The synthesis of *endo*-3-diphenylphosphino- (R) - $(+)$ -camphor (L) and some of its complexes with palladium(II), platinum(II) and rhodium(I); crystal structures of L and cis -[PdCl₂L₂]

Sarath D. Perera, Bernard L. Shaw*, Mark Thornton-Pett and Jonathan D. Vessey *School of Chemistry, University of Leeds, Leeds LS2 9JT (UK)*

Abstract

Treatment of $(1R)$ -(+)-camphor with LiBu", followed by Ph₂PCl gives, as the main product, exo-3-diphenylphosphino-(1R)-(+)-camphor **(3a)** together with some of the corresponding enolate anion **1.** However, on storage the ewphosphine **3a** isomerises to the corresponding endo-phosphine 3b which becomes the main product and was isolated in 70% yield. The crystal structure of **3b** was determined and detailed i3C and proton NMR data are given. In chloroform solution, in the presence of acetic acid as catalyst, the endo-phosphine **3b** is partially converted back into the *exo*-isomer 3a over 2 days. The *endo*-phosphine 3b (L) with H_2O_2 gives the corresponding phosphine oxide 3c and with monoclinic sulfur the corresponding phosphine sulfide 3d. With [PdCI₂(NCPh)₂] the endo-phosphine **3b** gives [PdCl&] which exists as a cis-trans mixture **4a** and **4b** in solution. We have determined the X-ray crystal structure of the cis -form 4b. Treatment of $[PLC_2(COD)]$ with L, gives $cis[PtC_1L_2]$ (4c) but with $[PtCl_2(NCMe)_2]$ the corresponding *trans* complex *trans*- $[PtCl_2L_2]$ (4d) is formed. In compounds $4a-4d$ the PPh₂ groups are *endo*. The complexes of type $[MCL_2]$ (M=Pd or Pt) are also formed by treating the bis-camphorphosphine enolates $[M(PPh_2C_{10}H_{14}O)_2]$ with HCl. The complexes of type cis- $[Pt(C=CR)_2(PPh_2C_{10}H_{15}O)_2]$ $(R=Ph$ or $C(Me)=CH_2)$ with HCl give exclusively cis- $[PtCl_2L_2]$. Treatment of $[Rh_2Cl_2(CO)_4]$ with the *endo-phosphine* 3b (L) gives *trans*- $[RhCl(CO)L_2]$. ¹H, ³¹P and some ¹³C data are given. Crystals of endo-3-diphenylphosphino- $(1R)$ - $(+)$ -camphor $(3b)$ are orthorhombic, space group $P2₁2₁2₁$ with $a = 778.6(1)$, $b = 1138.8(1)$, $c = 2128.9(3)$ pm and $Z = 4$, $R = 0.0329$ for 1674 observed reflections. The structure shows that the PPh₂ is *endo*. Crystals of 4b are orthorhombic, space group $P2₁2₁2₁$, with $a = 1380.3(2)$, $b = 1785.1(3)$, $c = 1922.8(4)$ pm and $Z = 4$, $R = 0.0425$ for 4438 observed reflections. The structure shows that the PPh₂ groups are *endo* and that the phosphines are cis.

Introduction

In a previous paper [l] we described the preparation of the 3-diphenylphosphino- $(1R)-(+)$ -camphor enolate anion (1), $[PPh_2C_{10}H_{14}O]^-$, formed by treatment of $(1R)-(+)$ -camphor with lithium di-isopropylamide (Ida), followed by one half mole equivalent of Ph,PCl. We treated this phosphine enolate anion **1** with $Na₂PdCl₄·4H₂O$ or with $[PtCl₂(cod)]$ (cod = cyclo-octa-1,5-diene) to give the corresponding bis-chelate complexes $[M(PPh_2C_{10}H_{14}O)_2] (M = Pt(2a), Pd(2b))$. Treatment of these bis-chelates with hydrogen chloride, or with terminal acetylenes ($RC \equiv CH$; $R = Ph$ or $C(Me) = CH₂$) opened up the chelate rings to give complexes of the types $[MX_2(PPh_2C_{10}H_{15}O)_2]$ (X=Cl or $C=CR$, $M = Pd$ or Pt) but we did not fully determine the stereochemistries of these ring-opened products.

We also showed that treatment of lithiated $(1R)$ -(+)-camphor, followed by an equivalent amount of

PPh,Cl gave some of the enolate anion **1** but the main product was formulated as the 3-exo-substituted camphor phosphine $[PPh₂C₁₀H₁₅O]$ **(3a)**, together with some of the corresponding 3-endo-substituted isomer 3b. However, over many hours in solution much of the exoisomer isomerised to the endo-isomer, which then had become the major product. It is well established that treatment of $(1R)-(+)$ -camphor with Ida followed by an electrophile, e.g. MeI, invariably gives the exo-3substituted derivative as the kinetic product but this isomerises on treatment with an acid or base catalyst, to give the $endo-3$ -substituted derivative $[2, 3]$. We therefore assigned the 3-PPh, camphor derivatives as exe-(kinetic product) and endo-(thermodynamic product).

In the present paper we have confirmed these assignments by detailed proton and ^{13}C { ^{1}H } NMR studies and by an X-ray crystal structural determination of the endo-isomer 3b (see below). We have also determined the stereochemistries of the products formed by ringopening reactions of bis-chelates of type 2 with hydrogen

^{*}Author to whom correspondence should be addressed.

chloride or with terminal acetylenes. In a recent paper [4] we have shown that $exo-3$ -diphenylphosphino- $(1R)$ -(+)-camphor dimethylhydrazone [5] and its complexes with platinum(II) or palladium(II) undergo acid or base-catalysed isomerisation to the corresponding *endo*derivatives.

Experimental

The experimental techniques were the same as those used in other recent papers from this laboratory [6].

endo-3-Diphenylphosphino-(lR)-(i-)-camphor (3b)

To a stirred solution of $(1R)-(+)$ -camphor (16.0 g) , 0.105 mol) in dry tetrahydrofuran (THF) (100 cm^3) at -70 °C was added dropwise a solution of BuⁿLi in hexane (68.0 cm³, 1.6 mol dm⁻³, 0.108 mol). After 1 h, a solution of Ph₂PCl (23.2 g, 18.9 cm³, 0.105 mol) in dry THF (60 cm³) was added at -70 °C. The resultant solution was stirred for 30 min and allowed to warm to room temperature. The ^{31}P {¹H} NMR spectrum of this solution showed two singlets; one at 1.5 ppm (the exo-phosphine $3a$) and the other at -32.7 ppm (the enolate **1)** in the ratio c. 3:l. After two days at room temperature the solvent was removed under reduced pressure and the residue was extracted into degassed diethyl ether (100 cm³). After removal of the solvent under reduced pressure, the residue was recrystallised from degassed ethanol $(c. 40 \text{ cm}^3)$ to give the required product **3b** as white microcrystals. The

 $31P$ { $1H$ } NMR spectrum of the ethanolic solution showed two singlets, one at 1.3 ppm 3a and the other at -11.2 ppm, shown to be the endo-phosphine **3b,** in the ratio of c. 1:5 *ewendo.* The yield of **3b** was 25.9 g, 72%, m.p. 187–188 °C, m/z , 336(M^+), [α]_D²³ = +79.8° (C = 2 g per 100 cm3, MeOH). *Anal.* Found: C, 78.3; H, 7.35. Calc. for $C_{22}H_{25}OP$: C, 78.55; H, 7.5%.

Conversion of the endo-phosphine 3b into the corresponding phosphine oxide 3c

An excess of hydrogen peroxide (0.4 cm3, 30% wt./ vol.) was added to a solution of the phosphine **3b** (0.6 g, 1.78 mmol) in acetone (15 cm^3) . After 30 min, the solvent was removed and the residue crystallised from ethanol to give the required phosphine oxide 3c as white needles. Yield 0.41 g, 65%. *Anal.* Found: C, 75.0; H, 7.2. Calc. for $C_{22}H_{25}O_{2}P$: C, 75.0; H, 7.15%.

Conversion of the endo-phosphine 3b into the corresponding phosphine sulfide 3d

A mixture of the phosphine **3b** (0.35 g, 1.0 mmol) and monoclinic sulfur (40 mg, 1.25 mmol) was heated under reflux in benzene (8 cm^3) for 2.5 h. The solution was filtered and the filtrate evaporated to dryness under reduced pressure. The residue was recrystallised from ethanol to give the phosphine sulfide **3d** as white needles. Yield 0.19 g, 50%. *Anal.* Found: C, 71.25; H, 6.7. Calc. for $C_{22}H_{25}$ OPS: C, 71.7; H, 6.85%.

trans-Bis(endo-3-diphenylphosphino-(lR)-(+) camphor)dichloropalladiurn(II) (4a)

 $[\text{PdCl}_2(\text{NCPh})_2]$ (0.50 g, 1.3 mmol) was added to a solution containing the endo-phosphine **3b** (0.92 g, 2.7 mmol) in dichloromethane (15 cm^3) . After 30 min, the solution was evaporated to a low volume under reduced pressure. Addition of methanol to the residue then gave the product **4a** as yellow microcrystals. Yield 0.93 g, 84%. *Anal.* Found: C, 61.6; H, 6.0; Cl, 8.6. Calc. for $C_{44}H_{50}Cl_2O_2P_2Pd$: C, 62.15; H, 5.95; Cl, 8.35%.

cis-Bis{endo-3-diphenylphosphino-(lR)-(+) camphor)dichloroplatininum (4~)

 $[PtCl₂(cod)]$ (0.40 g, 1.07 mmol) was added to a solution of the endo-phosphine **3b** (0.75 g 2.23 mmol) in dichloromethane (15 cm'). After 15 min the solvent was removed and the residue recrystallised from dichloromethane/methanol to give the cis-dichloroplatinum complex 4c as white microcrystals. Yield 0.77 g, 77%.

trans-Bis{endo-3-diphenylphosphino-(lR)-(+)-

camphor)dichloroplatininum (4d)

 $[PtCl₂(NCMe)₂]$ (0.14 g, 0.40 mmol) was added to a solution containing the endo-phosphine **3b** *(0.277 g, 0.82* mmol) in dichloromethane (5 cm'). After 30 min the solution was evaporated to a low volume $(c. 1.5)$

 cm^3) under reduced pressure and methanol (c. 1 cm³) added to the residue. The trans-dichloroplatinum complex **4d** crystallised out as pale yellow needles. Yield 0.24 g, 63%. *Anal.* Found: C, 56.35; H, 5.5; Cl, 7.65. Calc. for $C_{44}H_{50}Cl_2O_2P_2Pt$: C, 56.25; H, 5.35; Cl, 7.55%.

Conversion of the trans-dichloro complex 4d into the bis-enolate complex 2a

The dichloro complex **4d** (0.25 g, 0.266 mmol) and an excess of NaH (0.10 g, 60% dispersion in mineral oil) in dry THF (10 cm^3) were heated under reflux for 20 h. The mixture was then filtered and the filtrate evaporated to dryness. The residue was extracted into dichloromethane (5 cm^3) and the extract washed with water and dried over anhydrous MgSO₄. Removal of solvent and recrystallisation of the residue from dichloromethane and methanol gave the bis-enolate complex **2a** as white microcrystals. Yield 0.21 g, 91%.

Conversion of the cis-dichloro complex 4c into the bis*enolate complex 2a*

4c was converted into **2a** in 77% yield by a method similar to that given above.

Conversion of the cis-dichloroplatinum complex 4c into the trans-dichloroplatinum 4d

A solution containing the *cis*-dichloride 4c (0.15 g) , 0.16 mmol) in 1,4-dioxan (6 cm^3) was heated under reflux for 24 h. Removal of the solvent and recrystallisation of the residue from dichloromethane/methanol gave the trans-dichloride complex **4d** as yellow needles. Yield 0.90 g, 60%.

trans-Bis{endo-3-diphenylphosphino-(lR)-(+) camphorjchloro (carbonyl) rhodium (I) (5)

Method a. The endo-phosphine **3b** (0.11 g, 0.32 mmol) was added to a solution of $\left[\text{Rh}_2\text{Cl}_2(\text{CO})_4\right]$ (30 mg, 0.077 mmol) in benzene (1.5 cm^3) . After 30 min, the solution was filtered and evaporated to dryness under reduced pressure. The residue was triturated with methanol to give the chloro(carbonyl)rhodium complex 5 as yellow microcrystals. Yield 117 mg, 90%.

Method b. Carbon monoxide was bubbled through a solution of $RhCl₃·3H₂O$ (1.0 g, 3.80 mmol) in boiling ethanol (25 cm^3) for 2.5 h. The resulting yellow solution was allowed to cool to room temperature, and argon was bubbled through it for 10 min to remove dissolved carbon monoxide. A solution containing the phosphine enolate 1 *(8.0* mmol) in THF/hexane was added. After 2 h concentrated hydrochloric acid (2.5 cm^3) was added to give an orange solution, which gave the required product 5 as yellow microcrystals. Yield 2.45 g, 77%. An analytical sample was obtained from dichlorome-

X-ray diffraction analysis

All diffraction measurements were made at 200 K on a Stoe STAD14 diffractometer operating in the ω/θ scan mode using graphite monochromated X-radiation $(\lambda = 71.069 \text{ pm})$ and, for compound 4b, on-line profile fitting [7]. Crystal data are listed in Table 1 together with details of data collection and structure refinement. The data-sets were corrected for Lorentz and polarisation factors and also for absorption using azimuthal psi scans.

The structure of **3b** was solved by direct methods using SHELXS 86 [8] whilst that of **4b** was solved by standard heavy-atom techniques using SHELX 76 [9]. Both structures were refined by full-matrix least-squares using SHELX 76. In both cases all non-hydrogen atoms were refined with anisotropic thermal parameters with the exception of the carbon and chlorine atoms of two disordered CH,Cl, solvate molecules of **4b** which were refined with isotropic thermal parameters and l/2 occupancy factors. All phenyl groups were treated as rigid bodies with idealised hexagonal symmetry $(C-C= 139.5 \text{ pm})$. In both cases the hydrogen atoms were included in calculated positions $(C-H=96 \text{ pm})$ and were refined with an overall isotropic thermal parameter. The weighting scheme $w^{-1} = \sigma^2(F) + g(F)^2$ was used for both complexes where g is a parameter which was adjusted so as to give a flat analysis of variance with increasing $\sin\theta$ and $[F/F_{\text{max}}]^{-1/2}$. In both cases refinement of the structure based on the L-form of camphor led to significantly higher *R* values. See also 'Supplementary material'.

Results and discussion

For the convenience of the reader the results discussed in this paper are summarised in Scheme 1.

Treatment of a tetrahydrofuran solution of $(1R)-(+)$ camphor with one equivalent of LiBuⁿ at -70 °C, followed by one equivalent of PPh_2Cl , gave, from ^{31}P 1H NMR evidence, a mixture of the *exo*-phosphine **3a** $(\delta P = 1.5$ ppm) and the enolate ion **1** $(\delta P = -32.7)$ ppm) in the ratio of c. 3:l. However, on storage, and as we have described previously, the proportion of the exe-phosphine **3a** decreased and after sixteen hours to two days the endo-phosphine **3b,** characterised by $\delta P = -10.5$ ppm became the major product. After two days the solvent was removed and the product taken up into the ethanol; the ethanol solution showed two singlets in its ${}^{31}P$ {¹H} NMR spectrum; these were due to the *exo*-phosphine $3a$ ($\delta P = 1.3$ ppm) and the *endo-*

"Common to both compounds: orthorhombic, space group $P2,2,2$, $Z = 4$, $4.0 < 20 < 50.0$ ". ^bIncludes CH₂Cl₂ solvate. "Scan divided into 30 steps, scan width and step sizes calculated from a learnt profile, scan speeds 0.4-1.5 s per step. dCriterion for observed reflection, $|F_0| > 4.0 \sigma(|F_0|)$. 'R = $\sum (|F_0| - |F_1|)/\sum |F_0|$. 'R' = $\sum w([F_0] - |F_1|)^2/\sum w|F_0|^2$. 'w = $[\sigma^2(|F_0|) + g(|F_0|)^2]^{-1}$.

Scheme 1. (i) H_2O_2 ; (ii) S; (iii) [PdCl₂(NCPh)₂]; (iv) [PtCl₂(cod)]; (v) NaH; (vi) HCl; (vii) $[PtCl_2(NCMe)_2]$; (viii) RC=CH; (ix) $[Rh_2Cl_2(CO)_4];$ (x) Δ .

phosphine **3b** $(\delta P = -11.2$ ppm) in the ratio of c. 1:5. When the ethanol solution was cooled to -15 °C the pure, crystalline, endo-phosphine **3b** was obtained in 72% yield. This endo-phosphine **3b** was fully characterised, see 'Experimental' for elemental analytical data on this and other new compounds. It showed a strong IR band at 1725 cm⁻¹ due to $\nu(C=O)$ (Table 2).

3d TABLE 2. $^{31}P(^{1}H)$ NMR data^b and IR data^b

	$\delta(P)$	$^{1}J(MP)$	$\nu(C=O)^c$	ν (M-Cl) ^d
2a ^c	4.6	3645		
2b ^c	31.6			
3b	-12.0^{f}		1725	
3c	28.0 ^f		1735	
3d	41.1^{f}		1735	
4a	18.6 ^f		1725	360
4b	$30.6^{f, s}$			
4c ^e	6.4	3879	1725	285, 305
4d	14.5 ^f	2577 ^f	1735	350
4e ^e	13.1	2327	1730	
4f ^e	13.5	2314	1730	
5 ^h	32.2	127	1725	300

"Recorded at 36.2 MHz, chemical shifts (6) **are in ppm relative** to 85% H_3PO_4 , ¹J(MP) values are in Hz. $bIn cm^{-1}$. **KBr** disc, all carbonyl bands are strong. M and mulls. "From ref.
1. M_{In} CDCl, "Tentative assignment. M_{In} C₆D₆, 'In CDCl₃. Frentative assignment. h In C₆D₆, $1.$ $\nu(C=O) = 1985$ cm⁻¹.

Analysis of the ¹H (Table 3) and ¹³C $\{^1H\}$ (Table 4) NMR spectra of the compound allowed us to assign its stereochemistry unequivocally.

In the proton spectrum the $H(3)$ exo-proton and H(4) proton were assigned using two-dimensional

TABLE 3. Proton NMR data'

'Recorded at 100 MHz, chemical shifts (δ) are in ppm (± 0.01 ppm) relative to SiMe₄, solvent CDCl₃ unless otherwise stated, coupling constants J are in Hz, s=singlet, m=multiplet, ddd=doublet of doublet of doublets, br= broad. b At 400 MHz. "Obtained by double resonance experiments at 400 MHz. $dIn C₆D₆$.

'H-13C correlation spectroscopy at 400 MHz. The H(3)exo-proton gave rise to a multiplet at 3.42 ppm, any coupling to phosphorus and H(4) were resolved by double resonance experiments $(^2J(PH) \sim 0$ Hz and $3J(HH) = 4.5$ Hz). Very weak 'W' $4J(HH)$ coupling to $H(5)$ exo-proton was observed. We have previously observed a weak (2.3 Hz) 'W' coupling to the H (5) exo -proton in endo-3-diphenylphosphino- $(1R)-(+)$ -camphor dimethylhydrazone [4]. The stereochemistry of the C(3) position follows from the $3J(HH)$ coupling with the H(4) proton which depends on the dihedral angle between the two C-C-H planes, as predicted by the Karplus relationship [10]. There are several examples in the literature which show that for camphor derivatives or related species, $3J(HH)$ between the H(3) endo-proton and the $H(4)$ proton, is zero or very small $(< 1$ Hz) whereas ³*J*(HH) between H(3) *exo*-proton and the H(4) proton is about 4 Hz. Examples from the literature which illustrate this include norcamphor [11], several derivatives of 3-methyl-camphor [3], other rigid bicyclic compounds, related to camphor [10], and our previous results with exo- and endo-3-diphenylphosphino- $(1R)$ - $(+)$ -camphor dimethylhydrazones [4] and their metal complexes [4, 12]. Moreover, as described below, we have determined the crystal structure of this camphor phosphine and confirmed that it is the *endo*isomer **3b (see** Fig. 1 and below).

In a recent paper [14] it has been reported that treatment of $(1R)$ -endo- $(+)$ -3-bromocamphor with LiBuⁿ followed by PPh₂Cl gives $(1R)-(+)$ -3-diphenylphosphinocamphor to which the endo-configuration was assigned. However, it is clear from the published $^{31}P(^{1}H)$, $13C^{11}$ H and ¹H NMR data that this phosphine is the exo -isomer $3a$ (the H(3) proton gave rise to a *singlet* at 3.10 ppm, i.e. $\frac{3}{1}$ (HH) = 0 Hz). The assignment of the endo-configuration was based upon $^{13}C^{1}H$ } NMR evidence, and the crystal structure of an unspecified rhodium complex. Although, as discussed below, $^{13}C_1^1H$ NMR data do provide evidence of stereochemistry, they support our reassignment of this phosphine as the exoisomer **3a** and presumably under the conditions used to prepare the rhodium complex, the phosphine isomerised to the endo-configuration.

The ^{13}C ¹H} NMR spectra, which we have assigned by C-H correlation spectroscopy and by comparison with published data for $(1R)-(+)$ -camphor [15, 16], help to establish the stereochemistry of these phosphines. Quin et al. reported [17] the $^{13}C^{1}H$ NMR spectra of a series of 2-norbomyl-phosphorus(II1) and phosphorus(V) compounds. They showed that the pattern of coupling constants for the carbons in the norbomyl group is characteristic for the exe- and *endo*phosphorus substituents. In particular, the resonance for C(5) in the camphor phosphines is expected to show a large coupling $(> 20 \text{ Hz})$ to a phosphorus(III) in the *endo-position* but a smaller coupling $(< 8$ Hz) to a phosphorus (III) in the *exo*-position. As can be seen from Table 4, the spectrum of the endo-phosphine **3b, has the resonance for** $C(5)$ **with a coupling** $\frac{3}{f(C)}$ of 20.2 Hz; by comparison the exe-phosphine **3a** shows a corresponding coupling $3/[PC(5)]$ of 2.4 Hz [14]. Additionally, we have measured the phosphorus(III)-carbon-13 couplings on the *exo*- and *endo*isomers of 3-diphenylphosphinocamphor dimethylhydrazone; we find 3J(PC) for C(5) is 15 Hz for the *endo*phosphine and approximately zero for the exe-phosphine $[4]$.

We have examined the acid/base catalysed isomerisation of the endo-phosphine **3b** to the exe-phosphine **3a.** As show by ${}^{31}P{^1H}$ NMR spectroscopy, a solution of the endo-phosphine **3b** in CDCl, containing acetic acid (0.01 M) was slowly isomerised to an *endo-lexo-*

TABLE 4. ¹³C(¹H} NMR data[®]

Fig. 1. ORTEP [13] representation of the crystal structure of 3b.

mixture; equilibrium being reached after 2 days at 20 °C (ratio endo:exo 5.4:1). Treatment of a tetrahydrofuran solution of **3b** with one equivalent of LiBu" caused complete conversion to the enolate ion **1,** which, with methanol, gave a mixture of 3a and **3b** (31P('H} NMR evidence).

We treated the *endo-phosphine* 3b with H_2O_2 or with monoclinic sulfur to give the corresponding phosphine oxide, 3c, or phosphine sulfide, **3d.** The phosphine oxide, 3c, showed for the H(3) a $3J$ -coupling to H(4) of 4.4. Hz indicative of a 3-cxo proton and also a 'W' coupling to $exo-H(5)$ of 1.7 Hz (Table 3). Similar values were obtained with the phosphine sulfide 3d, i.e. for both 3c and **3d** the phosphorus substituent is in the endo-position. Corroboration for this assignment came from the ${}^{13}C_1{}^{1}H$ } NMR spectrum of 3c. Again referring to the study of 2-norbornyl phosphorus compounds [171, $3J(PC)$ for the resonance for $C(7)$ is expected to be very small (c. zero) for exo-P(V) and > 10 Hz for endo-P(V); for 3c $\frac{3J}{PC}$ for the C(7) resonance is 11.8 Hz (Table 4). In all the metal complexes described below, we have found that $|{}^{3}J(PC) + {}^{5}J(PC)|$ for the C(7) resonance is greater than 10 Hz, which again suggests endo-stereochemistry for these compounds.

We have made palladium, platinum and rhodium complexes from the endo-phosphine **3b.** Treatment of [PdCl,(NCPh),] with two equivalents of **3b** gave $[\text{PdCl}_2(\text{PPh}_2\text{C}_{10}\text{H}_{15}\text{O})_2]$ which showed a very strong IR band at 360 cm^{-1} indicating a *trans-configuration*. In the ${}^{1}H$ and ${}^{1}H_{1}{}^{31}P$ } NMR spectra (Table 3) the coupling between $H(3)$ and $H(4)$ clearly indicated an exo-configuration for H(3), i.e. PPh₂ is *endo*. However, in the $31P{1H}$ NMR spectrum we observed two resonances (at δ 18.6 and 30.6) in a ratio of \sim 10:1 which we tentatively assigned to two isomeric forms. The presence of two forms in solution was confirmed by the $^{13}C_{1}^{1}H$ } NMR spectrum which again showed major and minor forms in \sim 10:1 ratio. The resonances for the phosphine phenyl C_{ipso} s and camphor C(3) atoms in the major form appeared as limiting 'virtual' triplets (see Fig. 2)

Fig. 2. Portions of the "C{'II) NMR spectra of 4a, 4d and 4c, recorded in CDCI₃ solution at 100.6 MHz. C_i resonances refer **to the ipso-carbons of the non-equivalent phenyls attached to phosphorus. The resonances of the trans-complexes 4a and 4d are essentially limiting whereas those of the cis-complex 4c are not. Peaks marked with an asterisk (*) arise from C-4 carbon resonances of 4a and 4d while the peak marked (*) is assigned to the C-4 resonance of 4b.**

Fig. 3. ORTEP [13] representation of the crystal structure of 4b. In the interests of clarity the phenyl carbon atoms and alI hydrogen atoms have been drawn as circles with a small radius of arbitrary value.

TABLE 5. Bond lengths (pm) and angles (") for compound 3b with e.s.d.s in parentheses

$C(3)-P(12)$	187.9(5)	$C(13) - P(12)$	184.4(3)
$C(19)-P(12)$	185.4(3)	$C(2) - C(1)$	152.7(6)
$C(6)-C(1)$	155.3(6)	$C(7) - C(1)$	154.1(6)
$C(10)-C(1)$	151.8(6)	$C(3)-C(2)$	152.6(6)
$O(11) - C(2)$	120.9(5)	$C(4) - C(3)$	154.2(6)
$C(5)-C(4)$	154.7(6)	$C(7) - C(4)$	155.3(6)
$C(6)-C(5)$	154.4(6)	$C(8)$ – $C(7)$	153.3(6)
$C(9) - C(7)$	152.9(6)		
$C(13) - P(12) - C(3)$	99.9(2)	$C(19) - P(12) - C(3)$	101.6(2)
$C(19) - P(12) - C(13)$	102.0(2)	$C(6)-C(1)-C(2)$	101.6(3)
$C(7)-C(1)-C(2)$	101.6(3)	$C(7)-C(1)-C(6)$	102.5(3)
$C(10)-C(1)-C(2)$	113.8(4)	$C(10)-C(1)-C(6)$	115.5(3)
$C(10)-C(1)-C(7)$	119.3(4)	$C(3)-C(2)-C(1)$	107.3(3)
$O(11) - C(2) - C(1)$	125.7(4)	$O(11) - C(2) - C(3)$	127.0(4)
$C(2) - C(3) - P(12)$	114.3(3)	$C(4)$ - $C(3)$ - $P(12)$	115.9(3)
$C(4)$ -C(3)-C(2)	100.3(3)	$C(5)-C(4)-C(3)$	108.2(3)
$C(7)$ -C(4)-C(3)	102.3(3)	$C(7)$ -C(4)-C(5)	102.4(3)
$C(6)-C(5)-C(4)$	103.0(3)	$C(5)-C(6)-C(1)$	103.7(3)
$C(4)-C(7)-C(1)$	93.9(3)	$C(8)$ -C(7)-C(1)	114.0(3)
$C(8)$ -C(7)-C(4)	112.3(4)	$C(9)$ – $C(7)$ – $C(1)$	113.7(4)
$C(9)-C(7)-C(4)$	114.2(4)	$C(9)$ – $C(7)$ – $C(8)$	108.3(4)
$C(14) - C(13) - P(12)$	123.9(2)	$C(18)-C(13)-P(12)$	116.1(2)
$C(20) - C(19) - P(12)$	117.7(2)	$C(24)$ - $C(19)$ - $P(12)$	122.1(2)

suggesting that the phosphine ligands are mutually *trans* at the metal centre, i.e. **4a. The** resonances for the minor species in solution that could be identified, showed non-limiting second-order patterns typical of *cis-posi*tioning of the phosphines, i.e. **4b.** We have previously discussed the use of $^{13}C(^{1}H)$ NMR spectroscopy to determine the stereochemistry of tertiary phosphinemetal complexes [18]. We could not identify or assign ¹H resonances of this minor component presumably because they overlapped with the much stronger resonances of the major component **4a.**

TABLE 6. Non-hydrogen atomic coordinates ($\times 10^4$) for com**pound 3b with e.s.d.s in parentheses**

	x	y	z
P(12)	$-2049.8(8)$	$-2379.3(6)$	$-8617.8(3)$
C(1)	$-3127(4)$	$-5115(2)$	$-9724(1)$
C(2)	$-2014(4)$	$-4665(2)$	$-9184(1)$
C(3)	$-3116(3)$	$-3822(2)$	$-8799(1)$
C(4)	$-4732(4)$	$-3758(2)$	$-9217(1)$
C(5)	$-4242(4)$	$-3126(2)$	$-9836(1)$
C(6)	$-3119(4)$	$-4045(2)$	$-10177(1)$
C(7)	$-4939(4)$	$-5054(3)$	$-9433(1)$
C(8)	$-6400(5)$	$-5205(3)$	$-9911(2)$
C(9)	$-5223(6)$	$-5927(3)$	$-8897(2)$
C(10)	$-2504(5)$	$-6265(3)$	$-10005(2)$
O(11)	$-520(3)$	$-4911(2)$	$-9097(1)$
C(13)	$-3943(2)$	$-1514(1)$	$-8377(1)$
C(14)	$-5208(2)$	$-1925(1)$	$-7968(1)$
C(15)	$-6590(2)$	$-1205(1)$	$-7806(1)$
C(16)	$-6707(2)$	$-73(1)$	$-8055(1)$
C(17)	$-5443(2)$	338(1)	$-8464(1)$
C(18)	$-4061(2)$	$-382(1)$	$-8626(1)$
C(19)	$-1015(2)$	$-2699(2)$	$-7852(1)$
C(20)	250(2)	$-3568(2)$	$-7837(1)$
C(21)	1147(2)	$-3789(2)$	$-7281(1)$
C(22)	779(2)	$-3142(2)$	$-6741(1)$
C(23)	$-486(2)$	$-2273(2)$	$-6756(1)$
C(24)	$-1383(2)$	$-2062(2)$	$-7311(1)$

When we recrystallised a sample of the 4a:4b mixture from $CH₂Cl₂/MeOH$ we obtained crystals of quality suitable for an X-ray diffraction study (see below). However, the crystal structure (Fig. 3) (see below) proved to be the *cis*-isomer 4b. Presumably the *cis* and trans forms equilibrate in solution, but the interconversion is slow on the NMR time scale. Complexes of type $[\text{PdCl}_2L_2]$ (L=tertiary phosphine) are labile and interconversion $cis \leftrightarrow trans$ would be expected to occur at room temperature [19]. The product $[PdCl_2L_2]$ 4a:4b was identical with the product we obtained previously by treating the bis-chelate 2b with dry hydrogen chloride, the stereochemistry of which was not determined. In our previous paper we suggested that the stereochemistry of the enolate 2b was *cis*, by analogy with the platinum complex 2a, the stereochemistry of which was shown to be *cis* from the large value of $1/(195 \text{P}t^{31} \text{P})$. We now report the ^{13}C ^{[1}H] NMR spectra of 2a and 2b (see Table 4) and the appearance of the resonances for the C_{iso} s and camphor C(3) as non-limiting secondorder patterns confirms our assignment of these compounds as cis.

Treatment of $[PtCl₂(cod)]$ with 3b gave cis- $[PtCl₂(PPh₂C₁₀H₁₅O)₂]$, a white crystalline product identical with the product obtained previously by treating the bis-chelate 2a with an excess of hydrogen chloride. The H NMR data suggest an *endo-position* for the $PPh₂$ groups. The far IR spectrum showed two ν (Pt–Cl) bands at 285 and 305 cm^{-1} indicating the *cis*-config-

TABLE 7. Bond lengths (pm) and angles (") for compound 4b with e.s.d.s in parentheses

	TABLE 8. Non-hydrogen atomic coordinates $(\times 10^4)$ for com-					
pound 4b with e.s.d.s in parentheses						

uration 4c and the very large value of 'J(PtP) (3829 Hz) also showed the cis-configuration. However, treatment of $[PtCl_2(NCMe)_2]$ with two equivalents of the endo-phosphine gave a yellow crystalline isomer $[PtCl₂(PPh₂C₁₀H₁₅O)₂]$ (4d) characterised by a singlet ${}^{31}P{^1H}$ resonance at 14.5 ppm with satellites

 $U(TtP) = 2577$ Hz. This J value clearly indicates a transconfiguration. The resonances of $H(3)$ and $H(4)$ were multiplets suggesting an endo-configuration for the PPh₂s. The $^{13}C_{1}^{1}H$ } NMR spectra confirmed our assignment of 4c and 4d as *cis* and *trans* isomers, respectively. The resonances due to the phenyl C_{ipso} and the camphor $C(3)$ and $C(7)$ atoms, shown in Fig. 2 provide a good example of how, in a spin system AXX' changing the value of $J(XX')$ (i.e. $\mathcal{I}(PP)$) from small (for the cis compound $4c$) to large (for the *trans* compound **4d)** increases the second-order character towards a limiting 'virtual' triplet.

We treated both the complexes 4c and **4d** with NaH in mineral oil and obtained the enolate bis chelate **2a** in both cases. We also found that the cis-dichlorocomplex 4c when heated in dioxan at 100 $^{\circ}$ C for 1 day was almost completely converted into the isomeric transdichloro complex **4d.**

We previously reported [1] that the enolate phosphine bis-chelate **2a,** when heated with HC=CPh or $HC=CC(Me)=CH₂$ gave the bis-acetylides $[Pt(C=CR)₂(PPh₂C₁₀H₁₅O)₂]$ (4e) and (4f), respectively. We now show from the ¹H and ¹H $_{3}^{31}P$ } NMR data (Table 3) that H(3) is exo ($3J(HH) \sim 4Hz$), i.e. the PPh₂S are endo. Additionally, from the $^{13}C_{1}^{1}H$ } NMR spectra of 4e and **4f** it is clear that both complexes are cis: the resonances for the α -acetylide carbon atoms being pseudo-first-order doublets of doublets $(^{2}J(PC_{trans}) =$ c. 149 Hz and $\mathcal{Y}(PC_{cis}) = c$. 22 Hz), a situation which has been described for cis-diphosphine-dialkyl complexes of platinum [20]. We also find that treatment of these diacetylide complexes with dry HCl gives only the *cis*-dichloro complex 4c and none of the *trans* complex **4d.**

We have also studied reactions between the *endo*camphor phosphine, **3b** or the enolate ion **1** with rhodium chlorocarbonyl. Treatment of $[Rh_2Cl_2(CO)_4]$ with 4 equivalents of the *endo* phosphine, **3b** gave the expected chloro(carbonyl)rhodium(I) complex of type trans- $[RhCl(CO)L_2]$, (5), L = the *endo*-phosphine, 3b, in 90% yield. This complex was fully characterised and the ${}^{1}H{}^{31}P$ } NMR data showed that the phosphoruses were still *endo*, i.e. $\frac{3}{H(3)-H(4)}=4.0$ Hz (see Table 3). The same complex was obtained by treating rhodium chlorocarbonyl, prepared *in situ* from RhCl₃ · 3H₂O and carbon monoxide, with a solution of the phosphine enolate 1, followed by treatment with hydrochloric acid.

Crystal structures of endo-3-diphenylphosphino-(IR)- $(+)$ -camphor (3b) (L) and cis- $[PdCl₂L₂]$ (4b)

The crystal structure of the phosphine **3b** is shown in Fig. 1 and the bond lengths and angles are shown in Table 5 and atom coordinates in Table 6. The structure shows that the PPh, is *endo. The* crystal structure of the palladium dichloride complex **4b** is shown in Fig. 3 with bond lengths and angles shown in Table 7 and atom coordinates in Table 8. The structure shows that both phosphine ligands are *endo* and coordinated to palladium in a *cis* fashion.

Supplementary material

Additional material available from the Cambridge Crystallographic Data Centre comprises further details of data collection and structure refinement, non-hydrogen atomic coordinates, H atom coordinates and isotropic and anisotropic thermal parameters.

Acknowledgements

We thank the Science and Engineering Research Council for support and Johnson Mattey plc for the generous loan of rare metal salts.

References

- **1** S. D. Perera and B. L. Shaw, *J. Organomet. Chem., 402* (1991) **133.**
- **2 T. Money,** *Nat. Prod. Rep.* **(1985) 253, and refs. therein.**
- **3 J. H. Hutchinson and T. Money, Can. J. Chem., 62 (1984) 1899.**
- **4 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J.** *Chem. Sot., Dalton Trans., (1992) 999.*
- 5 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. *Sot., Dalton Trans.,* **(1991) 1183.**
- 6 B. L. Shaw and J. D. Vessey, J. Chem. Soc., Dalton Trans., **(1991)** *3303.*
- **7 W. Clegg,** *Acta Qvstallogr., Sect. A, 37 (1987) 22.*
- **8** *G.* **M. Sheldrick,** *SHELX86,* **program system for X-ray structure solution, University of Gottingen, FRG, 1986.**
- **9 G. M. Sheldrick,** *SHELX76,* **program system for X-ray structure determination, University of Cambridge, UK, 1976.**
- 10 A. P. Marchand, *Stereochemical Applications of NMR Studies in Rigid Bicyclic Systems,* **VCH, Deerfield Beach, FL, 1982 p. 112.**
- **11 J. L. Marshall and S. R. Walter,J.** *Am. Chem. Sot., 96 (1974) 6358.*
- **12** *S.* **D. Perera, B. L. Shaw, M. Thornton-Pett, J.** *Organomet. Chem.,* **Paper no. 91/280, in press.**
- **13 C. K. Johnson,** *ORTEPII, Rep. ORNL-5138,* **Oak Ridge National Laboratory, TN, USA, 1976.**
- **14 D. A. Knight, D. J. Cole-Hamilton and D. C. Cupertino, J.** *Chem. Sot., Dalton Trans.,* **(1990) 3051.**
- **15 R. Benn, H. Grondey, C. Brevard and A. Pagelot, J.** *Chem. Sot., Chem. Commun.,* **(1988) 102.**
- **16 A. L. Waterhouse,** *Magn. Reson. Chem., 27* **(1989)** *37.*
- **17 L. D. Quin, M. J. Gallagher, G. T. Cunkle and D. B. Chesnut, J.** *Am. Chem. Sot., 102 (1980) 3136.*
- 18 B. E. Mann, B. L. Shaw and R. E. Stainbank, J. Chem. Soc., *Chem. Commun.,* **(1972) 151.**
- **19 P. Braunstein, D. Matt, D. Nobel, F. Balegroune, S. E. Bouaoud, D. Grandjean and J. Fischer, J.** *Chem. Sot., Dalton Trans., (1988) 353,* **and refs. therein.**
- **20 A. 3. Cheney, B. E. Mann and B. L. Shaw, J.** *Chem. Sot., Chem. Commun.,* **(1971)** *431.*