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Abstract 

3-Trimethylsilyloxy-1 alkynes were prepared from 
3-hydroxy-1 -alkynes and dimerized with (&P),RhCl 
as a catalyst. The influence of a steric effect on the 
rates of dimerization is demonstrated. 

Introduction 

The dimerization of a-hydroxyacetylenes using 
(&P),RhCl as catalyst is well known [ 11. The forma- 
tion of 1 ,Cdisubstituted trans-vinylacetylenes (eqn. 
(1)) as a function of substituents on the monomer 
[2] and of different phosphorus ligands [3] has been 
studied. We have now investigated the steric influence 
upon the dimerization using a selected group of 
monomers. 
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Experiments 

3-TMSO-I dkynes 
These were prepared according to the literature 

[4] from 0.12 mol (CH3)3SiC1, 0.1 mol o-hydroxy- 
acetylene and 0.25 mol triethylamine using 50 ml 
DMF as solvent. The products were distilled using a 
teflon spinning band column (Normag). Yields and 
some data of the 3-TMSO-1-alkynes are given in 
Table I. 

Dimerization 
0.5 ml 3-TMSO-1-alkyne, 88 mg #3P and 20 mg 

[(CsH1&RhC1]2 [5] (P:Rh = 6: 1) were added under 
an atmosphere of argon in a 10 ml flask to 5 nTl 
toluene and heated for about 8 h to 110 “C. After 
distillation of the solvent brown oils remained, which 
were sublimed in a high vacuum (heating tempera- 
ture 80-130 “C). The products were yellow, viscous, 
pleasant-smelling oils. Some elementary analyses are 
given in Table II. The yields of isolated products 
varied from 20% to 70% depending mainly on the 
efficiency of the separation with the sublimation. 

Kinetic Experiments 
0.5 ml 3-TMSO-1-alkyne, 88 mg $3P and 20 mg 

[(CsHr2)2RhC1]z were added under an atmosphere 
of argon in a 10 ml flask to 5 ml solvent (depending 
on the monomer, toluene or o-xylene) and 0.5 g of 

TABLE I. The Preparation and Characterization of 3-TMSO-I-alkynes, R,R’C(OSiMe3)-C&H 

Compound Starting alkyne Yield Boiling point “D cc) C found (talc.) H found(calc.) 
No. R R’ (%) 

CC) (torr) 

1 Me Me 72 113-116 (760) 
2 Q H 54 109 (20) 
3 Et Me 55 134-138 (760) 
4 Me H 20 112 (760) 
5 H2C=CH Me 48 136 (760) 
6 Cyclohexyl 78 78 (18) 
7 Et H 59 120-125 (760) 
8 iProp Me 73 81 (63) 
9 Prop H 37 72 (98) 

10 tBu Me 78 170 (760) 

1.4007(19) 60.8 
1.4908(20) 70.8 
1.4121(19) 63.3 
1.4053(20) 59.0 
1.4164(21) 64.6 
1.4447(22) 67.6 
1.4073(23) 60.6 
1.4165(22) 65.5 
1.4173(20) 62.6 
- 

(61.48) 10.4 (10.32) 
(70.53) 7.9 (7.89) 
(63.47) 10.7 (10.65) 
(59.10) 10.1 (9.92) 
(64.23) 9.7 (9.58) 
(67.28) 10.2 (10.27) 
(61.48) 10.1 (10.32) 
(65.15) 10.8 (10.94) 
(63.47) 10.5 (10.65) 
purity only about 95% 
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TABLE II. The Dimerization of the 3-TMSO-1-alkynes 

Compound Starting alkyne C found (talc.) H found (talc.) Relative rates The sum of the steric 
no. 

R R’ 
at 100 “C parameters of R and R’ 

11 Me Me 13500 0 

12 B H 390 1.19 

13 Et Me 62.4 (63.47) 10.2 (10.65) 49 0.08 

14 Me H 91 -1.12 

15 H2 C=CH Me 37 2.07 

16 Cyclohexyl 68.2 (67.28) 10.0 (10.27) 37 ? 

17 Et H 62.9 (61.48) 10.1 (10.32) 22 -1.04 

18 iProp Me 63.7 (65.15) 10.8 (10.94) 26 0.48 

19 Prop H 65.2 (63.47) 10.1 (10.65) 24 -0.81 

20 tBu Me 65.7 (66.60) 11.0 (11.18) 1 1.43 

TABLE III. ‘H NMR Spectra of the 3-TMSO-1-alkynes in CDCla’ 

Compound 
no. 

Acetylenic 
proton 

TMSO-substituent R R’ 

1 2.57(s) 

2 2.46(d, 1.5 Hz) 

3 2.32(s) 

4 2.36(d, 1.5 Hz) 

5 2.49(s) 

6 2.38(s) 

7 2.29 (d, 2.0 Hz) 

8 2.44(s) 

9 2.3(d, 1.8 Hz) 

10 2.3(s) 

0.42(s) 

0.17(s) 
0.16(s) 

0.16(s) 
0.17(s) 

0.16(s) 
0.13(s) 

0.22(s) 

0.14(s) 

0.14(s) 

1.69(s) 
7.2(m) 
1.61(q; 6.5 Hz) 
0.94 (t; 6.5 Hz) 
1.41(d; 6.6 Hz) 
4.91(dd; 9.5 + 1.6 Hz) 
5.25(dd; 16.5 + 1.6 Hz) 
5.79 (dd; 16.5 + 9.5 Hz) 
(R + R’): 1.63 (m; broad) 
1.58(m; 2H) 

0.92(t; 6.5 Hz) 
l.O2(d; 9.8 Hz) 
1.80(m; 1 H) 
l.SS(m; 4H) 
0.93(t; 4.5 Hz) 
0.92(s) 

1.69(s) 
5.30 (d; 1.5 Hz) 
1.39(d) 

4.49(dq; 6.6 + 1.5’Hz) 
1.47(s) 

4.12(dt; 6.0 + 2.0 Hz) 

1.45(s) 

4.22(dt; 4.0 + 1.8 Hz) 

1.32(s) 

‘Bruker 60 MHz; TMS as internal standard; compound number and substituent R. R’ as in Table 1. 

durene or mesitylene as an internal standard. The 
mixtures were heated for 6 h at a constant tempera- 
ture between 50 and 130 “C. Samples were taken 
every 15 to 20 min; they were analysed by GLC 
(Carlo Erba Fractovap 2101; 2 m glass column with 
10% OV-1 on chromosorb; Kipp & Zonen BD 12 
recorder and integrator; column temperature 70- 
100 “C for the monomers and 250-280 “C for the 
dimers.) The decrease of the monomer was analysed 
according to a second order reaction. 

Results aud Discussion 

Alkynes with a secondary or tertiary hydroxy 
group in the o-position have been silylated using 
trimethylchlorosilane [4] ; only sterically very 
demanding hydroxyacetylenes such as ethynylfluore- 

no1 and 3,3-diphenyl-1-propyne-3-01 could not be 
converted into their TMSO-derivatives by this or a 
similar method. 

The 3-TMSO-1 -alkynes were dimerized using 
(@sP)sRhCl as a catalyst eqn. (1). The dimers as 
well as the monomers were characterized spectrosco- 
pically; their ‘H NMR data are summarized in Tables 
III and IV. 

The mass spectra of the 3-TMSO-I-alkynes gave no 
or very weak signals for the molecular ion, but 
the (M-l)‘-ions were pronounced. Essential fragments 
originated from a-fissions at silicon and carbon, from 
O-C and 0-Si cleavages and, from these cleavages 
subsequent to an a-fission, eliminating an alkene or 
(CH3)2Si=CH2. 

The molecular ion for the dimers was more 
intense. The ion (M-l)’ was always missing, because 
of the absence of an acetylenic proton. The Si-0 
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TABLE IV. ‘H NMR spectra of the (di-TMSO)alkene-ynes in CDCla’ 

Compound 
no. 

Olefinic 
protons 

TMSO-groups R R’ 

11 

12 

13 

15 

16 

17 

18 

19 

20 

6.43(d; 16.5 Hz) 0.08(s) 
6.92(d; 16.5 Hz) 0.14(s) 
5.89(d; 15 Hz) 0.20(s) 
6.37(dd; 15 + 5 Hz) 0.28(s) 
5.59(d; 15 Hz) 0.16(s) 

6.08(d; 15 Hz) 0.21(s) 

5.57(d) 0.13(s) 
6.25(d) 0.18(s) 

5.61(d; 15 Hz) 0.12(s) 
6.23(d; 15 Hz) 0.19(s) 
5.53(d; 15 Hz) 0.11(s) 
6.05(dd; 15 + 1.5 Hz) 0.18(s) 

5.54(d; 16 Hz) 0.11(s) 
6.12(d; 16 Hz) 0.18(s) 

5.54(d; 15.5 Hz) 0.11(s) 
6.11 (dd; 15.5 + 2 Hz) 0.17(s) 

5.52(d; 15 Hz) 0.10(s) 
6.22(d; 15 Hz) 0.14(s) 

1.28(s) and 

7.4(m) 

1.53(q; 7.5 Hz) 

0.97(t; 7.5 Hz) 
0.95(t; 7.5 Hz) 
4.87(dd; 9.2 + 1.5 Hz) 
4.98(dd; 9.2 + 1.5 (Hz) 
5.19(dd; 16.4 + 1.5 Hz) 
5.32(dd; 16.4 + 1.5 Hz) 
5.72(m) 
5.88(m) 
2.56(m, 2OH) 

1.3 - 1.7(m, 4H) 
0.87(t; 6 Hz) 

0.76(t; 6 Hz) 
l.O2(d; 6.5 Hz) 
0.90(d; 6.5 Hz) 
1.65(m, 1 H) 
1.78(m, 1 H) 
0.97(t; 5.5 Hz) 
O.SS(t; 5.5 Hz) 
1.2 - 1.7(m, 4H) 
0.98(s, 9 H) 
0.87(s, 9 H) 

1.48(s) 

5.32(d; 5 Hz) 
5.68(s) 
1.45(s) 
1.29(s) 

1.55(s) 
1.40(s) 

4.29(t) 
3.90(m, 1H) 

1.40(s) 
1.30(s) 

4.43(m, 1 H) 
4.05(t) 

1.38(s, 3 H) 
1.28(s, 3 H) 

*Compound number and substituents R, R’ as in Table II. 

cleavage dominated with the ion (CHs)sSi’ represent- 
ing the 100% peak for most dimers. 

The dimerization of the 3-TMSO-1-alkynes was 
studied kinetically at different temperatures. The 
decrease of the monomer was measured by GLC; 
it followed a second order reaction leading to experi- 
mental rate constants. The reactivity of the TMSO- 
alkynes was lower than that of the corresponding 
cu-hydroxyalkynes by a factor of about 10. There- 
fore higher reaction temperatures had to be used, 
from 50-80 “c for the most reactive TMSO-alkyne 
(no. 1) to 110-130 “C for the TMSO-alkyne no. 
10. For a comparative interpretation, the rates at 
100 “c were selected; therefore some of the values 
were the result of an extrapolation (Table II). This 
limitation and the absence of any knowledge con- 
cerning kinetic or thermodynamic data of single 
steps of the proposed mechanism [l, 21 restricted 
any correlation of the relative rates with steric or 
electronic data of the alkynes to a qualitative level. 

Earlier studies of the codimerization of ct-hydroxy- 
acetylenes [2] indicated that the n-complexation of 
the acetylenes is markedly influenced by steric 
effects. On the other hand the oxidative addition of 

the I-alkynes is not inhibited by bulky substituents at 
the alkyne [2, 61, but depends upon the acidity of 
the acetylene [6]. 

Using the chemical shifts of the acetylenic pro- 
tons as an estimate for an electronic effect [6], no 
correlation was found with the relative rates of the 
dimerizations of the TMSO-alkynes. On the other 
hand a plot of the steric parameters of the substi- 
tuents R t R’ [7] of the TMSO-alkynes versus the 
relative rates of their dimerization (Table II) indi- 
cated some regularities. The rates increased from 
TMSO-pentyne (no. 7) to TMSO-methylpentyne 
(no. 3) and decreased with the introduction of 
further methyl groups, that is from TMSO-dimethyl- 
pentyne (no. 8) to TMSO-trimethylpentyne (no. 
10). An analogous gradation was observed for the 
rates of the equivalent hydroxyacetylenes [8]. Con- 
forming to this result is the steep increase of the rate 
of dimerization from TMSO-butyne (no. 4) to 
TMSO-methylbutyne (no. 1) and a decrease when 
the methyl group is replaced by bulkier alkyl groups: 
an ethyl group (no. 3) and then, as above, isopropyl 
(no. 8) and tert.-butyl (no. 10). 

These results can be used as an indication for 
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a steric influence on the rate of the dimerization, 
which in the series of the TMSO-alkynes commences 
at a steric parameter for R + R’ equal to about zero 
represented by 3-TMSO-3-methyl-but-l-yne (no. 1) 
and within the series of a-hydroxyacetylenes it sets 
in with 3-methylpent-1-yn3-01 [8]. 
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