1)     O18-V6-031   175.8(5)   V2-07-V3   87.9(1)     O18-V6-032   79.4(4)   V2-07-V3   87.9(1)     O18-V6-031   91.9(5)   V1-08-V2   118.7(9)     O2-V7-022   83.4(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O15-V5-O19                                       | 80.4(4)             | O30-V9-O31             | 157.9(5)   |
| Ols-VS-033   858(4)   Ols-VS-033   858(4)     Ols-VS-032   100.1(5)   V2-03-V3   111.1(5)     Ols-VS-032   100.1(5)   V2-03-V3   112.0(5)     Ols-VS-033   853(5)   V1-06-V3   112.0(5)     Ols-VS-033   80.3(4)   V1-07-V2   85.6(1)     Ols-VS-033   87.2(4)   V1-07-V2   94.4(1)     Ol7-V6-018   102.6(5)   V1-07-V3   90.0(1)     Ol7-V6-019   174.7(5)   V1-07-V2   85.6(1)     Ol7-V6-019   174.7(5)   V1-07-V3   90.0(1)     Ol7-V6-019   79.5(5)   V1-07-V3   90.0(1)     Ol8-V6-027   92.0(5)   V2-07-V3   92.1(1)     Ol8-V6-031   157.8(5)   V2-07-V3   92.1(1)     Ol8-V6-031   157.8(5)   V2-07-V3   92.1(1)     Ol8-V6-031   79.9(4)   V2-07-V3   92.1(1)     Ol8-V6-031   79.9(4)   V2-07-V3   92.1(1)     Ol9-V6-031   79.9(4)   V2-07-V3   92.1(1)     Ol9-V6-031   99.5(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 015-V5-032                                       | 160.4(4)            | O30-V9-O33             | 89.8(5)    |
| $\begin{array}{c} 0.16-V5-0.19 & 17.8.7(5) & V1-02-V2 & 114.1(5) \\ 0.16-V5-0.32 & 100.1(5) & V2-03-V3 & 111.1(5) \\ 0.16-V5-0.33 & 98.3(5) & V1-06-V3 & 112.0(5) \\ 0.19-V5-0.33 & 80.3(4) & V1-07-V2 & 85.6(1) \\ 0.32-V5-0.33 & 87.2(4) & V1-07-V2 & 94.4(1) \\ 0.17-V6-0.18 & 102.6(5) & V1-07-V3 & 90.0(1) \\ 0.17-V6-0.18 & 102.6(5) & V1-07-V2 & 94.4(1) \\ 0.17-V6-0.18 & 102.5(5) & V1-07-V2 & 94.4(1) \\ 0.17-V6-0.11 & 97.9(5) & V1-07-V2 & 94.4(1) \\ 0.17-V6-0.22 & 97.3(5) & V1-07-V2 & 94.4(1) \\ 0.17-V6-0.32 & 97.3(5) & V1-07-V3 & 90.0(1) \\ 0.18-V6-0.12 & 97.9(5) & V2-07-V3 & 90.0(1) \\ 0.18-V6-0.12 & 92.0(5) & V2-07-V3 & 90.0(1) \\ 0.18-V6-0.22 & 83.4(4) & V2-07-V3 & 87.9(1) \\ 0.18-V6-0.22 & 83.4(4) & V2-07-V3 & 87.9(1) \\ 0.19-V6-0.22 & 83.4(4) & V2-07-V3 & 87.9(1) \\ 0.19-V6-0.32 & 10.2(5) & V1-08-V3 & 100.00 \\ 0.27-V6-0.31 & 97.9(4) & V2-07-V3 & 100.00 \\ 0.27-V6-0.32 & 160.2(5) & V1-08-V3 & 109.5(5) \\ 0.27-V6-0.32 & 160.2(5) & V1-08-V3 & 109.5(5) \\ 0.21-V7-0.22 & 83.3(4) & V2-09-V3 & 108.1(6) \\ 0.21-V7-0.22 & 83.3(4) & V2-09-V3 & 108.1(5) \\ 0.21-V7-0.25 & 90.8(5) & V2-09-V4 & 116.2(9) \\ 0.21-V7-0.26 & 90.8(5) & V2-09-V4 & 116.2(9) \\ 0.21-V7-0.26 & 19.8(5) & V1-010-V2 & 117.4(9) \\ 0.22-V7-0.26 & 19.8(5) & V1-010-V3 & 107.7(5) \\ 0.22-V7-0.28 & 97.3(5) & V1-010-V3 & 107.7(5) \\ 0.22-V7-0.28 & 97.3(5) & V1-010-V3 & 107.7(5) \\ 0.22-V7-0.28 & 10.1(5) & V4-018-V6 & 110.8(5) \\ 0.22-V7-0.28 & 10.3.1(5) & V4-018-V6 & 111.8(5) \\ 0.22-V7-0.28 & 10.3.1(5) & V4-018-V6 & 111.8(5) \\ 0.22-V7-0.28 & 10.3.1(5) & V4-018-V6 & 113.8(5) \\ 0.22-V7-0.28 & 10.3.1(5) & V4-018-V6 & 10.18.4(5) \\ 0.22-V7-0.28 & 10.3.1(5) & V3-019-V3 & 90.6(4) \\ 0.15-V8-0.20 & 87.2(4) & V4-019-V3 & 91.3(4) \\ 0.15-V8-0.20 & 87.2(4) & V4-019-V3 & 91.3(4) \\ 0.15-V8-0.20 & 87.2(4) & V4-019-V3 & 90.6(4) \\ 0.15-V8-0.20 & 87.2(4) & V4-019-V3 & 90.6(4) \\ 0.15-V8-0.20 & 77.0(5) & V3-019-V3 & 90.6(4) \\ 0.15-V$                                                                                                               | 015-V5-033                                       | 89.0(4)             | 031-V9-033             | 83.8(4)    |
| $\begin{array}{c} 0.16 \times 3-0.52 & 100.1(5) & V-2.03 \times 3 & 111.1(5) \\ 0.16 \times 3-0.52 & 100.1(5) & V-2.05 \times 3 & 112.0(5) \\ 0.19 \times 5-0.33 & 80.3(4) & V1-07 \times V1 & 180.00 \\ 0.19 \times 5-0.33 & 80.3(4) & V1-07 \times V2 & 85.6(1) \\ 0.32 \times 5-0.33 & 87.2(4) & V1-07 \times V2 & 94.4(1) \\ 0.17 \times 6-0.19 & 112.6(5) & V1-07 \times V3 & 90.0(1) \\ 0.17 \times 6-0.19 & 112.5(5) & V1-07 - V2 & 85.6(1) \\ 0.17 - V6-0.27 & 102.5(5) & V1-07 - V2 & 85.6(1) \\ 0.17 - V6-0.31 & 97.9(5) & V1-07 - V3 & 90.0(1) \\ 0.18 - V6-0.19 & 78.9(4) & V1-07 - V3 & 90.0(1) \\ 0.18 - V6-0.19 & 78.9(4) & V1-07 - V3 & 90.0(1) \\ 0.18 - V6-0.19 & 78.9(4) & V1-07 - V3 & 90.0(1) \\ 0.18 - V6-0.11 & 15.78(5) & V2-07 - V3 & 87.9(1) \\ 0.18 - V6-0.27 & 92.0(5) & V2-07 - V3 & 87.9(1) \\ 0.18 - V6-0.31 & 15.78(5) & V2-07 - V3 & 87.9(1) \\ 0.19 - V6-0.31 & 79.9(4) & V2-07 - V3 & 87.9(1) \\ 0.19 - V6-0.31 & 79.9(4) & V2-07 - V3 & 180.00 \\ 0.27 - V6-0.31 & 99.9(4) & V2-07 - V3 & 180.00 \\ 0.27 - V6-0.31 & 99.9(4) & V3-07 - V3 & 180.00 \\ 0.27 - V6-0.31 & 99.8(5) & V1-08 - C2 & 118.7(9) \\ 0.21 - V7-0.22 & 83.3(4) & V2-09 - V3 & 108.1(5) \\ 0.21 - V7-0.22 & 83.3(4) & V2-09 - V3 & 108.1(5) \\ 0.21 - V7-0.25 & 19.8(5) & V1-010 - V2 & 117.2(9) \\ 0.21 - V7-0.26 & 99.8(5) & V1-010 - V2 & 117.8(9) \\ 0.21 - V7-0.26 & 19.8(5) & V1-010 - V2 & 117.8(9) \\ 0.22 - V7-0.26 & 19.8(5) & V1-010 - V3 & 107.7(5) \\ 0.22 - V7-0.26 & 19.8(5) & V1-010 - V3 & 107.7(5) \\ 0.22 - V7-0.28 & 19.3.1(5) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.29 & 103.1(5) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.21 & 159.4(4) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.21 & 159.4(4) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.21 & 159.4(4) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.21 & 159.4(4) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.21 & 159.4(4) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.21 & 159.4(4) & V4-019 - V8 & 99.0(4) \\ 0.5 - V8-0.21 & 159.4(4) & V4-019 - V8 & 109.8(5) \\ 0.2 - V7-0.28 & 103.1(5) & V5-019 - V8 & 104.8(5) \\ 0.15 - V8-0.20 & 77.0(5) & V3-019 - V8 & 104.8(5) \\ 0.15 - V8-0.21 & 79.8(4) & V4-019 - V8 & 109.9(5) \\ 0.15 - V8-0.21 & 79.8(4) & V4-019 - V8 & 109.9(5) \\ 0.2 - V8$                                                 | 016-03-019                                       | 1/8./(5)            | V1-02-V2               | 114.1(5)   |
| $\begin{array}{c} 0.16 \times 1-0.33 & 95.3(.3) & V1-06 \times 3 & 112.0(.9) \\ 0.19 \times 1-0.32 & 80.0(.4) & V1-07 - V1 & 180.00 \\ 0.19 \times 1-0.32 & 85.5(.1) & 0.10 \\ 0.19 \times 1-0.33 & 87.2(.4) & V1-07 - V2 & 85.6(.1) \\ 0.17 \times 1-0.19 & 114.7(.5) & V1-07 - V3 & 90.0(.1) \\ 0.17 - V6-019 & 114.7(.5) & V1-07 - V2 & 94.4(.1) \\ 0.17 - V6-019 & 114.7(.5) & V1-07 - V2 & 94.4(.1) \\ 0.17 - V6-019 & 114.7(.5) & V1-07 - V2 & 85.6(.1) \\ 0.17 - V6-032 & 97.3(.5) & V1-07 - V3 & 90.0(.1) \\ 0.18 - V6-032 & 97.3(.5) & V1-07 - V3 & 90.0(.1) \\ 0.18 - V6-031 & 157.8(.5) & V2-07 - V3 & 90.0(.1) \\ 0.18 - V6-032 & 83.4(.4) & V2-07 - V3 & 87.9(.1) \\ 0.18 - V6-032 & 83.4(.4) & V2-07 - V3 & 87.9(.1) \\ 0.18 - V6-031 & 79.9(.4) & V2-07 - V3 & 87.9(.1) \\ 0.19 - V6-032 & 83.4(.4) & V2-07 - V3 & 180.00 \\ 0.27 - V6-031 & 91.5(.5) & V1-08 - V2 & 118.7(.9) \\ 0.31 - V6-032 & 150.2(.5) & V1-08 - V2 & 117.4(.9) \\ 0.21 - V7-022 & 83.3(.4) & V2-09 - V3 & 108.1(.5) \\ 0.21 - V7-022 & 83.3(.4) & V2-09 - V3 & 108.1(.5) \\ 0.21 - V7-022 & 83.3(.4) & V2-09 - C4 & 117.8(.9) \\ 0.21 - V7-022 & 83.3(.4) & V2-09 - C4 & 117.8(.9) \\ 0.21 - V7-022 & 97.3(.5) & V1-010 - V2 & 111.7(.5) \\ 0.21 - V7-023 & 97.3(.5) & V1-010 - V2 & 117.3(.9) \\ 0.22 - V7-024 & 97.3(.5) & V1-010 - V2 & 117.3(.9) \\ 0.22 - V7-025 & 90.8(.5) & V2-09 - C4 & 117.8(.9) \\ 0.22 - V7-025 & 91.3(.5) & V4-018 - V6 & 111.8(.5) \\ 0.22 - V7-025 & 91.3(.5) & V4-018 - V6 & 111.8(.5) \\ 0.22 - V7-026 & 97.3(.5) & V1-010 - V2 & 117.3(.9) \\ 0.22 - V7-027 & 94.8(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 159.4(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 159.4(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 159.4(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 159.4(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 79.8(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 79.8(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 78.0(.4) & V5-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 78.0(.4) & V5-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 78.0(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 - 021 & 78.0(.4) & V4-019 - V8 & 94.1(.4) \\ 0.15 - V8 -$                                                                                     | 016 - V5 - 032                                   | 100.1(5)            | V2-03-V3               | 111.1(5)   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $010 - \sqrt{3} - 033$                           | 98.3(3)             | V1-00-V3               | 112.0(5)   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $019 - \sqrt{3} - 032$                           | 80.3(4)             | V1-07-V1               | 180.00     |
| $\begin{array}{c} 0.22-V5-0.23 & 0.12(4) & V1-07-V3 & 90.0(1) \\ 0.17-V6-018 & 102.6(5) & V1-07-V3 & 90.0(1) \\ 0.17-V6-027 & 102.5(5) & V1-07-V2 & 94.4(1) \\ 0.17-V6-031 & 97.9(5) & V1-07-V2 & 94.4(1) \\ 0.17-V6-032 & 97.3(5) & V1-07-V3 & 90.0(1) \\ 0.18-V6-019 & 78.9(4) & V1-07-V3 & 90.0(1) \\ 0.18-V6-027 & 92.0(5) & V2-07-V3 & 90.0(1) \\ 0.18-V6-031 & 157.8(5) & V2-07-V3 & 97.9(1) \\ 0.18-V6-032 & 83.4(4) & V2-07-V3 & 87.9(1) \\ 0.19-V6-032 & 83.4(4) & V2-07-V3 & 87.9(1) \\ 0.19-V6-032 & 77.9(4) & V2-07-V3 & 92.1(1) \\ 0.19-V6-031 & 79.9(4) & V2-07-V3 & 92.1(1) \\ 0.19-V6-032 & 17.9(4) & V2-07-V3 & 180.00 \\ 0.27-V6-031 & 91.5(5) & V1-08-V3 & 109.5(5) \\ 0.27-V6-032 & 160.2(5) & V1-08-V3 & 109.5(5) \\ 0.27-V6-032 & 160.2(5) & V1-08-C2 & 117.4(9) \\ 0.21-V7-022 & 83.3(4) & V2-09-V3 & 108.1(5) \\ 0.21-V7-026 & 90.8(5) & V2-09-C4 & 117.8(9) \\ 0.21-V7-027 & 15.68(4) & V2-09-C4 & 117.8(9) \\ 0.22-V7-026 & 158.4(5) & V1-010-V2 & 111.7(5) \\ 0.22-V7-027 & 84.8(4) & V2-010-C3 & 117.2(9) \\ 0.22-V7-028 & 97.3(5) & V1-010-V2 & 111.7(5) \\ 0.22-V7-028 & 98.3(5) & V4-014-V5 & 107.7(5) \\ 0.22-V7-028 & 108.1(5) & V4-019-V5 & 91.3(4) \\ 0.15-V8-019 & 80.1(4) & V4-019-V5 & 91.3(4) \\ 0.15-V8-020 & 87.2(4) & V4-019-V8 & 94.1(4) \\ 0.15-V8-020 & 97.0(5) & V4-020-C6 & 115.5(9) \\ 0.20-V8-020 & 97.0(5) & V4-020-C6 & 115.5(9) \\ 0.20-V8-020 & 97.0(5) & V4-020-C6 & 115.5(9) \\ 0.20-V8-020 & 97.0(5) & V4-020-C6 & 117.3(9) \\ 0.20-V8-020 & 96.6(5) & V7-021-V8 & 110.6(5) \\ 0.20-V8-020$                                                                                                              | 019-V5-033                                       | 87 2(4)             | V1-07 V2               | 94.4(1)    |
| $\begin{array}{cccc} 0.1 \times 0.2 & 0.0 & 0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 017-V6-018                                       | 102 6(5)            | V1-07-V3               | 90.0(1)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 017-V6-019                                       | 174.7(5)            | V1-07-V3               | 90.0(1)    |
| 017-v6-031   973(5)   V1-07-V2   85.6(1)     017-v6-032   973(5)   V1-07-V3   90.0(1)     018-V6-019   78.9(4)   V1-07-V3   90.0(1)     018-V6-027   92.0(5)   V2-07-V2   180.00     018-V6-031   157.8(5)   V2-07-V3   92.1(1)     018-V6-032   83.4(4)   V2-07-V3   87.9(1)     019-V6-032   83.4(4)   V2-07-V3   92.1(1)     019-V6-031   79.9(4)   V2-07-V3   92.1(1)     019-V6-032   87.9(1)   V2-07-V3   92.1(1)     019-V6-032   91.5(5)   V1-08-V3   109.5(5)     027-V6-031   91.5(5)   V1-08-V3   109.5(5)     021-V7-022   83.3(4)   V2-09-V3   108.1(5)     021-V7-022   83.3(4)   V2-09-V3   108.1(5)     021-V7-024   97.3(5)   V1-010-V2   111.7(5)     021-V7-027   156.8(4)   V3-09-C4   116.2(9)     021-V7-028   97.3(5)   V1-010-C3   117.3(9)     022-V7-028   98.3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 017-V6-027                                       | 102.5(5)            | V1-07-V2               | 94.4(1)    |
| 017-V6-032 97,3(5) V1-07-V3 90,0(1)<br>018-V6-019 78.9(4) V1-07-V3 90,0(1)<br>018-V6-027 92,0(5) V2-07-V2 180,00<br>018-V6-031 157.8(5) V2-07-V2 180,00<br>018-V6-032 83,4(4) V2-07-V3 87,9(1)<br>019-V6-031 79,9(4) V2-07-V3 87,9(1)<br>019-V6-032 77,9(4) V2-07-V3 180,00<br>027-V6-032 160,2(5) V1-08-V3 109,5(5)<br>027-V6-032 160,2(5) V1-08-C2 1118,7(9)<br>031-V6-032 85,9(4) V3-08-C2 117,4(9)<br>021-V7-022 83,3(4) V2-09-V3 108,1(5)<br>021-V7-026 90,8(5) V2-09-C4 116,2(9)<br>021-V7-027 156,8(4) V3-09-C4 117,8(9)<br>021-V7-027 156,8(4) V3-09-C4 117,8(9)<br>021-V7-027 156,8(4) V3-09-C4 117,8(9)<br>021-V7-027 156,8(4) V2-09-C3 117,2(9)<br>022-V7-027 19,3(5) V1-010-C3 117,2(9)<br>022-V7-027 19,3(5) V4-014-V5 107,7(5)<br>022-V7-028 103,1(5) V4-018-V6 111,8(5)<br>026-V7-028 103,1(5) V4-019-V5 91,3(4)<br>015-V8-019 80,1(4) V4-019-V6 89,0(4)<br>015-V8-020 87,2(4) V4-019-V6 93,5(4)<br>015-V8-020 87,2(4) V4-019-V6 93,5(4)<br>015-V8-020 79,13,1(5) V5-019-V8 117,6(6)<br>015-V8-029 103,1(5) V5-019-V8 117,6(6)<br>015-V8-029 103,1(5) V5-019-V8 117,8(9)<br>015-V8-020 79,8(4) V4-019-V9 91,8(4)<br>015-V8-020 79,8(4) V4-019-V9 91,8(4)<br>015-V8-020 78,0(4) V4-020-V8 109,9(5)<br>020-V8-021 79,8(4) V4-020-V8 109,9(5)<br>020-V8-021 79,8(4) V4-020-V8 109,9(5)<br>020-V8-021 79,8(4) V4-020-V8 109,9(5)<br>020-V8-020 99,0(6) V7-021-C8 115,5(9)<br>021-V8-030 155,1(5) V7-021-C8 115,5(9)<br>021-V8-030 155,1(5) V7-021-C8 117,5(9)<br>(continued)                                                                                                                                                                             | O17-V6-O31                                       | 97.9(5)             | V1-07-V2               | 85.6(1)    |
| OIB-V6-O19   78.9(4)   V1-O7-V3   90.0(1)     OIB-V6-O27   92.0(5)   V2-O7-V2   180.00     OIB-V6-O31   157.8(5)   V2-O7-V3   92.1(1)     OIB-V6-O32   83.4(4)   V2-O7-V3   87.9(1)     OIP-V6-O31   79.9(4)   V2-O7-V3   87.9(1)     OIP-V6-O32   77.9(4)   V3-O7-V3   180.00     O27-V6-O31   91.5(5)   V1-O8-V3   109.5(5)     O27-V6-O32   160.2(5)   V1-O8-C2   118.7(9)     O31-V6-O32   85.9(4)   V3-O9-V3   108.1(5)     O21-V7-O22   83.3(4)   V2-O9-V3   108.1(5)     O21-V7-O26   90.8(5)   V2-O9-C4   117.4(9)     O21-V7-O27   156.8(4)   V3-O9-C4   117.8(9)     O21-V7-O28   97.3(5)   V1-O10-C3   117.3(9)     O22-V7-O26   158.4(5)   V1-O10-C3   117.3(9)     O22-V7-O27   84.8(4)   V2-O10-C3   117.3(9)     O22-V7-O28   103.1(5)   V4-O14-V5   107.7(5)     O26-V7-O27   93.0(5) <td>O17-V6-O32</td> <td>97.3(5)</td> <td>V1-07-V3</td> <td>90.0(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O17-V6-O32                                       | 97.3(5)             | V1-07-V3               | 90.0(1)    |
| OIB-V6-027   92.0(5)   V2-07-V2   180.00     018-V6-031   157.8(5)   V2-07-V3   92.1(1)     019-V6-032   83.4(4)   V2-07-V3   87.9(1)     019-V6-031   79.9(4)   V2-07-V3   87.9(1)     019-V6-032   77.9(4)   V2-07-V3   180.00     027-V6-031   91.5(5)   V1-08-V3   109.5(5)     027-V6-032   160.2(5)   V1-08-C2   118.7(9)     031-V6-032   85.9(4)   V3-08-C2   117.4(9)     021-V7-022   83.3(4)   V2-09-V3   108.1(5)     021-V7-026   90.8(5)   V1-00-V2   117.8(9)     021-V7-027   156.8(4)   V3-09-C4   117.8(9)     021-V7-028   97.3(5)   V1-010-V2   111.7(5)     022-V7-027   156.8(4)   V2-010-C3   117.3(9)     022-V7-028   98.3(5)   V4-014-V5   107.7(5)     022-V7-028   98.3(5)   V4-014-V5   117.3(9)     022-V7-028   103.1(5)   V4-019-V5   91.3(4)     025-V7-028   103.1(5)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O18-V6-O19                                       | 78.9(4)             | V1-07-V3               | 90.0(1)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O18-V6-O27                                       | 92.0(5)             | V2-07-V2               | 180.00     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O18-V6-O31                                       | 157.8(5)            | V207V3                 | 92.1(1)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O18-V6-O32                                       | 83.4(4)             | V2-07-V3               | 87.9(1)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O19-V6-O27                                       | 82.4(4)             | V2-O7-V3               | 87.9(1)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O19-V6-O31                                       | 79.9(4)             | V2-O7-V3               | 92.1(1)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 019-V6-032                                       | 77.9(4)             | V3-07-V3               | 180.00     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 027-V6-031                                       | 91.5(5)             | V1-08-V3               | 109.5(5)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $02/-v_0-032$                                    | 100.2(5)            | V1-08-C2               | 118.7(9)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $031 - v_0 - 032$<br>$021 - v_7 - 022$           | 83 3(4)             | V2-00-V3               | 117.4(9)   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $021 - \sqrt{7 - 022}$<br>$021 - \sqrt{7 - 026}$ | 90.8(5)             | V2-09-04               | 116 2(9)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 021 - V7 - 023                                   | 156 8(4)            | V3-09-C4               | 117.8(9)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O21-V7-O28                                       | 97.3(5)             | V1-010-V2              | 111.7(5)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O22-V7-O26                                       | 158.4(5)            | V1-010-C3              | 117.2(9)   |
| 022-V7-028 $98.3(5)$ $V4-014-V5$ $107.7(5)$ $026-V7-027$ $93.0(5)$ $V5-015-V8$ $108.8(5)$ $026-V7-028$ $103.1(5)$ $V4-018-V6$ $111.8(5)$ $027-V7-028$ $104.1(5)$ $V4-019-V5$ $91.3(4)$ $015-V8-019$ $80.1(4)$ $V4-019-V6$ $89.0(4)$ $015-V8-020$ $87.2(4)$ $V4-019-V8$ $94.1(4)$ $015-V8-021$ $159.4(4)$ $V4-019-V9$ $176.6(6)$ $015-V8-029$ $103.1(5)$ $V5-019-V6$ $93.5(4)$ $015-V8-020$ $78.0(4)$ $V5-019-V8$ $90.6(4)$ $015-V8-020$ $78.0(4)$ $V5-019-V8$ $90.6(4)$ $019-V8-020$ $78.0(4)$ $V5-019-V9$ $91.8(4)$ $019-V8-020$ $78.0(4)$ $V6-019-V8$ $174.8(5)$ $019-V8-021$ $79.8(4)$ $V6-019-V9$ $92.0(4)$ $019-V8-029$ $174.1(5)$ $V6-019-V9$ $92.0(4)$ $019-V8-029$ $97.0(5)$ $V4-020-V8$ $109.9(5)$ $020-V8-021$ $84.3(4)$ $V4-020-V8$ $109.9(5)$ $020-V8-021$ $84.3(4)$ $V4-020-V8$ $109.9(5)$ $020-V8-020$ $95.1(5)$ $V8-020-C6$ $117.3(9)$ $021-V8-029$ $96.6(5)$ $V7-021-C8$ $117.5(9)$ $021-V8-030$ $90.6(4)$ $V7-021-C8$ $117.5(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O22-V7-O27                                       | 84.8(4)             | V2-O10-C3              | 117.3(9)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O22-V7-O28                                       | 98.3(5)             | V4014V5                | 107.7(5)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O26-V7-O27                                       | 93.0(5)             | V5-O15-V8              | 108.8(5)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O26-V7-O28                                       | 103.1(5)            | V4O18V6                | 111.8(5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O27-V7-O28                                       | 104.1(5)            | V4O19V5                | 91.3(4)    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O15-V8-O19                                       | 80.1(4)             | V4O19V6                | 89.0(4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O15V8O20                                         | 87.2(4)             | V4-O19-V8              | 94.1(4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O15-V8-O21                                       | 159.4(4)            | V4019V9                | 176.6(6)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O15-V8-O29                                       | 103.1(5)            | V5-019-V6              | 93.5(4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $015 - \sqrt{8} - 030$                           | 90.7(5)             | V5-019-V8              | 90.0(4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 019 - V8 - 020                                   | 78.0(4)             | V5-019-V9<br>V6 010 V8 | 91.0(4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 019-00-021                                       | 77.0(4)<br>174 1(5) | V6_019-V8<br>V6_010_V0 | 92 0(4)    |
| O20-V8-O21   84.3(4)   V4-O20-V8   109.9(5)     O20-V8-O29   97.0(5)   V4-O20-C6   115.5(9)     O20-V8-O30   159.1(5)   V8-O20-C6   117.3(9)     O21-V8-O29   96.6(5)   V7-O21-V8   110.6(5)     O21-V8-O30   90.6(4)   V7-O21-C8   117.5(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 019-029                                          | 81 2(4)             | V8-019-V9              | 84.7(4)    |
| O20-V8-O29 97.0(5) V4-O20-C6 115.5(9)   O20-V8-O30 159.1(5) V8-O20-C6 117.3(9)   O21-V8-O29 96.6(5) V7-O21-V8 110.6(5)   O21-V8-O30 90.6(4) V7-O21-C8 117.5(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O20-V8-O21                                       | 84.3(4)             | V4-020-V8              | 109.9(5)   |
| O20-V8-O30   159.1(5)   V8-O20-C6   117.3(9)     O21-V8-O29   96.6(5)   V7-O21-V8   110.6(5)     O21-V8-O30   90.6(4)   V7-O21-C8   117.5(9)     (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O20-V8-O29                                       | 97.0(5)             | V4O20C6                | 115.5(9)   |
| O21-V8-O29   96.6(5)   V7-O21-V8   110.6(5)     O21-V8-O30   90.6(4)   V7-O21-C8   117.5(9)     (continued)   (continued)   (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O20-V8-O30                                       | 159.1(5)            | V8-020-C6              | 117.3(9)   |
| O21-V8-O30 90.6(4) V7-O21-C8 117.5(9)<br>(continued) (continu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O21-V8-O29                                       | 96.6(5)             | V7-O21-V8              | 110.6(5)   |
| (continued) (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O21-V8-O30                                       | 90.6(4)             | V7-O21-C8              | 117.5(9)   |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | (                   | (continued)            | (continue) |

103

ed)

TABLE 7. (continued)

| <br>V8–O21–C8 | 120.0(9) |
|---------------|----------|
| V4O22V7       | 111.0(5) |
| V4022C7       | 114.3(9) |
| V7-O22-C7     | 120(1)   |
| V7-O26-V9     | 114.0(5) |
| V6-O27-V7     | 112.3(5) |
| V8-O30-V9     | 114.0(5) |
| V6-O31V9      | 109.9(5) |
| V6-O31-C10    | 116.4(9) |
| V9-O31-C10    | 120(1)   |
| V5-O32-V6     | 108.7(5) |
| V5O32C12      | 118.9(9) |
| V6-O32-C12    | 114.2(9) |
| V5-O33-V9     | 109.2(5) |
| V5-033-C11    | 115.2(9) |
| V9O33C11      | 120.6(9) |
|               |          |

As the details of the synthesis and spectroscopy of polyoxoalkoxovanadium complexes have been presented elsewhere [24], only a brief discussion of these aspects will be developed. The reactions of  $[(n-C_4H_9)_4N]_3$ - $[H_3V_{10}O_{28}]$  with the tris(hydroxymethyl)methane derivatives (HOCH<sub>2</sub>)<sub>3</sub>CR (R=-NHC(O)CHCH<sub>2</sub> and -NO<sub>2</sub>) in acetonitrile yield upon recrystallization the hexavanadate clusters  $[(n-C_4H_9)_4N]_2[V_6O_{13}-{(OCH_2)_3CR}_2]$ . Under optimal conditions, the stoichiometry of the process conforms to the following:

 $2(TBA)_3[H_3V_{10}O_{28}] + 6(HOCH_2)_3CR \longrightarrow$ 

 $3(TBA)_{2}[V_{6}O_{13}{(OCH_{2})_{3}CR}_{2}] + 12H_{2}O + V_{2}O_{5}$ 

An unusual feature of the reaction chemistry of tris(hydroxymethyl)methane derived ligands with  $(TBA)_3[H_3V_{10}O_{28}]$  is the behavior of the tris-(hydroxymethyl)aminomethane species,  $(HOCH_2)_3$ -CNH<sub>2</sub>, which acts as a reductant to give the mixed valence isopolyanion  $(TBA)_4[V_{10}O_{26}]$  [26, 27] as the only vanadium containing product of the reaction. In contrast, derivatization of the amino group as in  $(HOCH_2)_3$ CNHC(O)CHCH<sub>2</sub> or  $(HOCH_2)_3$ CNMe<sub>2</sub> [24] results in isolation of the hexavanadate species  $(TBA)_2[V_6O_{13}{(OCH_2)_3}CNRR']_2]$ .

hexanuclear The clusters (TBA)2-V(V) $[V_6O_{13}{(OCH_2)_3CR}_2]$  are readily reduced both chemically and electrochemically [24]. Thus, addition of 2 equiv. of 1,1-methylphenylhydrazine to a deep red solution of  $(TBA)_2[V_6O_{13}{(OCH_2)_3CNO_2}_2]$  (1a) in methylene chloride produces an immediate color change to deep blue-green. Addition of diethyl ether to this solution yields blue crystals  $(TBA)_{2}$ of  $[V_6O_{10}(OH)_3\{(OCH_2)_3CNO_2\}_2] \cdot 0.67CH_2Cl_2$  (3). The hydrazine serves as both reductant and proton source in the process:

 $[V_6O_{13}\{(OCH_2)_3CNO_2\}_2]^{2-} + 3H_2NNMePh \longrightarrow$  $[V_6O_9(OH)_4\{(OCH_2)_3CNO_2\}_2]^{2-} + 3HNMePh + 1.5N_2$ 

TABLE 8. Atomic positional parameters and isotropic temperature factors  $(Å^2 \times 10^3)$  for  $[(n-C_4H_9)_4N]_2[VO_7(OH)_6-{(OCH_2)_3CCH_3}_2]$ ·HNPhNHPh (4)

| Atom  | x                      | у                      | Z                      | $B_{eq}$         |
|-------|------------------------|------------------------|------------------------|------------------|
| V(1)  | 0.0617(1)              | 0.5591(1)              | 0.60413(7)             | 2.17(6)          |
| V(2)  | -0.1608(1)             | 0.4687(1)              | 0.51869(7)             | 2.12(6)          |
| V(3)  | 0.0561(1)              | 0.3556(1)              | 0.53673(7)             | 2.19(6)          |
| O(1)  | 0.1030(4)              | 0.6010(4)              | 0.6758(3)              | 3.1(3)           |
| O(2)  | -0.0832(4)             | 0.5212(4)              | 0.6050(2)              | 2.3(2)           |
| 0(3)  | -0.1828(4)             | 0.6002(4)              | 0.4876(2)              | 2.3(2)           |
| O(4)  | -0.2715(4)             | 0.4439(4)              | 0.5292(3)              | 2.7(3)           |
| O(5)  | 0.0964(4)              | 0.2532(4)              | 0.5622(3)              | 2.7(3)           |
| 0(6)  | 0.1032(4)              | 0.4262(4)              | 0.6195(2)              | 2.2(2)           |
| O(7)  | 0                      | 1/2                    | 1/2                    | 1.8(3)           |
| 0(8)  | 0.0044(4)              | 0.6757(4)              | 0.5567(2)              | 2.2(2)           |
| O(9)  | 0.0871(4)              | 0.6511(4)              | 0.4516(2)              | 2.2(2)           |
| O(10) | 0.0071(1)<br>0.1886(4) | 0.5777(4)              | 0.5728(2)              | 2.2(2)<br>2.1(2) |
| N(1)  | 0.1000(1)<br>0.1286(5) | 0.2702(5)              | 0.3720(2)<br>0.7820(3) | 2.1(2)<br>2.8(3) |
| N(2)  | 0.3236(6)              | 0.2800(6)              | 0.7620(3)<br>0.6230(4) | 4.0(3)           |
| N(3)  | 0.3309(6)              | 0.2000(0)              | 0.6230(4)<br>0.6410(4) | 4.0(4)           |
| C(1)  | 0.5505(0)<br>0.1699(7) | 0.3750(0)<br>0.7457(6) | 0.5476(4)              | 7.2(7)           |
| C(2)  | 0.1077(7)              | 0.7551(6)              | 0.5470(4)              | 2.5(4)           |
| C(3)  | 0.2357(6)              | 0.7551(0)              | 0.5050(4)              | 2.0(4)           |
| C(3)  | 0.2337(0)<br>0.1430(6) | 0.0009(7)              | 0.3031(4)              | 2.0(4)           |
| C(4)  | 0.1455(0)<br>0.2305(7) | 0.7320(0)              | 0.4741(4)              | 2.3(4)           |
| C(3)  | 0.2303(7)<br>0.0187(7) | 0.8309(7)              | 0.3040(3)              | 4.0(3)           |
| C(11) | -0.0564(7)             | 0.2624(7)              | 0.7800(4)              | 3.0(4)           |
| C(12) | -0.0304(7)             | 0.3323(7)              | 0.7319(4)<br>0.7412(5) | 5.5(5)           |
| C(13) | -0.1036(8)             | 0.3300(7)              | 0.7412(3)              | 4.1(3)           |
| C(14) | -0.2470(8)             | 0.3737(6)              | 0.0676(3)              | 5.4(b)<br>2.1(4) |
| C(15) | 0.1709(7)              | 0.3047(0)              | 0.777(4)               | 5.1(4)           |
| C(10) | 0.1029(0)              | 0.4311(7)              | 0.0521(4)              | 4.1(5)           |
| C(17) | 0.2406(6)<br>0.242(1)  | 0.5185(7)              | 0.8233(3)              | 4.8(5)           |
| C(10) | 0.243(1)               | 0.3889(9)              | 0.8771(7)              | 8.3(8)           |
| C(19) | 0.1883(7)              | 0.2178(6)              | 0.8421(4)              | 3.3(4)           |
| C(20) | 0.2978(7)              | 0.1895(7)              | 0.8440(5)              | 3.7(5)           |
| C(21) | 0.3439(7)              | 0.1339(7)              | 0.9041(4)              | 3.8(5)           |
| C(22) | 0.4524(8)              | 0.0972(9)              | 0.9055(6)              | 0.1(0)           |
| C(23) | 0.1292(7)              | 0.2177(6)              | 0.7201(4)              | 3.0(4)           |
| C(24) | 0.0843(8)              | 0.1213(7)              | 0.7163(5)              | 4.4(5)           |
| C(25) | 0.097(1)               | 0.0699(8)              | 0.65/3(6)              | 6.1(7)           |
| U(20) | 0.207(1)               | 0.0515(9)              | 0.6608(8)              | 10(1)            |
| H(2)  | -0.0790                | 0.4754                 | 0.6373                 | 2.7              |
| H(3)  | -0.2417                | 0.6033                 | 0.4511                 | 2.8              |
| H(0)  | 0.1768                 | 0.4220                 | 0.6355                 | 2.6              |
| C(31) | 0.3832(6)              | 0.2481(5)              | 0.5834(3)              | 5.7(1)           |
| C(32) | 0.3499(5)              | 0.1679(5)              | 0.5475(4)              | 5.7(1)           |
| C(33) | 0.4087(6)              | 0.1312(4)              | 0.5090(3)              | 5.7(1)           |
| C(34) | 0.5008(6)              | 0.1746(5)              | 0.5063(3)              | 5.7(1)           |
| C(35) | 0.5341(5)              | 0.2548(5)              | 0.5422(4)              | 5.7(1)           |
| C(36) | 0.4753(6)              | 0.2915(4)              | 0.5807(3)              | 5.7(1)           |
| C(37) | 0.4005(5)              | 0.3985(5)              | 0.6981(3)              | 5.2(1)           |
| C(38) | 0.4491(6)              | 0.3329(4)              | 0.7440(4)              | 5.2(1)           |
| C(39) | 0.5131(5)              | 0.3618(5)              | 0.8033(3)              | 5.2(1)           |
| C(40) | 0.5285(5)              | 0.4562(5)              | 0.8167(3)              | 5.2(1)           |
| C(41) | 0.4799(6)              | 0.5217(4)              | 0.7708(4)              | 5.2(1)           |
| C(42) | 0.4 (59(5))            | 0.4929(5)              | 0.7115(3)              | 5.2(1)           |

TABLE 9. Selected bond lengths (Å) and angles (°) for TABLE 9. (continued)

| $[(n-C_4H_9)_4N]_2[V_6O_7(OH)]_3$ | $_{6}$ {(OCH <sub>2</sub> ) <sub>3</sub> } <sub>2</sub> ]·2PhNHNHPh (4) |                             |                      |
|-----------------------------------|-------------------------------------------------------------------------|-----------------------------|----------------------|
|                                   |                                                                         | O6-V1-O7                    | 79.6(1)              |
| V1-01                             | 1.611(5)                                                                | O6-V1-O8                    | 159.7(2)             |
| V1-O2                             | 2.016(6)                                                                | O6-V1-O10                   | 87.9(2)              |
| V1-06                             | 1.997(6)                                                                | O7–V1–O8                    | 80.2(2)              |
| VI-07                             | 2.334(1)                                                                | O7-V1-O10                   | 80.4(1)              |
| VI-08                             | 2.008(5)                                                                | O8-V1-O10                   | 87.5(2)              |
| V1-010<br>V2-02                   | 2.007(6)                                                                | O2–V2–O3                    | 86.9(2)              |
| V2-02                             | 2.015(5)                                                                | O2–V2–O4                    | 102.5(3)             |
| V2-03                             | 2.005(0)                                                                | O2–V2–O7                    | 79.7(2)              |
| V2-04<br>V2-07                    | 2 335(2)                                                                | O2V2O9                      | 86.8(2)              |
| V2-07                             | 2.006(5)                                                                | O2-V2-O10                   | 159.8(2)             |
| V2-010                            | 2.000(5)                                                                | O3–V2–O4                    | 101.6(3)             |
| V2-010<br>V3-03                   | 2.0021(5)                                                               | O3V2O7                      | 79.5(2)              |
| V3-05                             | 1.616(6)                                                                | O3-V2-O9                    | 159.4(2)             |
| V3-O6                             | 2.002(5)                                                                | O3-V2-O10                   | 90.9(2)              |
| V3-07                             | 2.280(2)                                                                | 04-V2-07                    | 177.5(2)             |
| V3-O8                             | 2.008(5)                                                                | 04-V2-09                    | 98.9(3)              |
| V309                              | 1.998(6)                                                                | $04 - \sqrt{2} - 010$       | 97.7(3)              |
| O8C2                              | 1.43(1)                                                                 | $07 - \sqrt{2} - 09$        | 80.0(2)              |
| O9–C4                             | 1.41(1)                                                                 | $07 - \sqrt{2} - 010$       | 88 2(2)              |
| O10-C3                            | 1.42(1)                                                                 | $O_{3} = \sqrt{2} - O_{10}$ | 08 8(3)              |
| N1-C11                            | 1.51(1)                                                                 | $03 - \sqrt{3} - 05$        | 89 5(2)              |
| N1-C15                            | 1.53(1)                                                                 | 03-V3-07                    | 80 8(2)              |
| N1-C19                            | 1.52(1)                                                                 | 03-V3-08                    | 86.9(2)              |
| N1-C23                            | 1.54(1)                                                                 | 03 - V3 - 09                | 162.3(2)             |
| N2-N3                             | 1.40(1)                                                                 | O5-V3-O6                    | 99.6(2)              |
| N2C31                             | 1.40(1)                                                                 | O5-V3-O7                    | 179.5(2)             |
| N3-C37                            | 1.373(9)                                                                | O5-V3-O8                    | 98.1(3)              |
| C1-C2                             | 1.53(1)                                                                 | O5V3O9                      | 98.9(3)              |
| C1-C3                             | 1.51(1)                                                                 | O6-V3-O7                    | 80.8(2)              |
| C1-C4                             | 1.54(1)                                                                 | O6-V3-O8                    | 162.3(2)             |
|                                   | 1.53(1)                                                                 | O6-V3-O9                    | 89.5(2)              |
| C11-C12                           | 1.51(1)                                                                 | O7–V3–O8                    | 81.5(2)              |
| C12 - C13<br>C13 - C14            | 1.55(2)                                                                 | O7–V3–O9                    | 81.6(2)              |
| C15-C16                           | 1.50(1)                                                                 | O8–V3–O9                    | 88.8(2)              |
| C16-C17                           | 1 50(2)                                                                 | V1-O2-V2                    | 110.3(3)             |
| C17-C18                           | 1.50(2)                                                                 | V2O3V3                      | 109.2(3)             |
| $C_{19}-C_{20}$                   | 1.51(1)                                                                 | V1-O6-V3                    | 109.5(2)             |
| C20–C21                           | 1.51(1)                                                                 | V1-07-V1                    | 180.00               |
| C21-C22                           | 1.51(2)                                                                 | V1-07-V2                    | 90.23(3)             |
| C23-C24                           | 1.51(1)                                                                 | V1 - 07 - V2                | 09.77(3)<br>00.12(5) |
| C24-C25                           | 1.52(2)                                                                 | V1 - 07 - V3                | 89.88(5)             |
| C25-C26                           | 1.47(2)                                                                 | V1_07_V2                    | 89.77(5)             |
| C31–C32                           | 1.40(1)                                                                 | V1-07-V2                    | 90.23(5)             |
| C31–C36                           | 1.40(1)                                                                 | V1-07-V3                    | 89.88(5)             |
| C32–C33                           | 1.40(1)                                                                 | V1-07-V3                    | 90.12(5)             |
| C33–C34                           | 1.40(1)                                                                 | V2-07-V2                    | 180.00               |
| C34-C35                           | 1.40(1)                                                                 | V2-07-V3                    | 89.67(5)             |
| C35-C36                           | 1.40(1)                                                                 | V2-07-V3                    | 90.33(5)             |
| C37-C38                           | 1.395(9)                                                                | V207V3                      | 90.33(5)             |
| C37-C42                           | 1.40(1)                                                                 | V207V3                      | 89.67(5)             |
| 01-V1-02                          | 99-9(3)                                                                 | V3O7V3                      | 180.00               |
| 01-V1-06                          | 101.2(3)                                                                | V1-O8-V3                    | 108.5(3)             |
| 01-V1-07                          | 179.2(2)                                                                | V108C2                      | 116.4(4)             |
| O1-V1-O8                          | 99.1(3)                                                                 | V3-O8-C2                    | 115.3(5)             |
| O1-V1-O10                         | 100.0(3)                                                                | V2-O9-V3                    | 108.7(3)             |
| O2V1O6                            | 87.8(2)                                                                 | V209C4                      | 115.9(4)             |
| O2-V1-O7                          | 79.7(1)                                                                 | V309C4                      | 116.2(5)             |
| O2-V1-O8                          | 89.9(2)                                                                 | V1-010-V2                   | 109.7(2)             |
| O2-V1-O10                         | 160.1(2)                                                                | VI-010-C3                   | 110.5(5)             |
|                                   | (continu                                                                | $(v_2 - 010 - 0.3)$         | 114.1(3)             |
|                                   | \                                                                       | r                           |                      |



Fig. 1. <sup>51</sup>V NMR spectrum of  $(C_5H_5NH)_2[V_6O_{13}{(OCH_2)_3CCH_3}_2] \cdot 2DMF$  (2).

Using an appropriate amount of 1,2-diphenylhydrazine complete reduction may be effected to give the V(IV) cluster  $(TBA)_2[V_6O_7(OH)_6\{(OCH_2)_3CR\}_2]$ .

 $[V_6O_{13}{(OCH_2)_3CR}_2]^2 - + 3HNPhNHPh \longrightarrow$ 

 $[V_6O_7(OH)_6\{(OCH_2)_3CR\}_2]^{2-} + 3PhNNPh$ 

In the presence of excess 1,2-diphenylhydrazine, purple crystals of  $(TBA)_2[V_6O_7(OH)_6\{(OCH_2)_3CCH_3\}_2]$ . 2HNPhNHPh (4) were isolated in good yield.

The V(V) clusters  $(TBA)_2[V_6O_{13}\{(OCH_2)_3CR\}_2]$  (1) and  $[C_5H_5NH]_2[V_6O_{13}\{(OCH_2)_3CCH_3\}_2] \cdot 2DMF$  (2) exhibit a single resonance in the <sup>51</sup>V NMR spectra, measured between 20 and 60 °C. At 20 °C, the chemical shifts are 497 (Fig. 1) and 500 ppm relative to VOCl<sub>3</sub> for 1 and 2, respectively. At 60 °C, chemical shift values of 506 and 508 ppm are observed.

The IR spectra of the oxidized clusters 1 and 2 are characterized by a strong band in the 940-960 cm<sup>-1</sup> region, attributed to  $\nu(V=O)$  and several features in the 700-850 cm<sup>-1</sup> range assigned to  $\nu$ (V-O-V). The spectra of the mixed valence complex 3 and the reduced cluster 4 likewise exhibit a band in the 940-950  $\text{cm}^{-1}$ region associated with  $\nu$ (V=O). However, in complex 3 the pattern of bands in the 700-850  $\text{cm}^{-1}$  region  $\nu$ (V–O–V)  $[V_6O_{13}$ associated with of the  $\{(OCH_2)_3CR\}_2]^{2-}$  oxidized cluster types is replaced by a single medium intensity feature at 723  $cm^{-1}$ . The consequences of further reduction and protonation are apparent in the spectrum of 4 which contains no unprotonated [V-O-V] moieties and hence is featureless in the 700–850  $\text{cm}^{-1}$  range.

The structures of the anions of 1, 3 and 4 are illustrated in Figs. 2, 3 and 4, respectively. The structure of the anion of 1 consists of a hexavanadate core  $\{V_6O_{19}\}$  in which six doubly-bridging oxo groups of the hexametalate framework [1] have been replaced by oxygen donors of the trisalkoxy ligands. As shown schemactically in Fig. 5, the alkoxy oxygens occupy the triangular faces of the tetrahedral cavities of the  $\{M_6O_{19}\}$  core. While the cluster possesses eight cavities of this type, only two centrosymmetrically related about the core are occupied in the structure of 1.

While the central core  $\{V_6O_{19}\}$  is grossly analogous to the structures of  $[Nb_6O_{19}]^{8-}$ ,  $[Ta_6O_{19}]^{8-}$ ,  $[Mo_6O_{19}]^{2-}$ and  $[W_6O_{19}]^{2-}$  [1], the presence of both bridging oxo groups and bridging alkoxy groups results in considerable distortions from the regular geometries associated with the underivatized hexametalate cores. The  $\{V_6O_{19}\}$  unit has been previously described only for the  $(\eta^5 C_5Me_5)Rh(III)$  supported cluster  $[(RhCp^*)_4V_6O_{19}]$  [28, 29].

The structure of 2 consists of an essentially identical anion core, differing only in the identity of the substituent R. However, an analysis of the V-bridging oxo and V-bridging alkoxo bond distances reveals a clear bond length alternation pattern which was not apparent in other structures of the type  $[V_6O_{13}{(OCH_2)_3CR}_2]^{2-}$ [24].

This *trans* bond length alternation occurs in the eight-membered  $V_4O_4$  rings, see schematic illustration in Fig. 6. Bond length alternation has also been reported for  $[(C_5H_5)TiMo_5O_{18}]^{3-}$  [30],  $[(Me_5C_5)-RhNb_2W_4O_{19}]$  [31],  $[(CO)_3Mn(Nb_2W_4O_{19})]$  [32],





Fig. 2. ORTEP view of the structure of: (a)  $[V_6O_{13}{(OCH_2)_3CNHC(O)CHCH_2}_2]^{2-}$ ; (b)  $[V_6O_{13}{(OCH_2)_3CCH_3}_2]^{2-}$ ; (c)  $(C_5H_5NH)^+ \cdot DMF$  unit of 2.

 $[(C_5H_5)TiMo_5O_{18}MoO_2Cl]^{2-}$  [33],  $[Mn(Nb_6O_{19})_2]^{12-}$ [34] and  $[H_3V_{10}O_{28}]^{3-}$  [25], where the effect is related to the weakening of certain M–O (bridging) bonds relative to adjacent interactions as consequences of protonation, oxocyclic interactions with other metal centers or the introduction of heterometals into the ring.

However, the pattern of bond length alternations in 2 is quite distinct from those observed for these complexes and from that reported for  $[MO_6O_{19}]^{2-}$  [35]. The Mo–O (bridging) bond alternation in this case is rationalized in terms of classical off-center displacement of metals in a relatively rigid close-packed oxygen framework [36]. Thus, the *trans* bond alternation is a



Fig. 3. ORTEP view of the structure of  $[V_6O_{10}(OH)_3-{(OCH_2)_3CNO_2}_2]^{2-}$ .

consequence of the displacement of the metal toward one oxygen which concomitantly produces an equivalent displacement away from the *trans* oxygen. In the case of 2, the bond length alternation reflects both off-center displacement of the metals and the presence of doublybridging alkoxy oxygens which distort the oxide framework.

The mixed valence cluster 3 retains the  $\{V_6O_{19}\}$ structural core. The structural consequence of protonation of four doubly-bridging oxygens and reduction of four of six V sites are most apparent in the lengthening of V-OH(bridging) and V-O(bridging) distances, compared to those 1 and 2 (Table 10). Although the protonation sites in 3 were evident in the electron



Fig. 4. ORTEP view of the structure of  $[V_6O_7(OH)_6-{(OCH_2)_3CCH_3}_2]^{2-}$ .

density mass, the identity of the protonation sites and the number of V(IV) sites was confirmed by valence sum calculations [37]. The results of these calculations are presented in Table 11. These clearly suggest that 3 is an example of a mixed oxidation state cluster 3V(V)/3V(IV) and quite distinct from the 2V(V)/4V(IV)cluster previously reported [24]. The magnetic properties of 3 are also quite different from those observed for the 2V(V)/4V(IV)cluster,  $[(n-C_4H_9)_4N]_2$ - $[V_6O_9(OH)_4\{(OCH_2)_3CCH_3\}_2]$ . While the latter exhibits a room temperature magnetic moment ( $\mu_{eff}$ /molecule) of 3.50  $\mu_{\rm B}$  (corresponding to 1.75  $\mu_{\rm B}$  per V(IV) site), the room temperature moment of 3 is 2.98  $\mu_{\rm B}$ /molecule  $(1.72 \,\mu_{\rm B} \, {\rm per} \, {\rm V(IV)} \, {\rm site})$ . Further details of the magnetic properties of this class of hexavanadium clusters will be presented in a forthcoming publication [38].

The structural parameters associated with the fully reduced core of 4 are consistent with the presence of six protonated bridging oxo groups and six V(IV) centers. The metrical parameters for 4 are compared to those



Fig. 5. Schematic representations of: (a) the Mo<sub>4</sub>O<sub>4</sub> rings of  $[Mo_6O_{19}]^{2-}$ ; (b) the TiMo<sub>3</sub>O<sub>4</sub> ring of  $[(C_5H_5)TiMo_5O_{18}]^{3-}$ ; (c) the V<sub>4</sub>O<sub>4</sub> rings of **2**.

TABLE 10. Comparison of selected structural parameters for the structures 1, 2, 3 and  $4^a$ 

|                              | 1        | 2                    | 3        | 4        |
|------------------------------|----------|----------------------|----------|----------|
| V–O, bridging oxo            | 1.824(7) | 1.886(4)             | 1.86(1)  |          |
| V–O, bridging hydroxy        |          | 1,705(4)             | 1.94(1)  | 2.007(8) |
| V-O, bridging alkoxy         | 2.016(7) | 2.053(4)<br>1.988(4) | 2.017(4) | 2.008(9) |
| V–Oc <sup>b</sup>            | 2.243(4) | 2.243(1)             | 2.28(1)  | 2.316(2) |
| V-O-V (oxo) <sup>c</sup>     | 112.6(6) | 112.1(2)             | 114.0(7) |          |
| V-O-V (hydroxy) <sup>c</sup> |          |                      | 110.6(8) | 109.7(5) |
| V-O-V (alkoxy) <sup>c</sup>  | 110.0(6) | 109.2(3)             | 109.8(8) | 109.0(5) |

"Bond lengths in Å, angles in °. bOc=central oxo group. "Type of oxygen defined in parentheses.

for 1, 2 and 3 in Table 10 and the results of valence sum calculations are presented in Table 11.

The structural changes which occur upon reduction and protonation of the  $\{V_6O_{19}\}$  core are also manifested in an overall expansion of the core volume as reflected in an increase in the distances between planes of atoms in the structures. Figure 6 illustrates these effects by comparing the spacings between approximately planar layers of negatively-charged and close-packed oxygen atoms separated by layers of cationic vanadium centers. The plane containing the central oxo group and six doubly bridging oxo and/or hydroxy groups defines the reference plane from which the spacings to the other parallel layers have been calculated.



Fig. 6. Representation of the  $\{V_6O_{19}\}$  core as approximate layers of oxygen atoms and layers of vanadium sites. The values of a, b and c are listed in Table 12.

| С | omplex              | $\Sigma s_i (v.u.)^a$ | Average vanadium oxidation state <sup>b</sup> |
|---|---------------------|-----------------------|-----------------------------------------------|
| 1 | <b>V</b> 1          | 5.01                  | 5.00(4.98)                                    |
|   | V2                  | 4.99                  |                                               |
|   | <b>V</b> 3          | 4.93                  |                                               |
| 2 | $\mathbf{V}_1$      | 5.02                  | 5.00(4.98)                                    |
|   | <b>V</b> 2          | 4.98                  |                                               |
|   | V3                  | 4.96                  |                                               |
| 3 | V1(I) <sup>c</sup>  | 4.86                  | 4.50(4.51)                                    |
|   | V2(I)               | 4.40                  |                                               |
|   | V3(I)               | 4.27                  |                                               |
|   | V4(II) <sup>c</sup> | 4.37                  | 4.50(4.48)                                    |
|   | V5(II)              | 4.26                  |                                               |
|   | V6(II)              | 4.45                  |                                               |
|   | V7(II)              | 4.66                  |                                               |
|   | V8(II)              | 4.63                  |                                               |
|   | <b>V9(II</b> )      | 4.51                  |                                               |
| 4 | <b>V</b> 1          | 3.95                  | 4.00(3.97)                                    |
|   | V2                  | 4.00                  |                                               |
|   | V3                  | 3.96                  |                                               |

TABLE 11. Bond valence sums for the vanadium sites of 1, 2, 3 and 4

<sup>a</sup>The valence sums in valence units (v.u.) for 1 and 2 are calculated according to  $\Sigma_i (d(V-O_i)/1.791)^{-5.1}$  for V(V) centers. The valence sums for 4 are calculated to  $\Sigma_i (d(V-O_i)/1.77)^{-5.2}$  for V(IV) centers. The valence sums for 3 are calculated using the averaged summation  $\Sigma_i (d(V-O_i)/1.78)^{-5.15}$ . <sup>b</sup>Average of calculated values in parentheses; closest integral or half-integral value listed outside the parentheses. <sup>c</sup>Valence sums calculated for both clusters of the asymmetric unit of 3. One cluster (I) is located with the central oxygen on the center of symmetry, while the second(II) occupies a general position in the cell.

TABLE 12. Comparison of distances between planes for 1, 2, 3 and  $4^a$ 

| Complex | а    | ь    | с    |
|---------|------|------|------|
| 1       | 1.00 | 2.36 | 4.36 |
| 2       | 1.01 | 2.38 | 4.38 |
| 3       | 0.98 | 2.54 | 4.49 |
| 4       | 0.95 | 2.68 | 4.58 |

a, b and c are defined in Fig. 6.

#### Acknowledgement

This work was supported by the NSF (Grant No. CHE9119910).

#### References

- 1 M. T. Pope, *Heteropoly and Isopoly Oxometalates*, Springer, New York, 1983.
- 2 M. T. Pope and A. Müller, Angew. Chem., Int. Ed. Engl., 30 (1991) 34.
- 3 D. C. Bradley, R. C. Mehrotra and D. P. Gau, Metal Alkoxides, Academic Press, New York, 1978.

- 4 R. C. Mehrotra, Adv. Inorg. Radiochem., 26 (1983) 269.
- 5 D. C. Bradley, Chem. Rev., 89 (1989) 1317.
- 6 K. G. Carelton and J. G. Hubert-Pfalzgraf, Chem. Rev., 90 (1990) 969.
- 7 K. Watenpaugh and C. N. Cauglan, J. Chem. Soc., Chem. Commun., (1967) 76.
- 8 D. C. Bradley, M. B. Hursthouse and P. F. Rodesila, J. Chem. Soc., Chem. Commun., (1968) 1112.
- 9 D. L. Kepert, *The Early Transition Metals*, Academic Press, London, 1972.
- 10 J. F. Keggin, Nature (London), 131 (1933) 908.
- 11 V. W. Day, T. A. Ebserpacher, W. G. Klemperer, C. W. Park and F. S. Rosenberg, J. Am. Chem. Soc., 113 (1991) 8190.
- 12 M. H. Chisholm, J. C. Huffman, C. C. Kirkpatrick, J. Leonelli and K.Folting, J. Am. Chem. Soc., 103 (1981) 6093.
- 13 M. H. Chisholm, K. Folting, J. C. Huffman and C. C. Kirkpatrick, *Inorg. Chem.*, 23 (1984) 1021.
- 14 M. Yu Antipis, L. P. Didenko, L. M. Kachapina, A. E. Shilov, A. K. Shilova and Y. T. Struchkov, J. Chem. Soc., Chem. Commun., (1989) 1467.
- 15 H. Kang, S. Liu, S. N. Shaikh, T. Nicholson and J. Zubieta, Inorg. Chem., 28 (1989) 920.
- 16 Q. Chen, S. Liu and J. Zubieta, Angew. Chem., Int. Ed. Engl., 27 (1988) 1724.
- 17 S. Liu and J. Zubieta, Polyhedron, 8 (1989) 537.
- 18 Q. Chen, S. Liu and J. Zubieta, Inorg. Chem., 28 (1989) 4433.
- 19 L. Ma, S. Liu and J. Zubieta, Inorg. Chem., 28 (1989) 175.
- 20 Q. Chen, L. Ma, S. Liu and J. Zubieta, J. Am. Chem. Soc., 110 (1989) 5944.
- 21 Q. Chen, S. Liu and J. Zubieta, Angew. Chem., Int. Ed. Engl., 29 (1989) 70.
- 22 E. Gumaer, K. Lettko, L. Ma, D. McGowty and J. Zubieta, Inorg. Chim. Acta, 179 (1991) 47.
- 23 Q. Chen and J. Zubieta, Inorg. Chem., 29 (1990) 1456.
- 24 Q. Chen, D. P. Goshorn, C. P. Scholes, X. Tan and J. Zubieta, J. Am. Chem. Soc., in press.
- 25 V. W. Day, W. G. Klemperer and D. J. Maltbie, J. Am. Chem. Soc., 109 (1987) 2991.
- 26 S. M. Baxter and P. T. Wolczanski, Inorg. Chem., 28 (1989) 3263.
- 27 A. Bino, S. Cohen and C. Heitner-Wirguin, *Inorg. Chem.*, 21 (1982) 429.
- 28 H. K. Chae, W. G. Klemperer and V. W. Day, *Inorg. Chem.*, 28 (1989) 1424.
- 29 Y. Hayaski, Y. Ozawa and K. Isolu, Chem. Lett., (1989) 425.
- 30 T. M. Chae, V. W. Day, L. C. Francesconi, F. F. Fredrich, W. G. Klemperer and W. Shum, *Inorg. Chem.*, 24 (1985) 4055.
- 31 C. J. Besecker, V. W. Day, W. G. Klemperer and M. R. Thompson, J. Am. Chem. Soc., 106 (1984) 4125.
- 32 C. J. Besecker, V. W. Day, W. G. Klemperer and M. R. Thompson, *Inorg. Chem.*, 24 (1985) 44.
- 33 V. W. Day, M. F. Fredrich, M. R. Thompson, W. G. Klemperer, R.-S. Liu and W. Shum, J. Am. Chem. Soc., 103 (1981) 3597.
- 34 C. M. Flynn, Jr. and G. D. Stucky, Inorg. Chem., 8 (1969) 335.
- 35 O. Nagano and Y. Sasaki, Acta Crystallogr., Sect. B, 34 (1978) 1764.
- 36 H. D. Megaw, Acta Crystallogr., Sect. B, 24 (1968) 149.
- 37 I. D. Brown and K. K. Wu, Acta Crystallogr., Sect. B, 32 (1976) 1957.
- 38 Q. Chen, D. Goshorn, M. I. Khan and J. Zubieta, unpublished results.