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The icosahedron in inorganic chemistry 
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Abstract 

Icosahedral clusters of atoms are found in the following types of inorganic structures: (1) boron derivatives . . 
mcludmg the borane amon ‘- Br2Hr2 and its derivatives, the carboranes ~BrJ&, elemental boron, certain types 
of boron-rich metal borides such as Mg B 2 r.,, and boron carbide; (2) alkali metal gallides such as RbGa, and 
KsGa,,; (3) icosahedral quasicrystals containing large amounts of aluminum; (4) icosahedral transition metal 
carbonyl clusters of nickel and rhodium such as Ni,(AsPh)S(C0),~2- and Rh,,Sb(C0),,3-; (5) icosahedral gold 
clusters such as Au,,(Au)Cl,(PMe,Ph),03’. Analysis of the chemical bonding in these diverse icosahedral atomic 
clusters using graph-theory derived methods indicates delocalized bonding leading to relatively high chemical 
stabilities. In addition an icosahedron is found in the MOlz coordination polyhedron (M= Ce(IV), Th(IV), U(IV)) 
in the Silverton polyoxometalates MMo~~O,,~“-. The icosahedron is related to the cuboctahedron by a six-fold 
diamond-square process; cuboctahedra are found in a number of inorganic structures including the centered 
rhodium carbonyl cluster RhlZ(Rh)(C0)24H32- and the Keggin polyoxometallates XM12040”- (n = 3 to 7; M = MO, 
W; X =B, Si, Ge, P, Fe”‘, Co”‘, Cu”, etc.). The reducibility of Keggin polyoxometallates to molybdenum and 
tungsten ‘blues’ can be related to delocalization involving overlap of the dv orbitals on the twelve (h-0)sMO 
vertices of a large cuboctahedron. The pure rotation point group of the rcosahedron (I) is isomorphic to the 
group of even permutations of five objects (As) and is of group-theoretical significance in being the non-trivial 
simple group having the smallest number of operations. 

1. Introduction 

A key concept for the description of chemical struc- 
tures is that of a polyhedron [l]. In three-dimensional 
space a polyhedron may be regarded as a set consisting 
of (zero-dimensional) points, namely the vertices; (one- 
dimensional) lines connecting some of the vertices, 
namely the edges; and (two-dimensional) surfaces 
formed by the edges, namely the faces. Polyhedra appear 
in structures of inorganic compounds in two principal 
ways: coordination polyhedra in which the vertices 
represent ligands surrounding a central atom which is 
often, but not always, a metal, and cluster polyhedra 
in which the vertices represent multivalent atoms and 
the edges represent bonding distances. 

Among the polyhedra which arise in chemical contexts 
the regular icosahedron (Fig. 1) is of particular interest 
in terms of both its symmetry and topology. The sym- 
metry point group [2] I,,, of the icosahedron, which has 
120 operations, is the largest non-trivial point group; 
its rotation subgroup 1, which has 60 operations, is 
isomorphic to the alternating group A5 of even per- 
mutations of five objects. From the topological point 
of view the icosahedron is the largest deltahedron in 
which all vertices have degrees no higher than five. In 
this context a deltahedron is a polyhedron in which 

all of its faces are triangles and the degree of a vertex 
is the number of edges meeting at that vertex. Some 
deltahedra of chemical significance are depicted in 
Fig. 1. 

A variety of inorganic substances have icosahedral 
structures; the following are of particular interest: 

(1) the icosahedral boranes [33 B12H122- and iso- 
electronic icosahedral carboranes [4] &B,JI,, and their 
substitution products in which the external hydrogen 
atoms are replaced by other monovalent groups such 
as halogens and/or alkyl groups; 

(2) elemental boron and metal borides having high 
boron content [5, 61; 

(3) icosahedral quasicrystals based on aluminum 
icosahedra [7-lo]; 

(4) icosahedral gallium ions GalZ2- found in inter- 
metallic phases of gallium and alkali metals such as 
RbGa,[ = Rb,(Ga,,)(Ga,)] [ll] and K3Ga1J = &- 
(GaIIWa12W41 WI; 

(5) icosahedral metal carbonyl clusters including both 
centered metal carbonyl clusters such as the rhodium 
carbonyl derivatives [Rh,,Sb(C0),13- [13] and un- 
centered metal carbonyl clusters such as 
[Ni,(AsPh)3(CO)15]2- and [Ni,,(AsMe)2(CO),,]2- con- 
taining NipAs and Ni,& icosahedra, respectively [14]; 
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Fig. 1. The six deltahedra in which all vertices have degree 4 
or 5. The vertices are labelled with their degrees (4 or 5). 

(6) icosahedral gold clusters such as the centered 
icosahedron [15] Au1z(Au)C1,(PMe,Ph),,3+ as well as 
much more complicated clusters based on icosahedral 
structural units [16] such as the 25atom cluster {[(p- 
MeC,H,)3P],,,Au,3Ag,,Br,}C and the 38-atom cluster 
[@-MeC,H,)3Pl,,Au,,Ag,,C1,,; 

(7) icosahedral polyoxometallates [17] such as the 
Silverton ions M’“Mo,,0,,8- (M = Ce, Th, U) in which 
the central metal M’” forms an MO,, icosahedron with 
the interior oxygen atoms. 

The elements of the B, Al, Ga, . . . column of the 
periodic table have a particularly high tendency to form 
structures based on E,, icosahedra (E = B, Al, Ga) as 
illustrated by examples (l)-(4) mentioned above; for 
this reason this column of the periodic table can be 
called the icosogens [18]. 

This paper presents a general survey of structure 
and bonding in icosahedral inorganic molecules with 
particular emphasis on topological aspects of delocal- 
ization and ‘aromaticity’ in such substances. First, how- 
ever, aspects of the symmetry and topology of the 
icosahedron and other polyhedra of icosahedral sym- 
metry will be reviewed. 

2. Symmetry and topology of the icosahedron 

The symmetry of the regular icosahedron (Fig. 1) 
relates to the special properties of its symmetry point 

group, namely Ih with 120 operations, as well as its 
subgroup. of index 2 of pure rotations, namely I with 
60 operations. Of particular interest are the relationships 
of these symmetry point groups to the symmetric group 
Ss and the alternating group A5 describing all 5! = 120 
permutations on five objects and all 5!/2= 60 even 
permutations on five objects, respectively. In order to 
understand these relationships some general ideas of 
group theory will first be reviewed [2]. 

Consider a group G. The number of operations in 
G, frequently designated as I GI, is called the order 
of G. Now let A and B be two operations of a group 
G with inverses A-’ and B-l, respectively (i.e., 
AA-’ = BB-’ =E, the identity operation). .If Al3 = BA 
then A is said to commute with B. In addition B-lAB = C 
will be equal to some operation in G. The operation 
C is called the similarity transform of A by B and A 
and B may be said to be conjugate. A complete set 
of operations of a group G which are conjugate to one 
another is called a class (or more specifically a conjugacy 
class) of G. The number of operations in a conjugacy 
class is called its order; the orders of all conjugacy 
classes must be integral factors of the order of the 
group. 

A group in which every operation commutes with 
every other operation is called a commutative group 
or an Abelian group after the famous Norwegian math- 
ematician Abel (1802-1829) [19]. In an Abelian group 
every operation is in a conjugacy class by itself, i.e. all 
conjugacy classes are of order one. A normal subgroup 
N of G, written N a G, is a subgroup of G which 
consists only of entire conjugacy classes of G [20]. A 
normal chain of a group G is a sequence of normal 
subgroups C, a N,, Q N,, a N, a . . . a N, a G, in 
which s is the number of normal subgroups (besides 
C, and G) in the normal chain. If such a chain starts 
with the identity group C1 and leads to G and if all 
of the quotient groups N,,/C1 = C,,, N&N,, = C,,, . . . , 
G/N, = C,,, are cyclic, then G is a composite or soluble 
group. Otherwise G is a simple group. Simple groups 
are particularly important in the theory of finite groups 
[21]. The icosahedral pure rotational group I is of 
significance in group theory in being the smallest non- 
trivial simple group. 

Now let us consider the properties of the permutation 
groups on small numbers of objects. In this context 
the symmetric group S, is a group consisting of all 
possible n! permutations of n objects whereas the 
alternating group A,, is a group consisting of all possible 
n!/2 even permutations of n objects. The alternating 
group A3 and the symmetric group S, on three objects 
are isomorphic with the point groups C, and D,, re- 
spectively. The latter two point groups correspond to 
the symmetry of the two-dimensional simplex [22], i.e. 
to a planar triangle. Similarly, the alternating group 
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& and symmetric group S, on four objects are, re- 
spectively, isomorphic with the point groups T and T,, 
which correspond to the symmetry of the three-di- 
mensional simplex, i.e. to that of the regular tetrahedron. 
The alternating group on five objects, A,, has 5!/2 = 60 
operations like the icosahedral pure rotation group I. 
Similarly, both the symmetric group Ss and the full 
icosahedral point group, Ih, have 5! = 120 operations. 
Examination of the conjugacy class structure [19, 231 
of the permutation groups A5 and S5 on the one hand 
and that of the icosahedral point groups I and I*, on 
the other hand, reveals that they correspond to each 
other by the relationships 

I = A5 (isomorphism) (1) 

S, = As A Sz (semi-direct product) (2) 

I,, =Ix C, (direct product) (3) 

In this context a group G is a direct product of two 
groups A and B (i.e., G = AX B) when: 

(i) for any a E A and any b EB the automorphism 
4(b) of A is the identity thus 

+(b)a = a (4) 

(ii) there is an isomorphism between G and the 
group of pairs (a,b) with a E A and b E B which satisfies 
the multiplication law 

(al,bl)(az,bz) = (a,a,,b,b,) (5) 

Similarly a group G is a semi-direct product of two 
groups A and B (i.e., G = A A B) when: 

(i) for any a E A and any b EB there is an auto- 
morphism 4(b) of A such that: 

(ii) there is an isomorphism between G and the 
group of pairs (a,b) with a E A and b E B which satisfies 
the multiplication law 

A direct product is thus a special case of a semi-direct 
product. 

Let us now consider the S,, permutation groups having 
n! operations. In these groups permutations having 
different cycle structures necessarily belong to different 
conjugacy classes. Moreover, for these specific groups 
a common partition will be a guarantee that the elements 
do in fact belong to the same class. Thus, the conjugacy 
classes of the permutation groups A5 and Ss are indicated 
in terms of their cycle indices [24, 251 Z(G) in the 
following way 

6OZ(A,) =x1’ +20x,%, + 15x,x,’ + 24x, (8) 

120Z(Ss) =x15 + 10x,%,+20x1%, + 15x,x22 

+ 30x,x,, + 20x,x, + 24x, (9) 

Furthermore the conjugacy classes of the icosahedral 
point groups I and Ih are indicated from their character 
tables to be the following (using S,, and S, to represent 
improper rotations rather than symmetric groups) 

I={E, 12C,, 12C,2, 2OG, 15G) (10) 

Ih ={E, 2C,, 12Cs2, 2OC& 15C& i, 12&d, 

12s,,, 2OS6, 15u} (11) 

Comparison of eqns. (8) and (9) with eqns. (10) and 
(ll), respectively, by using the relationships in eqns. 
(l), (2) and (3) leads to the following observations: 

(i) The class of A, represented by the cycle index 
turn 24x, corresponds to the two classes 12C, and 12Cs2 
of I taken together. 

(ii) In the point group I,,, each class of improper 
rotations (i, So, S,a, Ss, and a) corresponds to a class 
of proper rotations of the same size, namely to E, C,, 
Cs2, C,, and G, respectively, whereas the classes of Ss 
are not partitioned analogously. 

The relationship between the icosahedral point groups 
I,, and I outlined here and the permutation groups A5 
and Ss is discussed in more detail elsewhere [26]. 

Now let us consider some aspects of the topology 
of the icosahedron. The icosahedron is an example of 
a deltahedron in which all vertices have degrees 4 or 
5; in this context a deltahedron is a polyhedron in 
which all faces are triangles and the degree of a vertex 
is the number of edges meeting at that vertex. There 
are only six topologically possible deltahedra in which 
all vertices have degrees 4 or 5; these special deltahedra 
are depicted in Fig. 1. The octahedron in which all 
vertices have degree 4 and the icosahedron in which 
all vertices have degree 5 are the end members of this 
series. Note that there is exactly one deltahedron for 
each number of vertices from 6 to 12 with the exception 
of 11; the deltahedra depicted in Fig. 1 are actually 
found in the boranes B,H,,2- (n =6, 7, 8, 9, 10 and 
12) [27]. A deltahedron with 11 vertices all of degrees 
4 or 5 has been shown to be topologically impossible 
[28]; the deltahedron actually found for the borane 
B,,H,,‘- has one vertex of degree 6 [29]. 

The next question of interest is the topological re- 
lationship of the icosahedron to other polyhedra having 
12 vertices. As early as 1966 Lipscomb [30] described 
framework rearrangements (isomerizations) in boranes 
and carboranes in terms of diamond-square-diamond 
(dsd) processes. Such a dsd process in a polyhedron 
occurs at two triangular faces sharing an edge and can 
be depicted as follows where a dsd process corresponds 
to Ia-+Ib+Ic: 
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The first stage of a dsd process, i.e. Ia -+ Ib, may be 
called a diamond-square process. Of particular interest 
is the conversion of an icosahedron to a cuboctahedron 
(Fig. 2) by means of a sextuple diamond-square process, 
i.e. six diamond-square processes in parallel so con- 
figured to lead to 0, symmetry in the final cubocta- 
hedron; this process was described in ref. 30. Such a 
conversion from an icosahedron to a cuboctahedron 
will have a tendency to occur either to increase the 
cavity of the 12-vertex polyhedron in order to accom- 
modate a larger interstitial atom or to change the local 
symmetry from I,, to 0, in order to improve the packing 
in an infinite three-dimensional lattice. The result of 
a single diamond-square process is to reduce the num- 
bers of both the edges and faces by one as indicated 
by the conversion 1a-t Ib depicted above. Thus a sex- 
tuple diamond-square process converts an icosahedron 
with 30 edges and 20 faces to a cuboctahedron with 
24 (i.e 30-6) edges and 14 (i.e. 20- 6) faces. Of the 
14 faces of the cuboctahedron, six are the squares 
generated by the diamond-square process and the re- 
maining eight are triangular faces of the original 
icosahedron. 

In generating polyhedra, including those of icosa- 
hedral symmetry, the operations of capping and dual- 
ization are important. Capping a polyhedron P, consists 
of adding a new vertex above the center of one of its 
faces F, followed by adding edges to connect the new 
vertex with each vertex of F,. This capping process 
gives a new polyhedron P2 having one more vertex than 
P,. If a triangular face is capped, the following rela- 
tionships will be satisfied where the subscripts 1 and 
2 refer to P, and Pz, respectively: V, = V, + 1; e, = e, + 3; 
fi=fi +2. A given polyhedron P can be converted into 
its dual P* by locating the centers of the faces of P* 
at the vertices of P and the vertices of P* above the 
centers of the faces of P. Two vertices in the dual P* 
are connected by an edge when the corresponding faces 
in P share an edge. The process of dualization has the 
following properties: 

lcosahedron Cuboctahedron 

Fig. 2. The sextuple diamond-square process for conversion of 
the icosahedron to the cuboctahedron. 

(i) the numbers of vertices and edges in a pair of 
dual polyhedra P and P* satisfy the relationship v * = f, 
e*=e, fc=v* 

(ii) dual polyhedra have the same symmetry elements 
and thus belong to the same symmetry point group; 
thus a dual of a polyhedron with icosahedral (I,,) 
symmetry also has I,, symmetry; 

(iii) dualization of the dual of a polyhedron leads 
to the original polyhedron; 

(iv) the degrees of the vertices of a polyhedron 
correspond to the number of edges in the corresponding 
face polygons of its dual. 

Figure 3 shows three pairs of dual polyhedra having 
Z,, symmetry. The dual of the icosahedron is the regular 
dodecahedron. The dual of the truncated icosahedron 
(the ‘C6,, polyhedron’) is the omnicapped dodecahedron, 
which can be generated by capping each of the 12 
pentagonal faces of the regular dodecahedron. The 
dual of the icosidodecahedron with 30 vertices of degree 
4,60 edges and 32 faces is the rhombic triacontahedron 
with 32 vertices, 60 edges and 30 identical diamond 
faces. 

DUAL , 

Icosohedron 
Regular 

Dodecahedron 

DUAL 

Truncated 

lcorohedron 

Omnicapped 

Dodecohedron 

DUAL 

Icoridodecahsdron Rhombic 

Triacontahedron 

Fig. 3. Three pairs of dual polyhedra having icosahedral (I,,) 
point group symmetry. 
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3. Icosahedral clusters: globally delocalized 
molecules and ions 

This section discusses the properties of globally de- 
localized icosahedral clusters. The prototypical icosa- 
hedral clusters are the deltahedral boranes B,,H,,‘- 
and the isoelectronic carboranes C&BJI,,. The chemical 
bonding topologies of these icosahedral clusters are 
the simplest to understand since the vertex boron and/ 
or carbon atoms use sp3 manifolds having only four 
valence orbitals with no involvement of d orbitals in 
chemical bonding. The graph-theory derived method 
for studying the chemical bonding topology of icosa- 
hedral clusters is first illustrated by B12H122-. Subse- 
quent discussion focusses on intermetallic phases of 
alkali metals and gallium, which is a heavier congener 
of boron. In addition, globally delocalized metal icosa- 
hedra in nickel carbonyl and rhodium carbonyl clusters 
are also discussed. 

The topology of a chemical bonding network can be 
represented by a graph, G, in which the vertices cor- 
respond to atoms or orbitals participating in the chemical 
bonding and the edges correspond to bonding rela- 
tionships. The adjacency matrix [31] A of such a graph 
can be defined as follows: 

I 

Oifi=j 
A,= 1 if i and j are connected by an edge 

0 if i if i and j are not connected by an edge 

(12) 

The eigenvalues of the adjacency matrix are obtained 
from the following determinantal equation: 

IA-XII =0 (13) 

in which I is the unit matrix (Iii = 1 and Iii = 0 for i # j). 
The polynomial derived from eqn. 13 is known as the 
characteristic polynomial of the graph G. These top- 
ologically derived eigenvalues are closely related to the 
energy levels as determined by Hiickel theory which 
uses the secular equation 

IH-ESI =0 (14) 

Note the general similarities between eqns. (13) and 
(14). In eqn. 14 the energy matrix H and the overlap 
matrix S can be resolved into the identity matrix I and 
the adjacency matrix A as follows: 

H=d+PA 
S=I+SA (15) 

The energy levels of the Htickel molecular orbitals 
(eqn. (14)) are thus related to the eigenvalues x, of 
the adjacency matrix A (eqn. (13)) by eqn. (16) [32-351. 

a+xlcP Ek= - 
1 +x/J 

In eqn. (16) (Y is the standard Coulomb integral, assumed 
to be the same for all atoms, p is the resonance integral, 
taken to be the same for all bonds, and S is the overlap 
integral between atomic orbitals on neighboring atoms. 
Positive and negative eigenvalues x, from eqn. (16) thus 
correspond to bonding and antibonding orbitals, re- 
spectively. Figure 4 illustrates the spectra of the icosa- 
hedron and the closely related cuboctahedron obtained 
from their adjacency matrices using the symmetry fac- 
toring procedures [36] depicted in Fig. 5 for the ico- 
sahedron and Fig. 6 for the cuboctahedron. Note that 
because of the high symmetry most of the eigenvalues 
are degenerate; i.e. the same eigenvalue appears as a 
repeated root. Thus for the regular icosahedron the 
eigenvalue - 1 appears five times, the two eigenvalues 
&-&each appear three times, and only the most positive 
eigenvalue +5 appears only once. 

A difficulty in applying eqn. 16 is the need to determine 
three parameters (Y, p and S to relate the eigenvalues 
x, to the corresponding molecular orbital energies Ek. 
Any actual system, even highly symmetrical icosahedral 
systems, provides too few relationships to determine 
fully all of these three parameters. Therefore some 
assumptions concerning the values of (Y, /3 and S are 
necessary in order to make the use of eqn. 16 tractable. 
The approach that is generally taken is to assume a 
zero value for S thereby reducing eqn. (16) to the linear 
equation 

Ek=a+xkp (17) 

The value of a can then be determined from the midpoint 
of all of the molecular orbital energy parameters through 
taking an appropriately weighted average. The third 
parameter, /3, is obtained from specific orbital energies. 

The two extreme types of skeletal chemical bonding 
formed by polyhedral clusters of atoms such as poly- 
hedral boranes or metal clusters may be called edge- 
localized and globally delocalized [37]. An edge-local- 
ized polyhedron has two-electron, two-center bonds 
along each edge of the polyhedron and is favored when 

-45 - - - F” -- --p-z 

-l~---~~-D= 

---II 

+J5 - - - Pa 

+5 - sa 

---+2 

- +4 

lcosahedron Cuboctahedron 

Fig. 4. The spectra of the icosahedron and the cuboctahedron. 
The eigenvalues for the icosahedron are given the designations 
SW, P”, D” and F of tensor surface harmonic theory. 
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Fig. 5. Symmetry factoring of the icosahedron to determine its eigenvalues using the procedure outlined in ref. 36. 

the numbers of internal orbitals from the vertex atoms 
match the vertex degrees. A globally delocalized poly- 
hedron has a multicenter bond in the center of the 
polyhedron and is favored when the numbers of internal 
orbitals of the vertex atoms do not match the vertex 
degrees. Fully globally delocalized polyhedra are delta- 
hedra having no vertices of degree 3 (Fig. 1) including 
the icosahedron. In the case of the ‘light’ vertex atoms 
carbon and boron having only the four orbitals of the 
sp3 manifold, only three orbitals can be internal orbitals. 

Since all vertices of an icosahedron have degree 5, 
icosahedra of boron and other light atoms (e.g. carbon 
and nitrogen) must necessarily be globally delocalized 
since the degree 5 vertices of the icosahedron do not 
match the three internal orbitals of the vertex atoms. 

Let us now consider some important features of the 
chemical bonding topology in the icosahedral borane 
anion B,,H,,‘-. The vertex B-H unit in a deltahedral 
borane anion such as B,,H,,‘- can be depicted as 
follows: 
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Fig. 6. Symmetry factoring of the cuboctahedron to determine its eigenvalues using the procedure outlined in ref. 36. 

II 

In this structure the boron atom has two anodal sp 
hybrids, one of which participates in the skeletal bond- 
ing; this sp hybrid orbital is called a unique internal 
orbital or a radial [38, 391 orbital. Since the unique 
internal orbital is anodal (i.e. has no nodes), the del- 
tahedral boranes can be regarded as anodal aromatic 

systems. In addition the two p orbitals on the boron 
vertex depicted in II participate in the skeletal bonding 
as twin internal orbitals or tangential orbitals. Pairwise 
overlap between the (2)(12) = 24 twin internal orbitals 
is responsible for chemical bonding in the surface of 
the icosahedron and leads to the splitting of these 24 
orbitals into 12 bonding and 12 antibonding orbitals. 
The magnitude of this splitting may be designated as 
2&, where j3. relates to the parameter p in eqns. (12) 
and (13). 

The surface bonding in B12H122- is supplemented 
by additional bonding and antibonding orbitals formed 
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by global mutual overlap of the 12 unique internal 
orbitals, namely the sp hybrids oriented away from the 
B-H bond depicted in II. This portion of the chemical 
bonding topology results in a 1Zcenter bond directed 
towards the center of the icosahedron. This core bonding 
can be represented by a graph G, in which the vertices 
correspond to the vertex atoms of the deltahedron or 
equivalently their unique internal orbitals and the edges 
represent pairs of overlapping unique internal orbitals. 
The relative energies E, of the additional molecular 
orbitals arising from the core bonding are determined 
from the eigenvalues x, of the adjacency matrix A, of 
the graph of the icosahedron using p or more specifically 
PC as the energy unit (eqns. (16) and (17)). The ratio 
pc/ps measures the magnitude of the core interactions 
involving the unique internal orbitals relative to the 
surface interactions between the twin internal orbitals. 

A critical question is the nature of the core bonding 
graph G, for the icosahedral borane B,,H,,‘-. The two 
limiting possibilities for G, are the complete graph K,, 
and the deltahedral graph DIZ and the corresponding 
core bonding topologies can be called the complete 
and deltahedral topologies, respectively. In the complete 
graph K,, each of the twelve vertices has an edge going 
to every other vertex leading to a total of (12)(11)/ 
2=66 edges [40]. The spectrum of the complete graph 
Klz has only one positive eigenvalue, namely + 11; the 
remaining 11 eigenvalues are all negative, namely - 1. 
The deltahedral graph D,, corresponds to the l-skeleton 
of the icosahedron thus having 12 vertices and 30 edges. 
The D,, graph has the four positive eigenvalues, namely 
-t 5 and + fi three times. The + 5 eigenvalue, like the 
most positive eigenvalues of other deltahedra, may be 
called the principal eigenvalue of the icosahedron. Note 
that in Fig. 5 the principal eigenvalue arises from the 
fully symmetric pathway of the symmetry factoring 
scheme used to determine the spectrum of the icosa- 
hedron, namely the pathway using G components at 
branches from two-fold symmetry operations and the 
A component at the final branch from the three-fold 
symmetry operation. The highly bonding molecular or- 
bital corresponding to the principal eigenvalue of G, 
may be called the principal core orbital. 

The icosahedral borane B12H122- has 26 skeletal 
electrons calculated as follows: 

12 B-H vertices contributing 2 skeletal 
electrons each: (12)(2) = 

-2 charge: 
24 electrons 

2 electrons 

Total skeletal electrons: 26 electrons 

Note that the surface bonding uses 24 of these electrons 
leaving only two electrons for the core bonding cor- 
responding to a single core bonding molecular orbital 
and a single positive eigenvalue for G,. Thus only if 
G, is taken to be the corresponding complete graph 

K12 will this simple model given above for a globally 
delocalized icosahedron give the correct 26 skeletal 
electrons. Such a model with complete core bonding 
topology is the basis for the graph-theory derived model 
for the chemical bonding topology of deltahedral bor- 
anes and metal clusters discussed in previous papers 
[27, 28, 41, 421. However, deltahedral core bonding 
topology, based on the D,, graph of the icosahedron, 
can also account for the observed 26 skeletal electrons 
in the case of B12HlZ2- if there is a mechanism of 
raising the energies of all of the core molecular orbitals, 
other than the principal core orbital, to antibonding 
energy levels. The original graph-theoretical analysis 
[43] of the 3n Hoffmann-Lipscomb LCAO-MO extended 
Hiickel computations [44] on icosahedral B,,H,22- 
showed that four core orbitals would be bonding orbitals 
except for core-surface orbital mixing which raises the 
energies of three of these four core orbitals to anti- 
bonding levels leaving only the principal core orbital 
as a bonding core orbital. 

These ideas concerning the skeletal bonding in 
B~zHE- and other deltahedral borane anions can be 
related to tensor surface harmonic theory as developed 
by Stone et al. [45, 461 and elaborated by Johnston 
and Mingos [47]. The orbitals of the r, representation 
such as the 12 core orbitals in B12H122- correspond 
to the (scalar) spherical harmonics which for the B12 
icosahedron correspond successively to the single S”, 
the three P”, the five D”, and three of the seven F” 
orbitals of increasing energy and nodality. These labels 
are shown in Fig. 4 for the corresponding eigenvalues 
of the icosahedron. The orbitals of the &representation 
such as the surface orbitals correspond to the vector 
spherical harmonics which for the icosahedron corre- 
spond successively to three P”, five D”, and four of 
the F” antibonding/bonding orbital pairs of increasing 
energy and nodality. This relates to the following aspects 
of the graph theory derived model for the skeletal 
bonding in deltahedral boranes. 

(i) The principal core orbital corresponds to the S” 
orbital in tensor surface harmonic theory. Since there 
are no S” or SZ surface orbitals, the principal (S”) core 
orbital in B12H122- , corresponding to the + 5 eigenvalue 
of the icosahedron (Figs. 4 and 5) cannot mix with 
any surface orbitals in accord with ideas discussed 
above. 

(ii) The three core orbitals of lowest energy other 
than the principal (S”) core orbital are the P” orbitals 
in tensor surface harmonic theory. These orbitals cor- 
respond to the three most positive eigenvalues other 
than the principal eigenvalue of the corresponding 
deltahedron, namely the three +& eigenvalues of the 
icosahedron in the case of B,,H,,‘-. The P”core orbitals 
mix with the P” surface orbitals so that the P” core 
orbitals become antibonding with concurrent lowering 
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of the energies of the P” surface orbitals below the 
energies of the other surface bonding orbitals. Thus 
in computations of orbital energies of deltahedral borane 
anions, the lowest lying molecular orbital is the principal 
(S”) core orbital and the next lowest lying orbitals are 
three P” surface orbitals which are degenerate in the 
case of B12H122-. This ordering of the lowest lying 
molecular orbitals is particularly apparent in the MNDO 
computations presented by Brint et al. [48]. However, 
their label of P” rather than P” for the three orbitals 
immediately above the principal core orbital S” obscures 
the relationship of their computed molecular orbitals 
to those predicted by the graph-theory derived method. 

The icosahedral borane anion B12H122- and the 
isoelectronic carborane GB1,H,, are the prototypical 
examples of simple molecules based on globally de- 
localized icosahedra. However, other more electropo- 
sitive elements can form icosahedral clusters in which 
the same principles of globally delocalized bonding can 
apply* 

Consider first a congener of boron, namely gallium. 
Gallium forms a number of intermetallic phases with 
alkali metals based on globally delocalized gallium 
deltahedra [49], such species can be conveniently called 
alkali metal gallides. The gallium vertices in the del- 
tahedra in alkali metal gallides may be regarded as 
having an sp3d5 manifold of nine valence orbitals, but 
with all five of the d orbitals having non-bonding electron 
pairs. Thus only the four orbitals from the sp3 manifold 
participate in the metal cluster bonding as is the case 
for boron vertices. Among these four valence orbitals, 
three are normally used for intrapolyhedral skeletal 
bonding, leaving the fourth orbital for bonding to an 
external group, usually a two-center bond to a gallium 
vertex of an adjacent deltahedron or to an extra ‘satellite’ 
gallium atom between the gallium deltahedra. A gallium 
vertex contributing one electron to a two-center external 
bond functions as a donor of two skeletal electrons 
like the BH vertices in the B,H,‘- deltahedra. 

The structures of the alkali metal gallides consist of 
infinite networks of gallium polyhedra with alkali metals 
in some of the interstices. The alkali metals can be 
assumed to form monopositive ions thereby donating 
one electron to the gallium network for each alkali 
metal atom. 

The simplest examples of alkali metal gallides con- 
taining Gal2 icosahedra are the derivatives of stoi- 
chiometries MGa, (M=Rb, Cs) [ll] which may be 
represented more precisely as M,(Ga,,)(Ga,). These 
structures have not only a Gal2 icosahedron but also 
a bonded pair (Ga-Ga= 2.52 A) of four-coordinate 
satellite gallium atoms (Ga(4) in ref. 11). Six of the 
gallium vertices of each Ga,, icosahedron are bonded 
externally to other gallium atoms through two-center 
two-electron bonds whereas the other six galliumvertices 

are bonded externally to other gallium atoms through 
three-center two-electron bonds. In such a situation 
the 26 skeletal electron closed-shell electronic config- 
uration of a gallium icosahedron is not the usual GalZ2- 
ion but neutral Ga,, determined as follows: 

Valence electrons of 12 Ga atoms: (12)(3)= 
Required for 6/2 external 2-center 2-electron 

bonds: (6/2)(2) = 
Required for 6/3 external 3-center 2-electron 

bonds: (6/3)(2) = 

36 electrons 

- 6 electrons 

- 4 electrons 

Net electrons remaining for skeletal electrons: 26 electrons 

The closed shell electronic configurations of Gal2 for 
the gallium icosahedra and GaZ2- for the bonded pairs 
of four-coordinate satellite atoms leads to the observed 
stoichiometry M,(Ga,,)(Ga,) = MGa,. 

A more complicated alkali metal gallide is the 
phase K3Ga13, which may be represented as 
&(Ga,,)(Ga,,)(Ga), with equal numbers of Gall and 
Ga,, deltahedra and three satellite gallium atoms for 
each 23 (i.e. Gall +Ga& deltahedral gallium atoms 
[12]. Each vertex atom in both types of gallium del- 
tahedra forms one two-center two-electron external 
bond leading to the closed shell electron configurations 
Gall’- and Ga,,‘- similar to the corresponding del- 
tahedral boranes B,,H,*- (n=ll, 12). There are both 
three-coordinate (Ga(4) in ref. 12) and four-coordinate 
(Ga(l1) in ref. 12) satellite gallium atoms with twice 
as many four-coordinate as three-coordinate satellite 
gallium atoms. The electronic configurations of Gall*- 
and Ga,,*- for the gallium deltahedra, Ga- for the 
four-coordinate satellite gallium atoms and Ga for the 
three-coordinate satellite gallium atoms leads to the 
observed stoichiometry &(Ga,l)(Ga,,)(Ga3-urd)- 
(Ga”““)2 = &GaZ6 = K3Ga13. 

Metal icosahedra are also found in transition metal 
carbonyl clusters. In such clusters the transition metal 
vertices normally have nine-orbital sp3d5 manifolds with 
the normal three internal orbitals leaving six orbitals 
per vertex for the external bonding. Nickel carbonyl 
derivatives are a prolific source of such structures. Thus 
reactions of N&(C0J2*- with halides of germanium, 
tin, arsenic and antimony lead to nickel carbonyl clusters 
having five-fold symmetry based on the icosahedron 
(Fig. 7). Such clusters include the uncentered icosahedra 
Ni&4sPh)3(C0)152- and Ni,,(AsMe),(CO),,*- [13], 
the centered icosahedra Ni,,E(CO),*- (E= Ge, Sn) 
[50], the pentagonal antiprism Ni,,Ge(C0),,2- derived 
from an icosahedron by removal of two antipodal 
vertices [50] and the nickel-centered icosahedron 
Ni13Sb2(C0)244- = Ni,,[SbNi(CO)3]2(Ni)(C0),84- [51]. 
In addition, rhodium forms the icosahedral cluster anion 

3- Rh,SWO)z, 1 131 which has an antimony atom in 
the center (Fig. 7).’ All of these icosahedral metal 
carbonyl clusters have the 26 skeletal electrons cor- 
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Fig. 7. The metal frameworks of six icosahedral metal carbonyl 
clusters. The interstitial atoms are shown in the four clusters 
containing interstitial atoms. 

responding to a globally delocalized icosahedron. The 
skeletal electron counts for these clusters are obtained 
as follows: 

(1) Ni@sPh),(C0),52-: 18-6+12+2=26 skeletal 
electrons arising from 9 Ni(C0)2 vertices, a deficit of 
3 CO groups, the 3 AsPh vertices, and the -2 charge, 
respectively; 

(2) Ni,,(AsMe)2(CO),,2-: 20 - 4 + 8 + 2 = 26 skeletal 
electrons arising from 10 Ni(CO), vertices, a deficit of 
2 CO groups, the 2 AsMe vertices, and the -2 charge, 
respectively; 

(3) Ni12E(CO)222- (E=Ge, Sn): 24-4+4+2=26 
skeletal electrons arising from 12 Ni(CO), vertices, a 
deficit of 2 CO groups, the interstitial Ge or Sn atom, 
and the -2 charge, respectively; 

(4) Ni,,Ge(CO),‘-: 20 + 4 + 2 = 26 skeletal electrons 
arising from 10 Ni(CO), vertices, the interstitial Ge 
atom, and the -2 charge, respectively; 

(5) Ni13SbZ(C0)244- = NilOISbNi(CO),],(Ni)- 
(CO),,4-: 20 - 4 + 6 + 0 + 4 = 26 skeletal electrons aris- 
ing from 10 Ni(CO), vertices, a deficit of 2 CO groups, 

the 2 SbNi(C0)3 vertices, the interstitial Ni atom, and 
the -4 charge; 

(6) Rh,,Sb(CO),, 3-a 12+6+.5+3=26 skeletal elec- . 
trons arising form 12 Rh(C0)2 vertices, a surplus of 
3 CO groups, the interstitial Sb atom, and the -3 
charge, respectively. 

These electron counting schemes consider the fol- 
lowing points. 

(i) The electron counting is independent of whether 
the metal carbonyl groups are terminal or bridging. 
Thus either terminal or bridging carbonyl groups are 
two-electron donors. 

(ii) An Ni(CO), vertex is a donor of 10 (NiO) +4 (2 
CO) - 12 (6 external orbitals) = 2 skeletal electrons and 
a Rh(CO), vertex is a donor of 9 (Rho) + 4 (2 CO) - 12 
(6 external orbitals) = 1 skeletal electron. 

(iii) Interstitial germanium and tin atoms are donors 
of four skeletal electrons each and an interstitial an- 
timony atom is a donor of five skeletal electrons since 
such interstitial atoms have no external orbitals. The 
interstitial nickel atom in Ni,,Sb2(C0),4-, which is 
surrounded by an icosahedron of nickel atoms, is a 
donor of zero skeletal electrons since its ten valence 
electrons are d electrons which must go into the H, 
antibonding level of the Ni,, icosahedron corresponding 
to the - 1 eigenvalue (Fig. 4). These nickel d electrons 
thus cannot participate in skeletal bonding. Further- 
more, the reported oxidation of Ni13Sb2(C0)244- to 
Ni,,Sb2(C0)243- and Ni,,Sb2(C0)242- can simply in- 
volve removal of one or two of the essentially non- 
bonding nickel d electrons which should affect very 
little the total energy of the cluster. 

The icosahedral clusters Ni,2E(CO)222- (E = Ge, Sn), 
Ni13Sb2(C0)244- and Rh12Sb(C0)273- have structures 
with an interstitial atom in the center of an Ni,, or 
Rh,, icosahedron. In some cases the volume require- 
ments of an interstitial atom can lead to expansion of 
an icosahedral cavity to a cuboctahedral cavity by means 
of the sextuple diamond-square process depicted in 
Fig. 2, since the volume of a polyhedron containing an 
interstitial atom can be increased by decreasing the 
number of edges. The positive eigenvalues of the spec- 
trum of a cuboctahedron are very similar to those of 
the icosahedron (Fig. 4). Therefore an cuboctahedron 
can function as a globally delocalized (2)(12) f 2=26 
skeletal electron 12-vertex polyhedron just like the 
icosahedron. An excellent example of a globally de- 
localized centered cuboctahedral metal carbonyl cluster 
is the rhodium carbonyl anion [52] Rh,,(Rh)(CO),H,‘- 
which has the required 26 skeletal electrons from the 
following electron counting scheme: 
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12 Rh(CO)r vertices: (12)[9 - (4)(2)] = 12 electrons 
Interstitial rhodium atom 9 electrons 
3 hydrogen atoms: (3)(l)= 3 electrons 
-2 charge: 2 electrons 

Total skeletal electrons 26 electrons 

The coinage metals silver and gold also form some 
icosahedral clusters for which the globally delocalized 
bonding schemes outlined above appear to be applicable 
with some modification. A specific feature of the chem- 
istry of gold (and to a lesser extent silver) is the shifting 
of one or two of the outer p orbitals to such high 
energies that they no longer participate in the chemical 
bonding [53]. If two of the outer p orbitals of a gold 
vertex are so shifted, then there remains only one p 
orbital in the valence orbital manifold, which now 
contains 7 orbitals (spd’) and has cylindrical symmetry 
extending in one axial dimension much further than 
the other two dimensions. Filling this spd5 manifold 
with electrons leads to the 1Celectron configuration 
found in two-coordinate linear complexes of the dl” 
metals such as Pt(O), Au(I), Au(I), Hg(I1) and Tl(II1). 
The raising of one or particularly two outer p orbitals 
to antibonding levels has been attributed to relativistic 
effects [54]. 

Thus to an initial approximation the spd’ orbital 
manifold of an L+ Au or X-Au vertex (L= tertiary 
phosphine or isocyanide ligand; X = halogen or pseudo- 
halogen) in a polyhedral gold cluster may be regarded 
as having a pair of linear sp hybrids depicted sche- 
matically as follows: 

One of these hybrids, corresponding to the unique 
internal orbital discussed above, points towards the 
center of the polyhedron and thus can participate in 
the core bonding discussed above. The other sp hybrid 
corresponds to the external orbital in the above bonding 
model and overlaps with the bonding orbital from the 
L (as in III) or X ligand. In this initial approximation, 
the five d orbitals of the gold vertex are essentially 
non-bonding and are filled with electron pairs thereby 
using 10 of the 11 valence electrons of a neutral gold 
atom. As a result of this the L+ Au and X-Au vertices 
are donors of one and zero skeletal electrons, respec- 
tively. 

Many of the gold clusters of interest have an interstitial 
gold atom at the center of the polyhedron formed by 
the peripheral gold atoms. Ten of the 11 valence 
electrons of this central gold atom are needed to fill 
its five d orbitals. Therefore an interstitial gold atom 
is a donor of 11 - 10 = 1 skeletal electron. 

An important difference between the gold vertices 
L+Au and X-Au (e.g. III) and the B-H vertices in 
the deltahedral boranes (e.g II) is the absence of twin 
internal (tangential) p orbitals on the gold vertices of 
suitable energies to participate in surface bonding of 
the same kind found in globally delocalized deltahedral 
boranes such as B,,H,,‘-. This absence of surface 
bonding orbitals in icosahedral gold clusters to mix 
with core bonding orbitals has the consequence that 
both the principal core orbital corresponding to the 
+5 eigenvalue of the icosahedron (i.e. the S” orbital 
in the tensor surface harmonic designation outlined 
above) and the triply degenerate P” orbitals corre- 
sponding to the +& eigenvalue of the icosahedron 
(Fig. 4) remain bonding orbitals. Thus an icosahedral 
gold cluster has eight skeletal electrons, namely two 
for the single S” orbital and six for the triply degenerate 
P” orbitals. In the known centered icosahedral gold 
cluster Au,,(Au)C1,(PMe,Ph),03- these eight skeletal 
electrons arise as follows: 

10 AuPMerPh vertices (10)(l) = 10 electrons 
2 AuCl vertices 0 electrons 
Interstitial gold atom 1 electron 
+3 charge on ion - 3 electrons 

Total skeletal electrons in 
AulZAuClz(PMerPh)l,,r+: 8 electrons 

More complicated coinage metal clusters have struc- 
tures based on the linking or fusion of two or more 
coinage metal icosahedra (Fig. 8). The 25-atom cluster 
{[(p-MeC,H,),P],,&,,Ag,,Br,}+ has two Au-centered 

Fig. 8. Fusions of two and three icosahedra in the metal frameworks 
of coinage metal clusters showing the interstitial atoms. 
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Au,+%& icosahedra fused together by sharing one vertex 
[55]. The 3%atom cluster [(p-MeC,HJ,P],,Au,,Ag,,Cl,, 
contains three Au-centered Au&g6 icosahedra fused 
together by sharing three corners in a triangular ar- 
rangement, thereby leading to a (3)(13) -3 = 36 atom 
cluster; two more exopolyhedral Ag atoms are added 
to the top and the bottom Ag, triangles along the 
threefold axis (designated ‘Ag,’ in Fig. 8) [56]. 

4. Elemental boron and boron-rich borides 

The previous section discusses globally delocalized 
icosahedral finite molecules and ions including B12H122- 
containing boron icosahedra. Such boron icosahedra 
can be used to construct infmite solid state structures 
including the allotropes of elemental boron as well as 
some boron-rich borides. Understanding the structure 
and bonding in infinite solid state structures based on 
icosahedral Blz building blocks is also relevant to un- 
derstanding the icosahedral quasicxystals discussed in 
the next section, which are constructed from aluminum 
icosahedra. Note that an icosahedral B,, building block 
in which each of the twelve vertices contributes a single 
electron for an external two-electron two-center bond 
to an external group requires a total of 38 electrons 
distributed as follows: 

Electrons for each of the 12 external bonds: 
Electrons for the 12-center core bond of 

the Blz lcosahedron: 
Electrons for the surface bonding: 

12 electrons 

2 electrons 
24 electrons 

Total electrons required: 38 electrons 

Since 12 boron atoms have a total of (12)(3) = 36valence 
electrons, such an icosahedral Blz unit is stable as the 
formal dianion B,,2-. 

Elemental boron exists in a number of allotropic 
forms of which four (two rhombohedral forms and two 
tetragonal forms) are well established [5, 6, 571. The 
structures of all of these allotropic forms of boron are 
based on various ways of joining B,, icosahedra using 
the external orbitals on each boron atom. The structures 
of the two rhombohedral forms of elemental boron are 
of interest in illustrating what can happen when 
icosahedra are packed into an infinite three-dimensional 
lattice. Note that in rhombohedral structures the local 
symmetry of an icosahedron is reduced from I,, to D, 
because of the loss of the five-fold rotation axes. The 
twelve vertices of an icosahedron, which are all equiv- 
alent under I,, local symmetry, are split under DM local 
symmetry into two non-equivalent sets of six vertices 
each (Fig. 9). The six rhombohedral vertices (labeled 
R in Fig. 9) define the directions of the rhombohedral 
axes. The six equatorial vertices (labeled E in Fig. 9) 
lie in a staggered belt around the equator of the 

Fig. 9. The six rhombohedral (labeled R) and six equatorial 
(labeled E) vertices of an icosahedron. 

icosahedron. The six rhombohedral and six equatorial 
vertices form prolate (elongated) and oblate (flattened) 
trigonal antiprisms, respectively. 

In the simple (a) rhombohedral allotrope of boron 
all boron atoms are part of discrete icosahedra. In a 
given B,, icosahedron the external orbitals of the rhom- 
bohedral boron atoms (R in Fig. 9) form two-center 
bonds with rhombohedral boron atoms of an adjacent 
B,, icosahedron and the external orbitals of the equa- 
torial boron atoms (E in Fig. 9) form three-center 
bonds with equatorial borons of two adjacent B,, 
icosahedra. The available (12)(3) = 36 electrons from 
an individual B,, icosahedron in cu-rhombohedral boron 
are fully used as follows: 

Skeletal bonding 
12-center core bond: 
12 2-center surface bonds: (12)(2)= 

External bonding 

2 electrons 
24 electrons 

(a) Rhombohedral borons: 
l/2 of six 2-center bonds: (6/2(2))= 

(b) Equatorial borons: 
6 electrons 

l/3 of six 3-center bonds: (6/3)(2)= 4 electrons 

Total electrons required: 36 electrons 

cu-Rhombohedral boron thus has a closed-shell elec- 
tronic configuration. 

The structure of the complicated (p) rhombohedral 
allotrope of boron avoids the three-center intericosa- 
hedral bonding of cy-rhombohedral boron but is con- 
siderably more complicated. The structure of p-rhom- 
bohedral boron may be described as a rhombohedral 
packing of Bss polyhedral networks known as Samson 
complexes (Fig. 10) [58] linked by B,, polyhedra and 
an interstitial boron atom so that the fundamental 
structural unit is B,(B,,),,B = B,,,. The idealized iso- 
lated B, Samson complexes have I,, local symmetry 
which is distorted to D, in the rhombohedral local 
environment of the lattice. Within the B, Samson 
complex the external orbital of each of the twelve boron 
atoms of a central BIZ icosahedron forms a two-center 
bond with the external orbital of an apical boron atom 
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Fig. 10. A view of the surface of a Samson complex showing six 
of the twelve pentagonal pyramid cavities. 

Fig. 11. The Bur polyhedron linking three Samson complexes in 
the P-rhombohedral boron structure. 

of a B, pentagonal pyramid (i.e. a half icosahedron) 
leading to the B12(B6)12=B84 stoichiometry of this B,, 
Samson complex. The external surface of this BM Samson 
complex (Fig. 10) is a B,, truncated icosahedron identical 
to the C, truncated icosahedron of fullerene [59]. The 
B, pentagonal pyramids in the rhombohedral positions 
(see R of Fig. 9) of the central B,, icosahedron of the 
Bs4 Samson complex overlap with analogous B, pen- 
tagonal pyramids of adjacent B, Samson complexes to 
form six new Blz icosahedral cavities. The B, pentagonal 
pyramids in the equatorial positions (see E of Fig. 9) 
of the central Blz icosahedron of the B,, Samson 
complexes each overlap with the corresponding equa- 
torial Bs pentagonal pyramids of two adjacent Bs4 
Samson complexes by means of an additional B,, unit 
to form new polyhedra of 28 boron atoms (Fig. 11). 
These B, units have local C,, symmetry and are 
constructed by fusion of three icosahedra so that in 
each icosahedron one vertex (vertex A in Fig. 11) is 
shared by all three icosahedra and four vertices (B and 
D in Fig. 11) are each shared by two of the icosahedra 
so that 3(B,BdnB,,-J = B,. 

In order to consider an electron counting scheme 
for P-rhombohedral boron, it is first necessary to con- 
sider the chemical bonding topology of the idealized 
Bzs polyhedron (Fig. 11) formed by the fusion of three 
globally delocalized boron icosahedra. The 28 boron 

atoms furnish a total of (28)(4)=112 valence orbitals 
of which 24 orbitals (one on each boron atom except 
for the four boron atoms labelled A and B in Fig. 11) 
are required for external bonding leaving 112 - 24 = 88 
atomic orbitals for the skeletal (internal) bonding. A 
1Zcenter core bond in each of the icosahedral cavities 
of the B, polyhedron requires (3)(12) =36 atomic 
orbitals leaving 88 - 36 = 52 atomic orbitals for pair-wise 
surface bonding corresponding to 26 surface bonds. 
Thus a closed shell electronic configuration for the Bzs 
polyhedron with one electron in each external orbital 
is B,,‘+ requiring 82 electrons as follows: 

24 external two-center bonds: (24/2)(2) 24 electrons 
3 1Zcenter core bonds: (3)(2)= 6 electrons 
26 surface. bonds: (26)(2)= 52 electrons 

Total electrons required: 82 electrons 

Three boron positions (D in Fig. 11) in the Bzs poly- 
hedron are only partially occupied (-2/3) because of 
the availability of only four valence orbitals on the 
interstitial boron for chemical bonding. This corresponds 
approximately to removing one of these boron atoms 
from each B, polyhedron. Removal of this boron atom 
from the Bzs polyhedron to give a B,, polyhedron 
removes three electrons and four orbitals. Loss of these 
four orbitals has the following three effects: 

(i) one external bond is eliminated reducing the total 
required number of electrons by one; 

(ii) one core bond is reduced from a 1Zcenter bond 
to an 11-center bond with no effect on the required 
number of electrons; 

(iii) one surface bond is eliminated reducing the 
required number of electrons by two. Thus the removal 
of one D vertex in the B, polyhedron removes three 
electrons but also the need for three electrons 
(3=1+0+2 from (l), (2), and (3) above, respectively) 
so that the net charge on the species with the closed 
shell electronic configuration is not affected. 

Additional complicating features of the structure of 
P-rhombohedral boron are the partial occupancy of 
some boron sites and the presence of interstitial boron 
atoms as follows [60]: 

(i) three of the boron vertex sites of the B,, unit 
linking three B, pentagonal pyramids to form the B, 
polyhedron, namely the vertices marked ‘D’ in Fig. 10, 
are only partially occupied (73.4%). 

(ii) there is an interstitial boron atom (designated 
as B(15) in the structural papers) within bonding dis- 
tance of six of the above partially occupied boron vertex 
sites corresponding approximately to an isolated 
tetracoordinated boron atom (i.e (0.734)(6) = 4.4); 

(iii) there is also a partially occupied (24.8%) in- 
terstitial site in the Bs4 Samson complex. 
The boron atom in the fully occupied interstitial site 
(B(15) in the structural papers) bonded to four boron 
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atoms of the Bu polyhedron (D in Fig. 11) has a closed 
shell configuration B- (compare BH,- or B(&H&,-). 
The -25% occupancy of the other six interstitial sites 
in each Bs4 Samson complex (B(16) in the structural 
papers) provides another B,., to the fundamental struc- 
tural unit. This additional B,., provides an extra 
(1.5)(3) = 4.5 electrons without adding any new bonding 
orbitals since the atomic orbitals of these latter inter- 
stitial boron atoms merely increase some two-center 
surface bonds to three-center bonds. 

All of these considerations lead to a very complicated 
model for the chemical bonding topology of P-rhombo- 
hedral boron. The electron counting in its fundamental 

structural unit is summarized in Table 1. The 
ririharge of -0.5 for a 313.5 (= (3)(104.5)) valence 
electron structural unit can be assumed to be zero 
within the experimental error of partial occupancies, 
etc., indicating that Prhombohedral boron, like the 
much simpler cY-rhombohedral boron, has a closed shell 
electronic configuration. Note that in the lattices of 
both rhombohedral forms of boron, the six rhomboh- 
edral (R in Fig. 9) and six equatorial (E in Fig. 9) 
borons of a central B,, icosahedron are linked to two 
and three other such B,, icosahedra, respectively, using 
simple two-center and three-center chemical bonds, 
respectively, for cu-rhombohedral boron but using B,, 
icosahedra and B, polyhedra (Fig. ll), respectively, 
for /!I-rhombohedral boron. 

Boron icosahedra are also found in boron-rich borides 
of the most electropositive metals such as lithium, 
sodium, magnesium and aluminium [61]. The structures 
of such borides are related to the alkali metal gallides 
discussed in the previous section. In the structures of 
these boron rich-borides the electropositive metals can 
be regarded as forming cations, e.g. Li+, Na+, Mg’+, 
etc., and the boron subnetwork then has a corresponding 
negative charge. An important structural unit in such 
borides is Bld4- which may be written more precisely 
as (B122-)(B-)P Thus consider the magnesium boride 

M&B,, = (Mg’+),(B,,‘-)(B-), [62]. Half of the external 
bonds from the B,, icosahedra are direct bonds to 
other B,, icosahedra whereas the other half of these 
external bonds are to the isolated boron atoms. Closely 
related structures are found in LiAlB,, [63] and the 
so-called ‘MgAlB,,‘. However, ‘MgAlB14’ is actually 
MgAl=B,, because of partial occupancy of the alu- 
minum sites and thus can be formulated with the same 
B ‘- unit as M&B,, [64]. A less closely related structure 14 

is NaB,,,B,,, which has two types of interstitial boron 
atoms as well as the same BlZ2- icosahedra [65]. 

The lanthanides are also examples of electropositive 
metals that form boron-rich borides having boron sub- 
networks constructed from B,, icosahedra. An example 
of an extremely boron-rich metal boride is YB,, [66, 
671. The structure of YB, is even more complicated 
than that of /3-rhombohedral boron discussed above 
and has not been worked out in complete detail. The 
unit cell of YB, has approximately 24 yttrium atoms 
and 1584 boron atoms. The majority of the boron atoms 
(1248 = (8)(156)) are contained in thirteen-icosahedron 
units of 156 atoms each. In such a thirteen-icosahedron 
unit a central B,, icosahedron is surrounded by 12 
icosahedra leading to a B,,, ‘icosahedron of icosahedra’. 
The remaining boron atoms are statistically distributed 
in channels that result from the packing of the thirteen- 
icosahedron units and form non-icosahedral cages which 
are not readily characterized. The complexity of this 
structure and the uncertainty in the positions of the 
‘interstitial’ boron atoms clearly precludes any serious 
attempts at electron counting. 

Another interesting solid state boron compound is 
the refractory material boron carbide which has stoi- 
chiometries B,C (=B,,CJ [68] to B13Q [69]. These 
compounds have an interesting structure in which B,, 
icosahedra are linked by planar &B, six-membered 
rings similar to the six-membered rings in the planar 
graphite (Fig. 12). The planarity of the six-membered 
CB, rings suggests ‘benzenoid-type’ aromaticity. Ad- 

TABLE 1. Boron and electron counting in P-rhombohedral boron 

Central B,s iwsahedron 
6/2 Bhombohedrally located peripheral BIz iwsahedra 

(6/2)(12)= 
(6/2)(-2)= 

6/3 Equatorially located peripheral Bn polyhedra 
(6/3)(27) = 
(S/3)( + 2) = 

1 B(15) interstitial boron atom 
(0.25)(6) = 1.5 B(16) interstitial boron atoms 

(1.5)(l) = 
(1.5)(+3)= 

Total boron atoms and overall net charge 

Boron atoms 

12 

36 

54 

1 

1.5 

104.5 

Net charge 

-2 

-6 

+4 
-1 

+ 4.5 

- 0.5 
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Fig. 12. A hexagonal layer in B,& or B& showing the fusion 
of the B& planar hexagons to the B,, icosahedra. 

ditional carbon (in B&,) or boron (in B&J atoms 
link the carbon atoms to form allene-like C3 or CBC 
chains, respectively, in directions perpendicular to the 
planes of the GB, rings. The combination of the very 
stable ‘aromatic’ hexagonal &B, rings fused to the 
likewise very stable B,, icosahedra can account for the 
observed stability and strength of the B12G and B& 
structures including the extreme hardness and high 
melting points of these boron carbides. 

5. Aluminum icosahedra in quasicrystals 

The previous sections of this paper discuss borane 
anions, elemental boron structures, and boron-rich bor- 
ides having structures containing B,, icosahedra and 
alkali metal gallides having Gal2 icosahedra. Aluminum 
compounds containing Al,, icosahedra are much rarer 
although i-Bu,,Al,,*- isoelectronic with B,2H,22- has 
recently been reported [70] as a low yield product from 
the reduction of i-Bu,AlCl with potassium metal. How- 
ever, of much greater interest has been the discovery 
of aluminum alloys exhibiting diffraction patterns with 
apparently sharp spots containing the five-fold symmetry 
axes characteristic of icosahedra [71,72]. This discovery 
raises a crystallographic dilemma since the sharpness 
of the diffraction peaks suggests long range translational 
order, as in periodic crystals, but five-fold axes are 
incompatible with such periodic@. Such materials are 
described as quasicrystals [73, 741, which are defined 
to have delta-functions in their Fourier transform but 
local point symmetries incompatible with periodic order. 
The structures of these materials may be regarded as 
three-dimensional analogues of Penrose tiling [75-781 
which is a geometric structure exhibiting five-fold sym- 
metries and Bragg diffraction. Locations of atoms in 
quasicrystals requires the use of six-dimensional crys- 
tallography [79, 801 in which the atoms correspond to 
three-dimensional hypersurfaces in six-dimensional pe- 
riodic lattices. For this reason the chemical structures 
of quasicrystals are not readily described in ways familiar 

to chemists. Chemically based models for quasicrystal 
structures are therefore more readily developed by first 
considering closely related true crystalline materials and 
then introducing appropriate perturbations destroying 
the periodic translational order but retaining the long 
range translational and orientational order characteristic 
of quasicrystals. 

There are several types of icosahedral quasicrystals 
with diverse compositions [81]. The most important 
types, including the following, contain large amounts 
of aluminum: 

(i) the i(Al-Mt) class (Mt = transition metal) including 
WQ-&Nd, i4&Mn2&) W, 831, WWu17Ru4) 
1841; 

(ii) the i-(AlZnMg) class including i-(Al,Zn,,M&,) 
WI, i-(~,Zn15~5Mg36) [Wand W%o(=u1&i30) 1871. 
The relatively large amounts of aluminum in all of 
these phases suggests comparison of the structures of 
these materials with those of the icosahedral boron 
and gallium derivatives discussed above. 

Consider the i-(Al,Cu,,Li,,) system and related alloys 
containing aluminum, lithium, and copper and/or zinc, 
which have been discussed in detail by Audier et al. 
[88]. This system is significant since there are crystalline 
phases similar to the so-called lT2 icosahedral quasi- 
crystalline phases. The atom positions in the cubic R 
phase of approximate Al,CuLi, stoichiometry are known 
so that the structure of this phase can provide some 
insight into the structure of the closely related T2 
icosahedral phase of approximate stoichiometry 
&.570~0.108Lb.322. Here a model for the chemical 
bonding topology in crystalline R-Al,CuLi, is sum- 
marized; further details of this model are summarized 
elsewhere [89]. 

Audier et al. have described a polyhedral shell struc- 
ture for R-Al,CuLi, consisting of the following layers: 

(a) a central (Al,Crr),, icosahedron; 
(b) an Li,, regular dodecahedron with the Li positions 

above the faces of the central (Al,Cu),, icosahedron 
(layer a); 

(c) a larger (Al,Cu),, icosahedron formed from the 
external orbitals of the central (Al,Cu),, icosahedron 
(layer a) so that its atoms lie above the twelve faces 
of the Li,, dodecahedron; 

(d) An (Al,Cu), truncated icosahedron (Fig. 13) 
distorted from I,, local symmetry to 0, symmetry so 
that 12 vertices are of one type (circled in Fig. 13) 
and 48 vertices are of another type (not circled in Fig. 
13). The atoms of this truncated icosahedron lie above 
the midpoints of the faces of the omnicapped dodeca- 
hedron (Fig. 3) formed by combining the Li, dodeca- 
hedron (layer b) with the larger (Al,Cu),, icosa- 
hedron (layer c). 

The (Al-Cu) subskeleton (layers a + c+ d discussed 
above) in R-Al,CuLi9 forms a lattice containing 84 
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Fig. 13. The two diEerent types of vertices 
truncated icosahedron distorted from I,, to 0, 
in the structure of cubic R-Al,CuLi,. 

in the (Al,Cu), 
symmetry found 

vertex Samson complexes (Fig. 10) identical to the B, 
Samson complex found in the P-rhombohedral boron 
lattice discussed in the previous section. However, the 
packing of the (Al,Cu),, Samson complexes in the R- 
Al,CuLi, lattice is totally different from the packing 
of the B,, Samson complexes in &rhombohedral boron. 
The Al-Cu subskeleton of the R-Al,CuLi, lattice thus 
consists of a CsCl-type cubic packing of the (Al,Cu),, 
Samson complexes so that each atom of the peripheral 
(Al,Cu), truncated icosahedron of the (Al,Cu),, Sam- 
son complex is shared with an adjacent Samson complex 
in one of the following two ways: 

(i) the six edges connecting the six pairs of circled 
vertices in Fig. 13 lie in the faces of a cube and are 
shared with the corresponding edge of the adjacent 
Samson complex in the adjacent cube sharing the face 
containing the edge in question; 

(ii) the eight hexagonal faces of the peripheral 
(Al,Cu), truncated icosahedron not containing any of 
the circled vertices in Fig. 13 are shared with the 
corresponding faces of the adjacent Samson complex 
in the cube sharing the vertex lying at the end of the 
body diagonal of the original cube containing the mid- 
point of the hexagonal face in question. 

The fundamental structural unit of the (Al,Cu) 
subskeleton of R-Al,CuLi, thus is (Al,Cu),,= 
(Al,Cu),, + (Al,Cu),, + (Al, Cu),, corresponding, re- 
spectively, to the layers a + c+ d discussed above. In 
addition to the 20 lithium atoms in layer b, additional 
lithium atoms (layer e) are located above the pentagonal 
faces of the peripheral truncated icosahedra, which, 
because of the way that the truncated icosahedra are 
linked, simultaneously cap the pentagonal faces of 
two adjacent truncated icosahedron sharing an edge 
(sharing method 1 above). The sum of the number 
of atoms in layers a through e, respectively, in this 

model is (Al, CU)~~ + Li,, + (Al, Cu),, + (Al,Cu),, + 
Li,, = (Al, Cu),,Li,, corresponding to an (Al + Cu)/Li 
ratio of 2.08 in close agreement with 2.12 implied by 
the Al,,570Cu0.,,,8Li0.322 stoichiometry. 

Now consider the electron counting in R-Al,CuLi,. 
In the (Al,Cu) subskeleton the aluminum and copper 
atoms can function as donors of three and one, electrons, 
respectively, assuming in the case of copper a stable 
d” configuration corresponding to Cu’. The lithium 
atom is a one-electron donor by ionization to Li’. This 
combined with the A&,,,Cu,,,,Li,,,, stoichiometry 
leads to an A~,,CU,~~- fundamental Samson complex 
structural unit corresponding to (45) (3) + 
(9)( 1) + 26 = 170 electrons. In addition, application of 
the same model to the cubic R phase of the 
Al-Cu-Li-Mg alloy of stoichiometry Alo,fi2Cuo,15- 
Lb.zM&.,, leads to the stoichiometry Al&u,,- 
Li,,Mg, = A142Cu1232- for the fundamental Samson com- 
plex structural unit also corresponding to 
(42)(3) + (12)(l) + 32 = 170 skeletal electrons. This sug- 
gests that 170 electrons is a ‘magic number’ for the 
54-atom Samson complex structural unit of cubic crys- 
talline aluminum alloy phases closely related to the 
icosahedra quasicrystals of the i-(AlZnMg) class. This 
model assumes that the aluminum and copper atoms 
in these structures occupy the vertices of the Samson 
complexes (layers a, c and d) and the more electro- 
positive metals (Li and Mg) occupy interstitial positions 
(layers b and e). 

The topology of the 84-atom Samson complex (Fig. 
10) and the linkages of such complexes in a CsCl-type 
cubic lattice in R-Al,CuLi, are consistent with the 
observed 170 skeletal electrons corresponding to a closed 
shell electronic configuration with delocalized bonding 
in polyhedral cavities of the following two types: 

(i) the central (Al,Cu),, icosahedron (layer a) having 
the required 26 skeletal electrons for globally delocalized 
chemical bonding topology; 

(ii) the twelve pentagonal pyramid (Al,Cu)“- 
(Al, Cu)“,, cavities (layers c and d) in which (Al,Cu)” 
refers to the single apical atom and (Al,Cu)b~, refers 
to the five basal atoms; each of the basal atoms is part 
of two different pentagonal pyramid cavities forming 
parts of different Samson complexes and thus has only 
two internal orbitals to contribute to the skeletal bonding 
of a given pentagonal pyramid cavity. In Fig. 10 six of 
the total of 12 pentagonal pyramid cavities can be seen 
on the surface of the Samson complex. 

The nido bonding [90] in a pentagonal pyramid leading 
to 2n + 4 = 16 skeletal electrons and eight bonding or- 
bitals requires (6)(3) = 18 internal orbitals. However, 
in the pentagonal pyramid cavities in the Samson com- 
plex in the R-Al,CuLi, structure there are only 
3+ (5)(2)= 13 internal orbitals. For this reason only 
one five-center core bond and four two-center surface 
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TABLE 2. Electron and orbital counting in a Samson complex structural unit in R-Al$uLis 

(A) 1 central (Al,Cu),, icosahedron (layer a) 
Core bonding: (2 electrons; 12 orbitals) 
Surface bonding: ((12)(2) =24 electrons; 24 orbitals) 

(B) 12 two-center bonds between the external orbitals of 
the central (AI,Cu)r, icosahedron (layer a) and the 
(Al,Cu),, icosahedron in the next layer (layer b): 

(2 electrons; 2 orbitals) X 12 

(C) 12 (Al,Cu)“(Al,Ct~)~s~ pentagonal pyramid cavities 
Core bonding (5 center): (2 electrons, 5 orbitals) x 12 = 
Surface bonding: (4)(2) = (8 electrons, 8 orbitals) x 12 = 

Total electrons and orbitals per 

Total Total 
electrons orbitals 

2 12 
24 24 

24 24 

24 60 
96 96 

(Al, Cu),,(Al, Cu),,(Al,Cu), Samson complex 170 216 

bonds are possible using these 13 internal orbitals 
leading to 10 rather than 16 skeletal electrons for each 
pentagonal pyramid. The details of the chemical bonding 
topology for an (Al,cU),,(AI,cU,,)(A1,cU), Samson 
complex are outlined in Table 2, this chemical bonding 
topology can lead to the observed 170 electrons while 
using the available 4(12 + 12 + 60/2) = 216 valence or- 
bitals of the sp3 manifolds of the 54 vertex atoms. 

The above discussion considers a model for the 
structure of the crystalline cubic R-Al,CuLi,. Now 
consider possible perturbations in this model to give 
the quasicrystal T2-Al&uLi,. In this connection the 
54-vertex Mackay icosahedron (Fig. 14) [91] appears 
as a structural unit in certain quasicrystals [92]. The 
Mackay icosahedron has a shell structure consisting of 
the following layers: 

(a) a central icosahedron (not visible in Fig. 14); 
(b) a larger icosahedron formed from the external 

orbitals of the atoms in the central icosahedron 

Mackay Icasahedron 

Fig. 14. A view of the surface of a Mackay icosahedron showing 
the vertices of the large icosahedron (layer b) as black circles 
and the vertices of the icosidodecahedron (layer c) as white 
circles. The vertices of the central icosahedron (layer a) are not 
visible. 

(layer a) overlapping with an additional set of twelve 
atoms (black circles in Fig. 14); 

(c) a 30-vertex icosidodecahedron formed by placing 
atoms above each of the 30 edges of the larger icosa- 
hedron (layer b). Layer c is shown as white circles in 
Fig. 14. 

Layers a and b of the Mackay icosahedron are identical 
to the first two layers of the Samson complex (i.e. layers 
a and c in the Audier model discussed above). However, 
the outer icosidodecahedron layer of the Mackay icosa- 
hedron (layer c) has exactly half of the number of 
atoms of the outer truncated icosahedron in the Samson 
complex. Furthermore, the packing of the Samson com- 

plexes into the R-Al&uLi, lattice results in each of 
the peripheral truncated icosahedron atoms being 
shared between exactly two adjacent complexes so that 
a single Samson complex structural unit has the same 
54 atoms as a corresponding Mackay icosahedron. This 
suggests a very close relationship between the packing 
of Samson complexes in the R-Al,CuLi, crystal and a 
possible packing of Mackay icosahedra in a T2-Al,CuLi, 
quasicrystal. In fact a concerted 90” rotation about a 
tangential axis of each of the 30 edges connecting pairs 
of pentagonal faces in the peripheral truncated icosa- 
hedron in each Samson complex of the R-Al,CuLi, 
crystalline lattice converts a lattice of 54-atom Samson 
complexes into a lattice of 54-atom Mackay icosahedra. 
This type of process may be crucial in converting crystals 
built from icosahedral building blocks to quasicrystals 
and resembles ‘martensitic’ transformations such as 
those found in A-15 superconductors [93]. 

6. Icosahedral and cuboctahedral polyoxometallates 

The above sections of this paper have discussed 
structures containing cluster icosahedra, i.e. structures 
having atoms at the vertices of an icosahedron with 



some type of chemical bonding, generally delocalized 
bonding between the vertex atoms. There is also a 
possibility of structures containing coordination icosa- 
hedra, namely structures of the type ML,, in which a 
central atom M is surrounded by 12 ligands L at the 
vertices of an icosahedron. Such a structure, at least 
with covalent M-L bonds, requires a manifold of 12 
valence orbitals for the central atom M, which is not 
possible if the metal atom uses only the nine-orbital 
sp3d5 manifold. For this reason a coordination ico- 
sahedron in an ML,, complex requires a central atom 
M which has accessible f orbitals thereby restricting 
coordination icosahedra to lanthanide and actinide 
chemistry. In addition, the steric requirements for sur- 
rounding a central atom with 12 ligands are substantial 
suggesting that coordination icosahedra will only occur 
in special situations in which the twelve ligands L have 
unusually low steric requirements and where external 
features of the structure force 12 ligands in icosahedral 
coordination around a central atom. All of these re- 
quirements are met in the icosahedral Silverton 
polyoxometallates having the general formula 
M’VMo,,0,,8- = M’V(Mo0t~0b,nOi3,3)128- (M = Ce, 
Th, U; O’= terminal oxygen atoms; Ob = atoms bridging 
the polyhedral surface; 0’ = internal oxygen atoms, i.e. 
oxygen atoms coordinated icosahedrally to the central 
lanthanide or actinide) [17]. These icosahedral po- 
lyoxometallates are depicted schematically in Fig. 15. 

The chemical properties of polyoxometallates con- 
taining twelve molybdenum or tungsten atoms are closely 
related to the nature of the 12-vertex polyhedron formed 
by these metal atoms and the possibilities for delocalized 
metal-metal interactions through M-O-M bridges. Thus 
a characteristic of many, but not all, of such polyoxo- 
metallates is their reducibility to highly colored mixed 
oxidation state derivatives [94], e.g. ‘molybdenum blues’ 
and ‘tungsten blues’. The redox properties of these 
polyoxometallates make them important as catalysts for 
a number of oxidation and dehydrogenation reactions 
of organic substrates [95, 961. 

ob 

Fig. 15. The structure of the Silverton icosahedral polyoxome- 
tallates MNM120428- showing the three types of oxygen atoms 
(OS, Ob, and 0’). 

Several efforts have been made to relate the redox 
properties of early transition metal polyoxometallates 
to their structures. Pope [97] first noted that the re- 
ducibility of early transition metal polyoxometallates 
requires the presence of MOs octahedra in which only 
one of the six oxygen atoms is a terminal oxygen atom. 
Such an MO, octahedron can be related to mononuclear 
L,MO species [98] in which there is an essentially non- 
bonding metal d orbital to receive one or two electrons. 
Nomiya and Miwa [99] developed the idea of a structural 
stability index based on interpenetrating loops 
-O-M-O-M-O- around the polyoxometallate cage and 
suggested the analogy of closed loops of this type to 
macrocyclic r-bonding systems. The relationships of 
such macrocyclic r-bonding systems to aromaticity such 
as that found in certain organic annulenes suggests 
that readily reducible polyoxometallates have some kind 
of aromatic properties. Thus the ready one-electron 
reduction of a colorless to yellow polyoxomolybdate or 
polyoxotungstate to a highly colored mixed valence 
‘blue’ may be viewed as analogous to the one-electron 
reduction of benzenoid hydrocarbons such as naph- 
thalene or anthracene to the highly colored corre- 
sponding radical anion. 

The polyoxometallates of interest consist of closed 
networks of MO6 octahedra in which M is a do early 
transition metal such as V(V), Nb(V), Mo(V1) or W(V1). 
These networks may be described by the large poly- 
hedron formed by the metal atoms M as vertices. In 
general the edges of this macropolyhedron are M-O-M 
bridges and with rare exceptions there is no metal-metal 
(M-M) bonding. The oxygen atoms in these structures 
are of three types: 

(i) terminal or external oxygen atoms (designated as 
Ot) which are multiply bonded to the metal (one u 
and up to two orthogonal r bonds) and directed away 
from the macropolyhedral surface; 

(ii) bridging or sugace oxygen atoms (designated as 
0”) which form some or all of the macropolyhedral 
edges; 

(iii) internal oxygen atoms (designated as Oi) which 
are directed towards the center of the macropolyhedron. 
The metal vertices of the macropolyhedron may be 
classified as (~~-0)~M0 or c~~-(~,,-O)~MO~ vertices 
depending on the number and locations of the terminal 
oxygen atoms (i.e. 0 = terminal oxygen atoms only). In 
the c~S-(CL,-O),MO~ vertices all nine orbitals of the 
sp3d5 manifold of M are used for the (+ and r bonding 
to the two terminal oxygen atoms and u bonding to 
the four bridging and internal oxygen atoms leaving 
no orbitals for direct or indirect overlap with other 
metal vertices of the metal macropolyhedron. The ci.s- 
(P~-O)~MO~ vertices in polyoxometallates correspond 
to the saturated CH, vertices in cyclohexanes and other 
cycloalkanes. In the (~,,-O)sMO vertices (lV) only eight 
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of the nine orbitals of the sp3d5 manifold of M can 
be used for u and v bonding to the single terminal 
oxygen atom and u bonding to the five bridging and 
internal oxygen atoms leaving one non-bonding d orbital 
(d, if the MrO(termina1) axis is the z axis). Thus an 
(~~-0)~M0 vertex (IV) with a nominally non-bonding 
d, orbital in a polyoxometallate is analogous to an 
unsaturated CH vertex with a non-bonding p orbital 
in a planar aromatic hydrocarbon such as benzene. 

IV 

These elementary considerations suggest that early 
transition metal polyoxometallates constructed from 
(Pi-O)sMO units (IV) have the potential for electron 
delocalization based on overlap of the non-bonding d, 
orbitals. However, since these polyoxometallates are 
constructed from macropolyhedra having relatively long 
M-O-M edges rather than normal metal polyhedra 
having the much shorter M-M edges, the direct overlap 
of the d, orbitals on different metal atoms is negligible. 
Instead the metal-metal interactions using these metal 
dxy orbitals must also involve the orbitals of the oxygen 
atoms in the M-O-M bridges and thus resemble the 
exchange coupling between metal atoms in antiferro- 
magnetic systems [loo]. Thus the electron delocalization 
in polyoxometallates having (cL,-O)~MO vertices is based 
on indirect M-O-M interactions using the metal d, 
and appropriate bridging oxygen p orbitals rather than 
direct M-M interactions such as those found in metal 
clusters. For this reason electron delocalization in re- 
duced polyoxometallates is much weaker than that in 
either planar aromatic hydrocarbons or deltahedral 
boranes and carboranes. This weaker interaction trans- 
lates to a much lower value of the parameter fl in 
eqns. (16) and (17). 

The non-bonding d, orbitals of the (~,,-0)~M0 ver- 
tices (IV) in the reducible early transition metal po- 
lyoxometallates have two orthogonal nodes and thus 
have improper four-fold symmetry. Matching this four- 
fold orbital symmetry with the overall macropolyhedral 
symmetry requires macropolyhedra in which a C, axis 
passes through each vertex. A true three-dimensional 
polyhedron having C, axes passing through each vertex 
can have only 0 or 0, symmetry (the only point groups 
with multiple C, axes). The only two polyhedra having 
less than 15 vertices meeting these conditions are the 
regular octahedron and the cuboctahedron. It is there- 
fore not surprising that these two polyhedra form the 

basis of the specific early transition metal polyoxo- 
metallate structures containing only (CL,-O),MO vertices 
(IV), which are type I structures in the Pope nomen- 
clature [98]. 

These structures containing only (~~-0)~M0 vertices 
(III) can be contrasted with the non-reducible poly- 
oxometallate structures containing only cLY-(~,,-O),MO~ 
vertices (type III structures in the Pope nomenclature) 
[97]. These structures are necessarily more open since 
only four of the six oxygens of the MO, octahedra can 
be bridging oxygens. The most stable polyoxometallate 
structure with only (cLY-(~,,-O)~MO~ vertices is the 
icosahedral Silverton structure (Fig. 15) in which the 
central metal atom forms an MOrz icosahedron with 
the interior oxygen atoms. The central metal is twelve- 
coordinate and therefore is a large tetravalent lan- 
thanide or actinide with accessible f orbitals. An ico- 
sahedron can be decomposed into five equivalent oc- 
tahedra by partitioning the 30 edges of the icosahedron 
into five equivalent sets of six edges each so that the 
midpoints of the edges in each set form a regular 
octahedron [26]. The vertices of the Ohs large octahedron 
in MMo,,O,,‘- are located above the midpoints of the 
six edges in one of these octahedral sets of six icosahedral 
edges (Fig. 15). 

Silverton 
Mg:204Z” - 

icosahedral polyoxometallates 
are non-reducible type III structures in 

the Pope nomenclature [97] and may be contrasted 
with the Keggin cuboctahedral polyoxometallates 
XM1204”- = (MO’Ob,o’,,),,Xn-, where n = 3 to 7; 
M = MO, W, X = B, Si,Ge, P, Fe”‘, CoI’, Cu”, etc., which 
are reducible type I structures in the Pope nomenclature. 
The cuboctahedral Keggin structure may be regarded 
as an example of a binodal orbital aromatic system 
since the non-bonding d, orbital of the (cL,-O)~MO 
vertex has two nodes (see structure IV). The positive 
eigenvalues in the spectrum of the cuboctahedron (Fig. 
4) corresponding to the overlap topology of the dV 
orbitals in the Keggin structure are the non-degenerate 
+4 and the triply degenerate +2. The highly positive 
non-degenerate +4 eigenvalue corresponds to a highly 
bonding molecular orbital, which can accommodate the 
first two electrons upon reduction of the initially do 
xM,,o,n - . The reported [lOl, 1021 diamagnetism of 
the two-electron reduction products of the PW120403-, 
SiW,,0,04- and [(Hz)WrzO,J- anions is in accord 
with the two electrons being paired in this lowest lying 
molecular orbital. 

The concept of binodal aromatic@ in reduced early 
transition metal polyoxometallates may be related to 
their classification as mixed valence compounds. Robin 
and Day [103] classify mixed valence compounds into 
the following three classes: 

Class I: fully localized corresponding to an insulator 
in an infinite system; 



Class II: partially delocalized corresponding to a 
semiconductor in an infinite system; 

Class III: completely delocalized corresponding to a 
metal in an infinite system. 
ESR studies on the one-electron reduced polyoxo- 
metalIates XI&ONn- suggest class II mixed valence 
species [104,105]. Although such species are delocalized 
at accessible temperatures they behave as localized 
systems at sufficiently low temperatures similar to semi- 
conductors. This is in accord with the much smaller 
overlap (i.e. lower p in eqns. 16 and 17) of the metal 
d, orbitals associated with binodal orbital aromaticity 
as compared with the boron sp hybrid anodal internal 
orbitals in the deltahedral boranes B,Hn2- or the carbon 
uninodal p orbitals in benzene. 
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