Direct Thermal Desorption—Gas Chromatography and Gas Chromatography—Mass Spectrometry Profiling of Hop (*Humulus lupulus* L.) Essential Oils in Support of Varietal Characterization

Sanja Eri,† Bin K. Khoo,‡ Joseph Lech,‡ and Thomas G. Hartman*,†,‡

Department of Food Science, Cook College, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, and Center for Advanced Food Technology, Cook College, Rutgers, The State University of New Jersey, 63 Dudley Road, New Brunswick, New Jersey 08901-8520

The use of direct thermal desorption—gas chromatography—mass spectrometry (DTD-GC-MS) and DTD-GC—flame ionization detection (DTD-GC-FID) for characterization of hop essential oils is described. Four hop varieties (Nugget, Galena, Willamette, and Cluster) from the Yakima valley (Yakima, WA) 1998 harvest were analyzed by DTD-GC-MS and DTD-GC-FID methodology. Approximately 1 g of hops was needed for the analysis. Hop samples were prepared for GC-MS and/or GC-FID profiling in \sim 20 min. More than 100 volatile compounds have been identified and quantified for each hop variety. The results were found to be in good agreement with conventional steam distillation—extraction (SDE) data. A calibration curve for determination of essential oil content in hops by DTD-GC-FID has been generated. Quantitation of hop oil content by DTD-GC-FID was shown to be in good agreement with conventional SDE data. The recovery of key oil components valuable for varietal identification was demonstrated to be highly reproducible and characteristic of each variety analyzed when DTD-GC-FID was used for analysis.

Keywords: Hops; Humulus lupulus L.; essential oils; direct thermal desorption (DTD); GC-MS

INTRODUCTION

Among the flavor characteristics that most distinguish beer from other alcoholic beverages are hop aroma and bitterness. Whereas bitterness is derived from reaction products of so-called alpha and beta hop acids, hop aroma is a complex mixture of a few hundred volatile compounds derived from the essential oil of hops (Grant, 1995). Because the composition of hop oil contributes to the aroma of beer, the essential oil profile of hop samples contains valuable information for brewers. It has been established that the composition of hop oil depends on the hop variety (Likens and Nickerson, 1967). Confirmation of a hop variety calls for the comparison of a hop oil profile with a varietal database. The variety of a hop sample of unknown origin is established on the basis of the presence and amount of key oil components (Buttery, 1967; Kenny, 1990; Peacock and McCarty, 1992; Perpete, 1998). In both cases, the analyst has to have a reliable, reproducible, and preferably rapid analytical method that will confirm a variety is the one claimed or, in the case of an unknown sample, is correctly identified.

Gas chromatography and mass spectrometry are successfully employed for identification and quantification of hop essential oil components. However, their efficiency is limited by the excessively long time needed to prepare a sample. The most common methods for

isolating essential oils from hops are based on steam distillation (Nickerson and Likens, 1966; Katsiotis et al., 1989; Green and Osborne, 1992), extraction with organic solvents (Lam et al., 1986), and extraction with carbon dioxide (Langezaal et al., 1990). With these techniques it takes hours to prepare a sample. Steam distillation requires complex glassware, the assembly, disassembly, and cleaning of which consume additional time. Steam distillation also requires large amounts of sample. The recovery of oil components, moreover, is dependent on the length of the distillation process, and there can be distortion of hop oil composition as demonstrated by Pickett et al. (1975, 1977). Solvent extraction methods have the disadvantage that they typically extract nonvolatile resinous components along with the essential oil, which adversely affect GC columns. Carbon dioxide extraction methods require special and expensive equipment. The recovery of oil components is greatly influenced by the extraction conditions, and the extracts also contain high-boiling or nonvolatile residues that adversely affect GC columns.

Direct Thermal Desorption (DTD). DTD permits the analysis of solid samples without any prior solvent extraction or other time-consuming sample preparation. In this technique samples are placed directly into a glass-lined stainless steel desorption tube, which is subjected to controlled heating in a flow of inert carrier gas. The desorbed volatiles are transferred directly into the GC for analysis in a one-step process. Description and different applications of DTD have been published by Hartman et al. (1991, 1992), Manura and Hartman (1992), and Grimm et al. (1998).

The purpose of this study was to test the DTD methodology for essential oil profiling of hops. The method is simple, requires small amounts of sample,

^{*} Address correspondence to this author at the Center for Advanced Food Technology, Cook College, Rutgers, The State University of New Jersey, 63 Dudley Road, New Brunswick, NJ 08901-8520 [telephone (732) 932-8306, ext. 310; fax (732) 932-8690; e-mail thartman@aesop.rutgers.edu].

[†] Department of Food Science.

[‡] Center for Advanced Food Technology.

and was expected to provide good recovery of oil components while offering a significant time reduction when compared to other methods currently in use. To validate DTD as an alternative method for hop essential oil analysis, the hop samples were also analyzed by conventional simultaneous steam distillation—extraction (SDE).

EXPERIMENTAL PROCEDURES

Material. Dried cones of four hop varieties (Nugget, Galena, Willamette, and Cluster) were gifts from Yakima Chief Ranches, Inc., WA. Hops were from the 1998 Washington State Yakima valley crop. Each hop variety was from a single growth. The hop samples were sealed in freezer bags and stored frozen for a short period until analysis.

Absorbent Tenax TA, 60/80 mesh, as well as Chromosorb W-HP, 80/100 mesh (used as chromatographic support), and silanized glass wool, were obtained from Supelco, Inc. (Bellefonte, PA).

Internal standards toluene- d_8 and naphthalene- d_8 were obtained from Aldrich Chemical Co., Inc. (Milwaukee, WI).

Solvents methanol and dichloromethane were from Fischer Scientific, Inc. (Springfield, NJ).

Glass-lined thermal desorption tubes used for DTD were obtained from Scientific Instrument Services, Inc. (Ringoes, NJ).

Sample Preparation. Silanized glass-lined stainless steel desorption tubes (4.0 mm i.d. \times 10 cm) were packed with a 2 cm bed volume of Tenax TA adsorbent between plugs of silanized glass wool. To ensure that they were free of any contaminants, the tubes were preconditioned by passing nitrogen through them at a rate of 40 mL/min while they were held at 320 °C for 1 h. The small bed of Tenax is required to trap internal standard, which is injected prior to analysis, and to prevent loss of hop volatiles during the preheating purge step of the analysis.

Individual hop samples were ground into fine powder by crushing ~ 1 g of dried cones using a mortar and pestle. Aliquots (0.5 g) of powdered hops were mixed with 4.5 g of 80/100 mesh Chromosorb (preconditioned at 180 °C for 8 h to remove any volatiles present) and homogenized for 30 s in a cryogenically cooled micro-mill (Bell-Art Products, Pequannock, NJ). Chromosorb W-HP is used to prevent loss of volatiles, as a diluant to ground samples due to the small volume of the sample needed for the analysis, and to promote optimal flow conditions through the desorption tube. Portions of the homogenates produced in this process (~100 mg) were measured into desorption tubes above the Tenax adsorbent bed and plugged with silanized glass wool. The loaded sample desorption tubes were spiked with 9.8 μ g of toluene- d_8 and 9.9 μ g of naphthalene- d_8 as internal standards, using a solvent flush technique. The samples were then analyzed by shortpath DTD-GC-FID and DTD-GC-MS for volatile oil profiling (Hartman et al., 1991, 1992; Manura and Hartman, 1992; Grimm et al., 1998).

DTD-GC. DTD was performed using the model TD-2 shortpath thermal desorption unit (Scientific Instrument Services, Inc., Ringoes, NJ), which was placed directly on the injection port of the gas chromatograph. The loaded sample desorption tube was attached to the TD apparatus and purged with helium for 1 min to remove all traces of oxygen. The sample was then injected into the GC. Preheating injection time (during which GC carrier gas is replaced by carrier gas from the TD apparatus) was 1 min. Preheated (150 °C) heater blocks were then closed around the desorption tube, and the sample was thermally desorbed at 150 °C for 5 min. Due to the heat applied and the inert gas flow through the desorption tube, volatiles from the sample were transferred into the GC injection port and column.

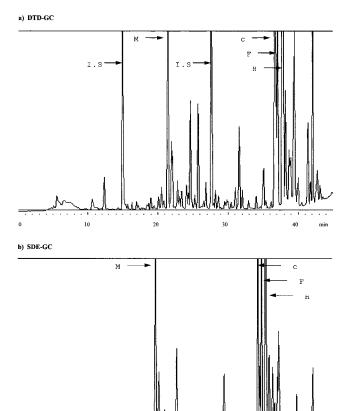
The gas chromatograph used in the study was a Varian 3400 with a flame ionization detector. The column used was a capillary column (DB-1, 60 m \times 0.25 mm i.d., 0.25 μm film thickness, J&W Scientific, Folsom, CA). The carrier gas was

helium with a flow rate of 1.0 mL/min, and a split ratio of 100:1 was employed. The injection port temperature was 220 °C, and the detector temperature was 320 °C. The column temperature was programmed from -20 °C (held for 5 min during the thermal desorption interval to achieve cryofocusing) to 100 °C at a rate of 10 °C/min, then to 200 °C at a rate of 4 °C/min, and finally to 280 °C at a rate of 10 °C/min.

The chromatograms were recorded and processed using a Peak Simple Chromatographic Data System (SRI Instruments, Torrance, CA).

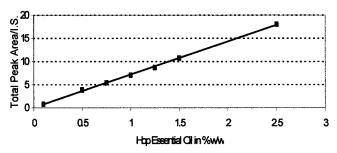
Retention indices of essential oil components were calculated using the equation for multistep temperature programs as described by Majlat (1974) with the data obtained by injecting a C5–C26 *n*-paraffin standard using the same analytical conditions as the samples.

DTD-GC-MS. For the DTD-GC-MS analysis, the conditions were the same as described for DTD-GC analysis except that the end of the GC capillary column was inserted directly into the ion source of the mass spectrometer via a heated transfer line maintained at 280 °C. The mass spectrometer was a Finnigan MAT 8230 high-resolution, double-focusing, magnetic sector instrument. The mass spectrometer was operated in the electron ionization (EI) mode, scanning masses 35–350 amu once each 0.6 s with a 0.8 s interscan time. Analyses were also performed in chemical ionization (CI) mode using isobutane as a reagent gas with an ion source temperature of 250 °C. In this instance a mass range of 60–600 amu was scanned.


The mass spectrometric data were acquired and processed using a Finnigan MAT SS 300 data system. Mass spectra obtained by electron ionization were background-subtracted and library-searched against the National Institute of Standards and Technology (NIST) mass spectral reference collection. The identification of oil components was confirmed by interpretation of electron ionization and chemical ionization MS data, by comparison to the NIST database and published literature (Buttery and Ling, 1967; Katsiotis et al., 1989; Maarse and Visscher, 1989; Kenny, 1990; Peacock and McCarty, 1992; Perpete, 1998), and by GC retention index (Jennings and Shibamoto, 1980).

Hop Oil from Steam Distillation. Hop oil was isolated according to the method of Nickerson and Likens (1966) with dichloromethane as a solvent to ensure better recovery of oxygenated compounds. Hop samples (100 g) were mixed with 2000 mL of distilled water and distilled—extracted for 4 h in a simultaneous SDE apparatus (Likens and Nickerson extractor, Kontes, Vineland, NJ) with dichloromethane (150 mL) as solvent. Distillates were concentrated to $\sim\!5$ mL in a Kuderna-Danish concentrator with a three-ball Snyder column. The remaining solvent was removed by a gentle stream of nitrogen at room temperature. The oil content was measured gravimetrically, and the sample extracts were stored under nitrogen at -40 °C until analyzed. Injection volumes of 0.2 μ L were analyzed by GC and GC-MS with a split ratio of 200:1. GC and MS conditions were the same as described for DTD analysis.

Hop Oil Content Determination by DTD-GC-FID. Essential oil content of selected hops by DTD-GC-FID was determined from a calibration curve generated by spiking desorption tubes (packed with a 2 cm bed volume of Tenax TA adsorbent) with six concentrations of Galena hop oil (one point below and one point above literature-reported essential oil content of hops) in methanol containing a constant amount of internal standard (9.8 μ g of toluene-d8 and 9.9 μ g of naphthalene-d8). The calibration curve was generated using linear regression analysis of total peak area divided by internal standard (naphthalene-d8) peak area versus hop oil content in percent w/w.


RESULTS AND DISCUSSION

Essential oil components of four hop varieties used in the study were identified by DTD-GC-MS and by SDE-GC-MS and quantified by DTD-GC-FID and SDE-GC-FID. Example gas chromatograms obtained by both

Figure 1. Chromatograms of Willamette hops obtained by DTD-GC and SDE-GC.

M=myrcene C=caryophyllene F=β-farnesene H=humulene I.S.=internal standard

Figure 2. Hop essential oil calibration curve by DTD-GC-FID analysis.

of these methods for the Willamette variety are shown in Figure 1. Major compound peaks are labeled on both chromatograms, and their relative amounts as determined by the DTD-GC-FID method are seen to be in excellent agreement with the SDE-GC-FID data. It should be noted that there is no internal standard in SDE samples. Internal standard was added to DTD samples for the purpose of hop oil content determination

Four replicate analyses were performed by DTD-GC-FID. Relative percentages of the volatiles based on the area integration were calculated for each replicate, and the averages were determined.

The identification and relative percentages of volatile compounds from each of the four hop varieties are listed in Table 1.

A calibration curve that was generated for determination of essential oil content in hops by DTD-GC-FID analysis is shown in Figure 2. The linear regression

equation had a coefficient of determination (R^2) of 0.99. Hop oil content in each of the four hop varieties as determined by DTD-GC-FID and by SDE method (gravimetrically) is shown in Table 2. Hop oil content was higher when determined by DTD-GC-FID. The trends were in agreement with SDE results in which the Nugget cultivar has the highest amount of essential oil and is followed by Galena hops, Willamette hops, and Cluster hops in order of decreasing essential oil content.

Several keys for varietal characterization of hops have been published (Buttery and Ling, 1967; Kenny, 1990; Peacock and McCarty, 1992). They are based on the differences in the presence and amounts of some essential oil compounds found in different hop varieties. In addition, ratios of selected hop oil compounds have been proven to be useful for distinguishing among hop varieties. The ratios of some key oil compounds as determined by DTD-GC-FID and SDE-GC-FID methods are shown in Table 3. Four replicate analyses were performed for each hop variety by DTD-GC-FID. Ratios of peak areas were calculated for each analysis, and averages and standard deviations were calculated for each variety.

Generally good agreement between DTD and SDE data was observed for a majority of the volatiles present in the hops studied. However, there are three compounds for which the recovery by DTD was significantly more than that of SDE. These are caryophyllene oxide; peak 251 (as referred to Table 1) with a retention index of 1865 (unknown 220 MW unsaturated alcohol or acid), and peak 253 with a retention index of 1868 (unknown 220 MW oxygenated sesquiterpene).

Higher recovery of oxygenated compounds in the DTD data could mean that DTD is harsher and causing oxidation of hop compounds. DTD is performed at a temperature of 150 °C to ensure quantitative delivery of volatiles adsorbed on Tenax TA. This is 50 °C higher than the temperature at which SDE is performed. However, DTD is performed in an inert atmosphere, with no oxygen present. Higher recovery of oxidation products could, therefore, mean that DTD offers better recovery of oxygenated compounds, which tend to be more polar and high boiling. Better extraction efficiency may also contribute to the result.

To the best of our knowledge, 14 of the volatiles reported in Table 1 are reported in hops for the first time. These compounds are formic acid; acetic acid; isopentyl acetate; 1,3-nonadiene; glycerol; α -terpinene; phenol; isooctanol; pentyl 3-methylbutyrate; 3-hexenyl isobutyrate; 1,3,5-undecatriene; isocaryophyllene; 1,2,3,4,-4A,7-hexahydro-1,6-dimethyl-4-(1-methylethyl)naphthalene (CAS Registry No. 16728-99-7); 2,3-dihydro-3,5dihydroxy-6-methyl-4*H*-pyran-4-one; and hexadecanoic acid (palmitic acid). Among them, isopentyl acetate, α-terpinene, isooctanol, pentyl 3-methylbutyrate, 1,3nonadiene, 3-hexenyl isobutyrate, isocaryophyllene, and 1,2,3,4,4A,7-hexahydro-1,6-dimethyl-4-(1-methylethyl)naphthalene are found in both DTD and SDE data. Formic acid, acetic acid, glycerol, phenol, 1,3,5-undecatriene, and 2,3-dihydro-3,5-dihydroxy-6-methyl-4Hpyran-4-one have been found only in samples analyzed by DTD, whereas hexadecanoic acid has been found only in SDE data. Among the compounds present only in DTD data, 2,3-dihydro-3,5-dihydroxy-6-methyl-4*H*-pyran-4-one is known to be an artifact formed during thermal desorption by dehydration and thermal degradation of sugar. Glycerol is known to be too water

Table 1. Identities and Relative Percentages of Volatile Compounds in Selected Hops As Determined by DTD and SDE

Sectors				r	p varieties						
				Nu	gget	Gal	lena	Willa	mette	Clu	ster
Sompress	peak	${\bf compound}^a$	RI	$\overline{\mathrm{DTD}^{b,c}}$	SDE^d	DTD	SDE	DTD	SDE	DTD	SDE
2 michyl-3 buten 1 of	1	acetone								tre	tr
Formire aicid"		*									0.020
Samethylhutanal					0.016	0.065	0.149	0.027	0.018		0.068
Contact Cont			614	0.006		0.014	0.158				0.033
2 -				0.347			0.100	0.488			0.000
											0.048
10 3 methyl ≥ butenal 753 0.061 0.011 0.074 0.081 0.055 0.032 0.014 0.014 0.015 0.015 0.044 0.017 12 hexamal 776 0.003 0.011 0.016 0.016 0.015 0.036 0.050 0.050 0.050 0.051 0.013 0.013 0.005 0.050 0.051 0.013 0.013 0.005 0.050 0.051 0.013 0.015 0.018 0.005 0.051 0.018											
1				0.061	0.011						
1.5 furfural 7.5		3									0.017
14 octane				0.003		0.005	0.026	0.042	0.036	0.005	0.056
15 3-methylbutanoic acid hutyric acid 825 0.14 0.018 0.15 0.05 0.018						0.042	0.020	0.050	0.010	0.070	0.000
3-methylbutanoic acid + butyric acid 828 0.012 0.025 0.055 0.015					0.008		0.039		0.018		0.029
17 butyric acid				0.111	0.042	0.112	0.015	0.070	trs	0.000	0.014
9 2-methylbutanoic acid 842 0.004 0.014 0.059 0.068 0.018 1.009 0.018 1.009 0.018 1.009 0.018 1.009 0.018 1.009 0.018 1.009 0.018 1.009 0.018 0		butyric acid		0.010		0.028		tr		0.015	
2 2 2 2 2 2 2 2 2 2					0.027	0.004			0.058	0.040	0.087
1 siobutyl propanate 848 848 0.013				0.038			0.011	0.030			0.065
22 siopentyl acetate* 859 0.02z 0.016 0.050 0.03t 0.025 0.025 0.034 23 2-heptanone 870 0.090 0.006 0.005 0.005 0.005 0.005 24 heptanal 878 0.034 0.021 0.028 0.032 0.025 0.005 0.035 25 unknown, 43 pp' 838 0.019 838 0.019 0.005 0.005 0.005 0.005 26 possibly 108 MV dimethyl pyrazine isomer 888 0.019 0.005 0.008 0.008 0.022 0.026 27 siobutyl isobutyrate 890 0.018 0.014 0.018 0.010 0.008 0.008 0.022 0.026 28 methyl hexanoate + 2,6 dimethyl-2,5-heptadiene 907 0.025 0.025 0.026 0.050 0.002 0.002 0.002 28 dimethyl-2,5-heptadiene 914 0.011 0.018 0.037 0.015 0.020 0.002 0.002 29 dimethyl-2,5-heptadiene 918 0.031 0.025 0.022 0.026 0.021 0.014 0.018 20 1,3-nonadiene* 918 0.007 tr 0.007 0.014 0.018 0.004 20 4,-duipine 918 0.007 tr 0.007 0.007 0.007 0.007 0.007 20 4,3-monadiene* 918 0.007 tr 0.007				0.036	0.013	0.070	0.053	0.039	0.012	0.000	0.065
heptanal septanal				0.022		0.050			0.012	0.066	0.037
25											
26 possibly 108 MW dimethyl pyrazine isomer 889 0.198 0.044 0.217 0.159 0.086 0.088 0.387 0.340 0.288 0.0889 0.0889 0.0148 0.0108				0.034	0.021	0.028	0.023			0.078	0.053
28		, I		0.019				0.031	0.005		
methyl hexanoate + 2,6-dimethyl-2,5-heptadiene 905 0.25 0.022 0.026 0.020 0.026 0.021 0.031 0.030 0.067 0.051 0.031 0.031 0.030 0.067 0.051 0.031 0.031 0.031 0.033 0.067 0.051 0.031 0.033 0.067 0.051 0.031 0.033 0.067 0.051 0.031 0.033 0.067 0.051 0.033 0.067 0.051 0.033 0.067 0.051 0.033 0.067 0.063 0.067 0.064					0.044	0.217	0.159	0.086	0.088	0.387	0.340
2.6-dimethyl-2.5-heptadiene				0.041	0.018	0.010		0.008		0.022	0.035
1				0.005	0.000	0.000	0.050	0.000	0.012	0.000	0.000
1.3 -nonadiene* 918 0.018 0.025 0.022 0.021 0.034 0.035 0.0		3 · 1					0.015		0.030		
Sala miknown thiol 919 0.009 1 1 1 1 1 1 1 1 1								0.031	0.030		
35		· ·									
Second Pentanoic acid Second S											
37 glycerol* 940 tr 0.003 0.018 0.038 0.038 39 3-methylbstyl propanoate 962 0.482 0.482 0.881 0.001 0.026 0.007 0.689 42 6-methyl-5-hepten-2-one 963 0.044 0.030 0.341 0.336 tr 0.005 tr tr tr 43 methyl 5-methylkexanoate 965 0.472 0.430 0.366 0.382 0.51 0.452 0.400 0.366 0.382 0.716 46 phinene 980 0.83 0.312 0.360 0.422 0.430 0.366 0.382 0.321 0.251		*				0.120	0.064	0.142	0.054	0.202	0.114
Sa dimethyl trisulfide		•			ur						
2-methylbutyl propanoate 952 0.462 0.281 0.760 0.699 0.119 0.220 0.677 0.659				CI .		tr	tr	tr	0.003	0.016	0.012
41 unknown 962 0.018 0.001											0.038
6-methyl-5-hepten-2-one 963 0.044 0.030 0.341 0.336 0.060 tr tr d.						0.760	0.699			0.677	0.659
methyl 5-methyl hexanoate 963 0.044 0.030 0.341 0.336 Tr tr tr tr tr tr tr				0.018	0.001					tr	tr
44 unknown 965 tr tr tr tr 45 unknown unsaturated alcohol + methyl heptanoate (branched) 980 0.472 0.430 0.366 0.388 0.321 0.251 46 β-pinene 980 0.360 0.472 0.430 0.366 0.388 0.311 0.251 47 methyl heptanoate (branched) 983 0.312 0.360 0.006 0.042 0.063 0.716 49 β-pinene + methyl heptanoate (branched) 983 0.312 0.360 0.006 0.044 0.033 0.082 49 β-myrcene 984 28.315 31.783 32.129 32.580 27.620 30.079 40.253 49.44 50 isobutyl isopentanoate 989 0.016 0.060 0.044 0.063 0.048 0.048 0.060 0.044 0.063 0.048 0.349 0.262 0.420 0.421 0.425 0.416 0.584 0.349 0.262 0.420 0.449				0.044	0.030	0.341	0.336	0.007	0.000		0.049
46 β-pinene 980 0.472 0.430 0.360 0.388 0.321 0.251 47 methyl heptanoate (branched) 983 0.312 0.360 0.360 0.683 0.716 48 β-pinene + methyl heptanoate (branched) 983 0.312 0.360 0.360 0.060 0.006 0.006 0.007 0.003 0.033 0.082 50 isobutyl isopentanoate 989 0.016 0.060 0.006 0.044 0.069 0.078 0.533 0.082 51 3-methylbutyl isobutyrate 996 0.648 0.406 0.558 0.534 0.069 0.078 0.535 0.416 52 2-methylbutyl isobutyrate 1001 1.027 0.674 2.220 1.828 0.412 0.584 2.322 2.274 53 methyl heptanoate + methyl 4-heptenoate 1004 0.025 0.425 0.425 0.420 0.429 0.421 0.584 0.584 0.421 0.584 0.681 0.061	44	3	965						tr		
46 β-pinene 980 0.472 0.430 0.366 0.388 0.321 0.251 47 methyl heptanoate (branched) 983 0.312 0.360 0.360 0.883 0.716 48 β-pinene + methyl heptanoate (branched) 983 0.312 0.360 0.060 0.060 0.062 0.023 30.079 40.253 49.44 50 isobutyl isopentanoate 989 0.016 0.060 0.006 0.044 0.083 0.332 0.082 51 3-methylbutyl isobutyrate 1996 0.648 0.406 0.558 0.534 0.069 0.078 0.535 0.416 52 2-methylbutyl isobutyrate 1001 1.027 0.674 2.220 1.828 0.412 0.584 2.322 2.274 53 methyl heptanoate 1005 0.854 0.425 0.220 1.828 0.412 0.584 2.322 2.274 54 methyl heptanoate + methyl 4-heptenoate 1005 0.854 0.425	45		966					0.005	trs		
47 methyl heptanoate (branched) 983 0.312 0.360 48 β-pinene + methyl heptanoate (branched) 983 0.312 0.360 49 β-pinene + methyl heptanoate 984 28.315 31.783 32.129 32.580 27.620 30.079 40.253 49.44 50 isobutyl isopentanoate 989 0.016 0.060 0.006 0.044 0.069 0.078 0.535 0.416 51 3-methylbutyl isobutyrate 1001 1.027 0.674 2.220 1.828 0.412 0.584 2.322 2.274 52 2-methylbutyl isobutyrate 1004 0.042 0.349 0.262 0.420 0.449 54 methyl heptanoate 1004 0.052 0.854 0.425 0.022 0.420 0.449 55 methyl heptanoate + methyl 4-heptenoate 1005 0.854 0.425 0.05 0.042 0.024 0.052 0.061 56 α-terpinene** 1013 0.008 0.015	46		980			0.472	0.430	0.366	0.388	0.321	0.251
48 β-pinene $^{\perp}$ methyl heptanoate (branched) 983 0.312 0.360 49 β-myrcene 984 28.315 31.783 32.129 32.580 27.620 30.079 40.253 49.44 50 isobutyl isopentanoate 988 0.016 0.060 0.006 0.044 0.033 0.882 51 3-methylbutyl isobutyrate 996 0.648 0.406 0.558 0.534 0.069 0.078 0.535 0.416 52 2-methylbutyl isobutyrate 1001 1.027 0.674 2.220 1.828 0.412 0.584 2.322 2.274 53 methyl heptanoate 1004						0.472	0.430	0.500	0.500		
50 isobutyl isopentanoate 989 0.016 0.060 0.006 0.044 0.033 0.082 51 3-methylbutyl isobutyrate 996 0.648 0.406 0.558 0.534 0.069 0.078 0.535 0.416 52 2-methylbutyl isobutyrate 1001 1.027 0.674 2.220 1.828 0.412 0.584 2.322 2.74 53 methyl heptanoate 1004 0.067 0.674 2.220 1.828 0.412 0.584 2.322 2.74 54 methyl heptanoate + methyl 4-heptenoate 1005 0.854 0.425 0.349 0.262 0.420 0.449 55 mchyl heptanoate + methyl 4-heptenoate 1005 0.854 0.425 0.002 0.002 0.589 0.421 55 mchyl heptanoate + methyl 4-heptenoate 1013 0.008 0.015 0.055 0.045 0.017 0.024 0.052 0.061 56 α-terpinene* 1018 0.006 0.007			983	0.312	0.360						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								27.620	30.079		49.448
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								0.060	0.079		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
54 methyl heptanoate + methyl 4-heptenoate unknown sulfur-containing compound 1005 0.854 0.425 0.002 0.003 0.002 0.003				1.02.	0.0.1					21022	~.~. 1
56 α-terpinene* 1013 0.008 0.015 0.055 0.045 0.017 0.024 0.052 0.061 57 ρ -cymene 1018 0.006 0.006 0.007 tr 0.054 0.054 58 phenol* 1026 0.034 0.289 0.401 0.255 0.321 0.419 0.567 60 unknown, 41 bp 1033 0.016 0.015 0.015 0.026 0.013 0.008 0.034 0.025 61 pentyl 2-methylpropanoate 1033 0.016 0.015 0.015 0.026 0.013 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.019 0.002 0.008 0.008 0.004 0.005 0.003 0.008 0.008 0.001 0.001 0.001 0.002 0.008<		methyl heptanoate + methyl 4-heptenoate		0.854	0.425					0.589	0.421
57 p-cymene 1018 0.006 0.006 0.007 tr 58 phenol* 1026 0.054 59 limonene + β-phellandrene 1028 0.280 0.344 0.289 0.401 0.255 0.321 0.419 0.567 60 unknown, 41 bp 1033 0.016 0.015 0.015 0.026 0.013 0.008 0.034 0.025 61 pentyl 2-methylpropanoate 1033 0.016 0.015 0.015 0.026 0.013 0.008 62 2-nonanone (branched) 1034 tr 0.087 0.198 0.190 0.190 0.042 0.042				0.000	0.015	0.055	0.045		0.004	0.050	0.001
58 phenol* 1026 0.054 59 limonene + β-phellandrene 1028 0.280 0.344 0.289 0.401 0.255 0.321 0.419 0.567 60 unknown, 41 bp 1033 0.016 0.015 0.015 0.026 0.013 0.008 0.034 0.025 61 pentyl 2-methylpropanoate 1033 0.016 0.015 0.015 0.026 0.013 0.008 0.008 62 2-nonanone (branched) 1034 tr tr tr tr tr tr tr tr 0.078 0.087 0.198 0.190 64 possibly methyl 2,5-dimethylhexanoate 1047 0.118 0.047 0.042 0.015 0.042 0.015 0.062 0.042 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.063 0.063 0.063 0.062 0.063 0.063 0.063 0.063 0.062 0.063 0.063 0.062 0.063 0.062 0.063 0.062 0.063 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.017</td><td>0.024</td><td>0.052</td><td>0.061</td></t<>								0.017	0.024	0.052	0.061
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.000	0.000	0.007	CI.			0.054	
61 pentyl 2-methylpropanoate 1033 0.016 0.015 0.026 0.013 0.008 62 2-nonanone (branched) 1034 tr tr tr 63 β -ocimene 1037 0.464 0.436 1.003 1.274 0.078 0.087 0.198 0.190 64 possibly methyl 2,5-dimethylhexanoate 1047 0.118 0.047 65 possibly methyl 2,5-dimethylhexanoate + 1048 0.047 66 heptanoic acid 66 heptanoic acid + γ -terpinene 1049	59		1028	0.280	0.344	0.289	0.401	0.255	0.321		0.567
62 2-nonanone (branched) 1034 tr tr $\frac{1}{1}$ tr $\frac{1}{$				0.040	0.045	0.045	0.000	0.040	0.000	0.034	0.025
63 β-ocimene 1037 0.464 0.436 1.003 1.274 0.078 0.087 0.198 0.190 64 possibly methyl 2,5-dimethylhexanoate possibly methyl 2,5-dimethylhexanoate + heptanoic acid 1048 0.047 0.047 0.195 0.042 0.042 0.090 0.090 0.091 0.011 0.062 0.062 0.062 0.062 0.084 0.084 0.084 0.084 0.053 0.053 0.013 0.007 0.009 0.019 0.002 0.001 0.013 0.013 0.007				0.016	0.015			0.013	0.008		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,		0.464	0.436			0.078	0.087	0.198	0.190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.100	1.000	11211			0.100	0.100
67 heptanoic acid + γ-terpinene 1049 0.084 68 heptanoic acid + γ-terpinene + isooctanol* 1049 0.053 69 γ-terpinene 1051 0.011 0.007 0.009 0.019 0.002 0.013 70 isooctanol* 1051 0.005 0.008 0.007	65		1048		0.047						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.008		0.061	0.021	0.011		0.0	0.062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.052	0.084	
70 isooctanol* 1051 0.005 0.008 0.007				0.011	0.007	0.009	0.019	0.002	0.003		0.013
		isooctanol*				5.000	0.010				0.010
	71	methyl 6-methylheptanoate	1068				0.824	0.158	0.184		0.505

Table 1. (Continued)

			rela	relative percentages of volatiles in selected hop						
			Nug	Nugget		lena	Willa	mette	Clu	ster
peak	${\bf compound}^a$		$\overline{\mathrm{DTD}^{b,c}}$	SDE^d	DTD	SDE	DTD	SDE	DTD	SDE
72	methyl 6-methylheptanoate + 2-nonanone	1069	0.213	0.168	0.828				0.651	
73	2-nonanone	1069	0.000	0.045	0.004	0.034	0.010	0.033	0.040	0.073
74 75	S-methyl hexanethioate	1075 1076	0.069	0.015	0.021	0.001	0.011	tr 0.015	0.016	0.013 0.031
75 76	linalool oxide terpinolene	1076	0.017	0.008	0.091	0.013	$0.091 \\ 0.010$	$0.015 \\ 0.011$	$0.146 \\ 0.005$	0.031
77	2-nonanol + nonanal + linalool	1085	1.365	1.292			0.010	0.011	0.000	0.012
78	nonanal + linalool	1086			0.332	0.342	0.917	1.068	0.624	0.658
79	unknown 150 MW compound, 69 bp	1087	0.100	0.050	0.000	0.111	0.047	tr	0.100	0.024
80 81	2-methylbutyl 2-methylbutyrate pentyl 3-methylbutyrate*	1090 1093	$0.123 \\ 0.153$	$0.052 \\ 0.069$	$0.230 \\ 0.208$	$0.111 \\ 0.032$	$0.047 \\ 0.022$	$0.052 \\ 0.019$	$0.199 \\ 0.238$	0.088 0.065
82	methyl octanoate (branched)	1093	0.133	tr	tr	0.032	0.022	0.013	0.230	0.003
83	methyl octanoate	1105	0.410	0.350	0.968	0.758	0.105	0.091	1.258	0.813
84	ethyl heptanoate	1108					0.019	0.027		
85 86	unknown 154 MW unsaturated compound unknown 130 MW ester, 57 bp	1110 1110	0.020	0.006	0.074	0.003	tr tr	$0.015 \\ 0.001$	0.054	0.015
87	2,3-dihydro-3,5-dihydroxy-6-methyl-4 <i>H</i> pyran-4-one*	1119	0.347	0.000	0.107	0.003	0.997	0.001	0.798	0.013
88	octanoic acid (branched)	1122							0.023	0.012
89	unknown 136 MW terpene, 91 bp	1125			tr	0.005				
90 91	hexyl isobutyrate unknown 136 MW terpene, 121 bp +	1131 1132	0.035	0.030	0.090	0.105	0.026	0.034	0.023	0.026
31	hexyl isobutyrate + 3-hexenyl isobutyrate*	1132			0.090	0.103				
92	3-hexenyl isobutyrate*	1138	0.025	0.014			0.010	0.012		
93	2-decanone (branched)	1139			0.041	0.043			0.042	0.046
94 95	unknown, 150 MW octanoic acid	1141 1142	0.015	0.022	0.132	0.055	0.064	0.010	0.222	tr 0.113
96	methyl phenylacetate	1142	0.013	0.022	0.132	0.055	0.004	$0.010 \\ 0.010$	0.222	0.113
97	methyl phenylacetate + unknown 130 MW	1150	0.000	0.020			0.249	0.010		
	branched alcohol, 59 bp									
98 99	unknown 130 MW branched alcohol, 59 bp	1152 1158	0.265		0.347			0.017	0.486	
100	unknown 1,3,5-undecatriene*	1170			0.009			0.017		
101	unknown 136 MW, 43 bp	1171			0.000			0.004		
102	unknown 136 MW, 69 bp	1172						tr		
103	unknown unsaturated compound	1173	0.016	0.016	**	0.102			0.250	0.190
104 105	methyl nonanoate (branched) 2-decanone	1174 1175	0.016 **	$0.021 \\ 0.025$	**	0.183 0.038	**	0.082	0.250 **	$0.180 \\ 0.044$
106	α-terpineol + methyl 4-octenoate	1179		0.020		0.000		0.006		0.011
107	methyl 4-octenoate	1181	0.012	0.043	0.212	0.143			0.026	
108 109	α-terpineol unknown, 136 MW	1182 1183	tr	tr				4	tr	
110	methyl 4-octenoate + α -terpineol +	1183					0.014	tr		
110	unknown, 136 MW	1100					0.011			
111	methyl 4-octenoate $+ \alpha$ -terpineol $+$ decanal	1183								0.057
112 113	heptyl propanoate 2-decanol	1184	0.268	0.100	0.024	0.024	0.039	0.056		
113	decanal	1185 1185	0.208	0.189					0.027	
115	methyl nonenoate isomer	1192	0.144	0.077	0.052	0.047	0.143	0.131	0.112	0.093
116	unknown, 100 bp	1193					0.025	0.017	0.021	0.034
117 118	methyl nonanoate unknown	1205 1208	0.460	0.332	0.443	0.349	0.098	0.100	0.334	0.243
119	nerol	1213	0.024	0.021	0.015	0.011	0.019	0.016	0.042	0.036 0.037
120	2-methylheptyl propanoate	1230	0.060	0.040	0.039	0.049	0.045	0.074	0.012	0.001
121	geraniol	1235	0.039	0.060	0.037	0.029	0.043	0.025	0.462	0.413
122 123	2-undecanone (branched) possibly methyl ester of methyl nonenoic acid	1241 1243	0.113	0.042	0.195	0.149	$0.075 \\ 0.037$	$0.026 \\ 0.098$	0.146	0.070
123	decanoic acid (branched)	1245	0.020	0.015	0.009	tr	0.037 tr	0.098	0.014	0.002
125	2-undecanol (branched)	1251	0.064	0.049			CI .	0.002	0.011	0.002
126	unknown 43 bp unsaturated alcohol or acid	1257	0.068	0.084	0.140	0.150	0.065	0.075	0.137	0.147
127 128	unknown 43 bp unsaturated alcohol or acid	1264 1265					0.011	0.014	0.016	0.018
128	methyl decanoate (branched) unknown unsaturated alcohol (possibly	1265	0.309	0.215			0.011 0.009	0.014 0.012		
	undecenol isomer)	1200	0.500	0.210			0.500	0.012		
130	methyl decanoate (branched)	1270	0.090	0.072	0.619	0.595	0.025	0.038	0.373	0.316
131	2-undecanone	1274	0.379	0.430	0.641	0.642	0.170	0.185	0.734	0.719
132 133	2-undecanol octyl propanoate	1287 1284	0.841	0.492	0.062	0.040	0.030	0.018		
134	methyl 4-decenoate + methyl 4,8-decadienoate	1290	2.857	2.774	3.940	4.202	0.030	1.294	trs	0.006
135	unknown lactone	1296	tr	tr	tr	tr	0.006	0.006	4.022	4.655
136	methyl decenoate isomer	1298	0.008	0.007	0.025	0.026	0.150	0.107	0.018	0.026
137 138	methyl geranate methyl geranate + methyl decanoate	1302 1306	0.035	0.083	0.036	0.063	0.152	0.137	1.381	0.033
139	methyl decanoate	1306	0.246	0.166	1.752	1.497	0.015	0.015	1.001	1.025
140	octyl 2-methyl propanoate	1329	0.115	0.069	0.255	0.168	0.081	0.043	0.172	0.090

1 able	1. (Continued)			-1-41		C 1 :	411	1			
			relative percentages of volatiles in selected hop variet								
	•		Nugget		Galena		Willamette			ster	
peak	compound ^a	RI	$\mathrm{DTD}^{b,c}$	SDE^d	DTD	SDE	DTD	SDE	DTD	SDE	
141	possibly methyl 9-methyldecanoate	1340	0.023	0.014			0.007	0.011	0.005	0.009	
142 143	unknown unsaturated compound 2-dodecanone (branched)	1344 1345	0.007	0.001	0.152	0.118			$0.005 \\ 0.174$	$0.008 \\ 0.120$	
144	2-dodecanone (branched)	1348	0.007	0.001	0.132	0.113			0.174	0.120	
145	methyl 2-undecenoate	1353			0.016	tr					
146	decanoic acid (branched)	1357					0.010	tr	0.014	0.021	
147	α-cubebene	1360	0.082	0.040		0.023	0.101	0.054	0.050	0.023	
148	α-cubebene + unknown unsaturated alcohol or acid, 43 bp	1360			0.102						
149	unknown terpene ester	1363				0.082					
150	unknown unsaturated alcohol or acid, 43 bp	1366				0.011					
151	unknown unsaturated alcohol or acid, 43 bp +	1368	0.076	0.055							
450	2-dodecanol (branched)	4000					0.000	0.040	0.005	0.000	
152 153	unknown, 194 MW, 95 bp	1368 1370			tr		0.003	0.010	$0.005 \\ 0.266$	$0.009 \\ 0.325$	
154	methyl undecanoate (branched) unknown, 43 bp	1375					0.010	0.044	0.200	0.323	
155	unknown, 194 MW, 95 bp +	1375				0.622	0.010	0.011			
	methyl undecanoate (branched)										
156	methyl undecanoate (branched)	1375			0.450					0.087	
157	methyl undecanoate (branched) + 2-dodecanone	1377	0.000	0.151	0.005	0.909	0.010		0.074		
158 159	2-dodecanone $+ \alpha$ -ylangene	1377 1382	0.089	0.151	0.065	0.203	0.019	0.092		0.145	
160	α-ylangene + decanoic acid (branched)	1383				0.116		0.002		0.143	
161	decanoic acid (branched)	1386			0.067						
162	α-ylangene	1386	0.084	0.104	0.065		0.080		0.058		
163	copaene	1391	0.255		0.262	0.356	0.307	0.258	0.000	0.182	
164	copaene + methyl undecenoate isomer	1395						0.015	0.208	0.020	
165 166	methyl undecenoate isomer unknown 204 MW sesquiterpene, 81 bp	1396 1397						$0.015 \\ 0.037$	0.066	$0.020 \\ 0.051$	
167	methyl undecenoate + 204 MW sesquiterpene,	1397					0.027	0.037	0.000	0.001	
	81 bp + methyl undecadienoate										
168	methyl undecadienoate isomer + unknown	1398			0.150	0.139		0.023			
400	204 MW sesquiterpene, 91 bp	4000						0.044			
169 170	methyl undecenoate isomer methyl undecenoate isomer + unknown 204 MW	1399 1399					0.059	0.014			
170	sesquiterpene, 91 bp	1333					0.039				
171	copaene + germacrene D + unknown 204 MW	1400		0.354							
	sesquiterpene, 105 bp										
172	germacrene D	1401	0.057								
173 174	unknown methyl undecenoate isomer	1402 1403			0.057	0.072			tr	tr	
175	unknown 204 MW sesquiterpene, 105 bp	1403	0.023		0.037	0.012			tr		
176	methyl undecanoate	1410	0.010	0.033	0.045	0.056			0.027	0.048	
177	isocaryophyllene*	1413	0.030	0.030	0.005	0.004	0.057	0.068	0.043	0.068	
178	unknown terpene ester	1415	0.005	0.059							
179	calarene	1416	0.005	0.003			t n	t n	+m	0.000	
180 181	unknown 204 MW sesquiterpene, 91 bp unknown 204 MW sesquiterpene, 93 bp	1417 1422					tr 0.006	tr 0.009	tr	0.008	
182	caryophyllene	1423	14.586	15.323	12.265	10.954	13.793	11.708	9.225	6.915	
183	β -cubebene	1426	0.583	0.390	0.515	0.370			0.452	0.274	
184	β -cubebene + α -bergamotene	1427					1.194	0.955			
185	2-tridecanone (branched)	1432	0.010	0.004	0.019	0.010	tr	tr	0.027	0.042	
186	2-tridecanone (branched) + unknown unsaturated	1433		0.034							
187	compound, 43 bp unknown unsaturated compound, 43 bp	1435								0.358	
188	2-tridecanone (branched) + β -farnesene	1436					3.138			0.000	
189	β -farnesene	1439	0.014	0.061	0.018	0.156		8.592	tr	tr	
190	unknown 204 MW sesquiterpene, 105 bp	1456	0.021	0.030	0.030		0.025	0.038	0.027		
191	unknown 204 MW sesquiterpene, 105 bp	1458	0.020	0.011	0.047	00.070	0.034	0.038	0.024	15 004	
192	2 unknown 204 MW sesquiterpenes, 105 bp + humulene	1460				20.272				15.204	
193	unknown terpene ester	1462		tr				0.049			
194	humulene	1463	29.563		22.663		35.143	32.474			
195	humulene + methyl dodecenoate isomer	1466							19.337		
196	acetate of unsaturated alcohol (possibly	1467								tr	
107	decadienol isomer)	1.400	0.991						0.110	4	
197 198	unknown 204 MW sesquiterpene, 161 bp methyl dodecanoate (branched)	1468 1469	0.231			0.350			0.118 tr	tr tr	
199	methyl dodecanoate (branched) +	1469			0.164	0.000	0.096	0.037	CI.	u	
	unknown 204 MW sesquiterpene, 161 bp	- 30									
200	methyl dodecenoate isomer	1469	tr		tr					1.314	
201	unknown 204 MW sesquiterpene, 161 bp +	1476		0.449							
	methyl dodecenoate isomer $+$ 2-tridecanone										

Table 1. (Continued)

			relat	tive perc	entages	of volati	les in se	elected h	op varie	ties
			Nugget		Gal	ena	Willamette		Clu	ster
peak	$\operatorname{compound}^a$	RI	$\overline{\mathrm{DTD}^{b,c}}$	SDE^d	DTD	SDE	DTD	SDE	DTD	SDE
202	unknown 204 MW sesquiterpene, 161 bp \pm 2-tridecanone	1476				1.274				
203	2-tridecanone	1477						0.115		
204	2-tridecanone + γ-cadinene	1477	1 001		1 700		1.098		0.000	0.504
205	2-tridecanone + γ -cadinene + unknown 204 MW sesquiterpene, 189 bp + α -amorphene	1478	1.221		1.769				0.899	0.584
206	methyl dodecenoate isomer + unknown 204 MW	1478				1.001				
207	sesquiterpene, 189 bp $+ \alpha$ -amorphene	1.470				2 602		1 101		
207 208	γ -cadinene γ -cadinene $+$ unknown 204 MW sesquiterpene, 189 bp $+$ α -amorphene	1479 1480		1.469		3.683		1.181		
209	α-amorphene	1481					0.108			
210	methyl 3,6-dodecadienoate	1482	tr	tr	0.334					
211	α -amorphene + α -farnesene	1485	0.001	0.075			0.055	0.904		
212 213	α -farnesene methyl 3,6-dodecadienoate $+\beta$ -selinene	1487 1492	0.001	0.075		1.872	0.055			
214	unknown terpene ester	1496		0.455		0.129		0.169		0.586
215	β -selinene	1502	1.675	1.987	1.593	0.120	0.592	0.118	0.851	0.614
216	unknown 204 MW sesquiterpene, 119 bp	1504					tr	tr		
217	γ-muurolene	1508	0.326	0.262	0.357	1 500	0.438	0.400	0.279	0.098
218 219	γ -muurolene + γ -selinene γ -selinene	1511 1512	1.511	1.751	1.458	1.563	0.364	0.420	0.694	0.609
220	γ-semiene methyl dodecanoate	1512	1.311	1.731	1.436 tr	tr	0.304		0.094 tr	0.009
221	methyl dodecanoate $+ \delta$ -cadinene	1516			CI .	u			CI .	0.057
222	δ -cadinene	1516	0.063	0.102	0.072	0.088	0.048		0.033	
223	δ -cadinene + unknown, 69 bp	1521						0.052		
224	α-muurolene	1527	0.782	0.823	0.815	0.695	0.992	0.831	0.552	0.373
225 226	calamenene cadinene	1530 1533	tr 1.134	tr 1.516	tr 1.201	tr 1.359	tr 1.530	tr 1.423	tr 0.831	tr 0.746
227	selina-3,7-diene	1538	0.121	0.235	0.120	0.205	0.110	0.170	0.090	0.130
228	1,2,3,4,4A,7-hexahydro-1,6-dimethyl-4-(1-methylethyl)-	1546	0.092	0.172	0.092	0.148	0.134	0.154	0.067	0.090
	naphthalene (CAS Registry No. 16728-99-7)*g									
229	unknown, 200 MW, 157 bp	1550	tr	tr	tr	tr	tr	tr	tr	tr
230 231	unknown 204 MW cadinene type sesquiterpene, 105 bp	1552 1554	0.167	0.248	0.180	0.240	0.214	0.208	0.121	0.094
232	unknown, 43 bp, unsaturated compound possibly humulene epoxide isomer	1557			0.025	$0.053 \\ 0.032$		0.014		0.085
233	unknown farnesene type sesquiterpene, 93 bp	1557			0.020	0.002	0.058	0.033		
234	unknown 222 MW, 43 bp, unsaturated compound (possibly acetate)	1559				0.176		0.018		0.131
235	unknown 234 MW oxygenated sesquiterpene, 91 bp	1562		0.009						
236	234 oxygenated sesquiterpene, 91 bp $+$ 210 MW	1563	0.019							
007	unsaturated alcohol or acid, 43 bp	1500		0.005						
237 238	unknown 210 MW unsaturated alcohol or acid, 43 bp long-chain 2,4-dione compound (possibly	1563 1570		$0.085 \\ 0.015$						
230	2,4-tridecadione)	1370		0.013						
239	unknown 224 MW unsaturated alcohol or acid, 43 bp	1570				0.013				
240	caryophyllyl alcohol	1572	0.062		0.019	0.024	0.010	0.096	0.040	0.016
241	possibly humulene epoxide isomer	1579	0.007	0.177					tr	tr
242 243	2-tetradecanone caryophyllyl alcohol + unknown 220 MW oxygenated	1594 1595	0.007	$0.177 \\ 0.111$					0.046	0.044
240	sesquiterpene, 91 bp	1000		0.111						
244	unknown 220 MW oxygenated sesquiterpene, 91 bp	1600	0.100		0.100	0.179	0.111	0.025	tr	tr
245	caryophyllene oxide	1813	0.847	0.127			0.768	0.195	0.593	0.115
246	caryophyllene oxide + methyl tridecenoate isomer	1813			0.675				4	0.015
247 248	methyl tridecenoate isomer caryophyllene oxide + methyl tridecenoate isomer +	1821 1824				0.039			tr	0.015
240	humulene epoxide isomer	1024				0.039				
249	humulene epoxide isomer	1836	0.002	tr	0.084		0.184	0.089	0.068	0.090
250	unknown 224 MW unsaturated alcohol or acid, 43 bp	1863	0.178	0.118	0.056	0.052	0.055	0.097	0.074	0.196
251	unknown 220 MW unsaturated alcohol or acid, 43 bp	1865	0.932	0.042	4.450	0.400	1.800	0.499	0.917	0.173
252	220 MW unsaturated alcohol or acid, 43 bp + unknown sesquiterpenes, 43 and 105 bp	1868			1.159	0.106				
253	unknown 220 MW oxygenated sesquiterpene, 105 bp	1868	0.621	0.025					0.306	0.046
254	unknown	1886	0.021	0.020	tr	tr	tr	0.038	tr	0.044
255	unknown oxygenated sesquiterpene, 119 bp	1888			0.009	0.011				
256	humulene epoxide or diepoxide	1891	0.010	tr						
257	cadinol isomer, 119 bp		0.047	0.019	0.051	0.059	0.056	0.075	0.042	0.049
258 259	unknown 222 MW oxygenated sesquiterpene, 105 bp δ -cadinol		$0.074 \\ 0.329$	0.051	$0.197 \\ 0.175$	0.023	$0.151 \\ 0.307$	0.092 0.103	$0.039 \\ 0.250$	0.033
260	δ -cadinol $+$ unknown 222 MW unsaturated alcohol or		5.525	1.120	0.170		0.001	0.100	5.200	
004	acid, 43 bp								0.000	
261 262	unknown 222 MW oxygenated sesquiterpene, 43 bp								0.006	tr
202	unknown oxygenated sesquiterpene, 105 bp								tr	tr

Table 1. (Continued)

			relative percentages of volatiles in selected hop varieties								
			Nugget		Galena		Willamette		Clu	ster	
peak	$\operatorname{compound}^a$	RI	$\overline{\mathrm{DTD}^{b,c}}$	SDE^d	DTD	SDE	DTD	SDE	DTD	SDE	
263	δ -cadinol + α -cadinol					0.055				0.073	
264	humulene epoxide isomer		0.004	tr	0.006						
265	α-cadinol		0.130	0.089	0.148		0.158	0.212	0.046		
266	juniper camphor		0.185	0.032	0.176	0.018			0.047	tr	
267	humulene epoxide isomer		0.004	tr	0.006	tr					
268	unknown, 73 bp		0.050		0.021	tr					
269	unknown, 96 bp		0.026	0.014							
270	unknown, 246 MW, 103 bp								0.021		
271	unknown, 222 MW, 43 bp, unsaturated alcohol or acid (possibly tetradecatrienoic acid)					1.100		0.047		1.412	
272	unknown, 224 MW, 43 bp, unsaturated alcohol or acid (possibly tetradecadienoic acid)			0.298		0.513		0.008		0.239	
273	unknown 234 MW unsaturated alcohol or acid, 67 bp					0.252		0.015		0.256	
274	unknown							0.008			
275	unknown 236 MW, 41 bp					0.016				tr	
276	unknown 238 MW, 79 bp					0.090				0.148	
277	2-hexadecanone			0.115		0.056		0.045		0.107	
278	unknown unsaturated alcohol							0.698		0.137	
279	unknown, 250 MW, 115 bp		tr		tr	0.079	0.021	0.019	0.026	0.026	
280	unknown, long-chain polyisoprenoid type compound			0.088		0.007					
281	unknown, 250 MW							0.018			
282	2-heptadecanone (branched)							0.034			
283	unknown, 246 MW, 43 bp							0.057			
284	2-heptadecanone							0.030			
285	hexadecanoic acid (palmitic acid)							0.028			
286	unknown 272 MW polyisoprenoid type compound							0.160			

^a Compounds identified for the first time in hops are indicated with an asterisk (*). Two asterisks (**) indicate compounds coeluting with internal standard. ^b Direct thermal desorption data. ^c Value reported is the average of four replicate analyses. ^d Steam distillation extraction data. ^e Compounds for which relative percentages are reported as traces were not integrated by GC. ^f bp stands for base peak. g CAS Registry No. was supplied by the author.

Table 2. Essential Oil Content of Selected Hops As **Determined by DTD and SDE**

	essential oil content (%)						
hop cultivar	DTD^a	SDE					
Nugget	1.73 ± 0.09	1.18					
Galena	1.61 ± 0.19	1.07					
Willamette	1.15 ± 0.11	0.59					
Cluster	0.90 ± 0.09	0.52					

^a Average and standard deviation of four replicate analyses.

soluble to be recovered by SDE, and that is probably the case with formic and acetic acid.

There are 5 unknown compounds that have been found only in DTD data and 30 unknown compounds reported only in SDE data. The compounds found in DTD data are present in very small amounts. The compounds found in SDE data only are mainly longchain alcohols and acids and unknown terpene esters. We assume that these compounds are artifacts formed during the distillation due to hydrolysis.

Nugget Hops. A total of 150 volatile compounds have been identified for Nugget hops by DTD-GC-MS. The

presence and amounts of key oil components used for varietal characterization, as well as their ratios, when compared to the key published by Kenny (1990) and Peacock and McCarty (1992), are typical for the Nugget variety.

It has been observed that Nugget can be distinguished from the other three varieties analyzed by the presence of secondary alcohols (2-nonanol, 2-decanol, 2-undecanol, and 2-dodecanol) that have been shown to be unique for Nugget hops. The presence of 2-nonanol has been used in the varietal key published by Peacock and McCarty (1992). In addition, of four varieties analyzed, sesquiterpene germacrene D was found only in Nugget. Together with Galena, this variety differs from Willamette and Cluster hops by the presence of methyl-3,6-dodecadienoate.

Methyl dodecadienoate has already been used as a key compound for varietal characterization by Peacock and McCarty (1992).

Galena Hops. One hundred and fifty volatile compounds have been found in Galena hops when analyzed by DTD-GC-MS. When results of the analysis are

Table 3. Reproducibility of DTD in Determining Ratios of Oil Components Useful for Varietal Characterization

		ratio ^a										
	M/C		M/C H/C		S/C		H/F		C/Y			
hop cultivar	$\overline{\mathrm{DTD}^b}$	$\overline{\mathrm{SDE}^c}$	DTD	SDE	DTD	SDE	DTD	SDE	DTD	SDE		
Nugget Galena Willamette Cluster	$\begin{array}{c} 1.96 \pm 0.12 \\ 2.67 \pm 0.31 \\ 2.02 \pm 0.22 \\ 4.45 \pm 0.39 \end{array}$	2.08 2.98 2.57 7.16	$\begin{array}{c} 2.03 \pm 0.01 \\ 1.85 \pm 0.01 \\ 2.55 \pm 0.02 \\ 2.10 \pm 0.01 \end{array}$	1.86 1.85^d 2.78 2.20^d	$\begin{array}{c} 0.11 \pm 0.00 \\ 0.13 \pm 0.00 \\ 0.04 \pm 0.00 \\ 0.09 \pm 0.00 \end{array}$	$ \begin{array}{c} 0.13 \\ e \\ 0.02 \\ 0.09 \end{array} $	2378.51 ± 810.68 1434.79 ± 434.61 11.30 ± 1.09 h	468.02 129.81 33.94 h	$\begin{array}{c} 174.98 \pm 12.66 \\ 188.70 \pm 6.17 \\ 171.86 \pm 8.35 \\ 159.07 \pm 12.67 \end{array}$	146.87 f g g		

^a Abbreviations: M, myrcene; C, caryophyllene; H, humulene; F, β-farnesene; Y, α-ylangene; S, β-selinene. ^b Average and standard deviation of four replicate analyses. c Hop oil from SDE. d Humulene coeluting with two sesquiterpenes. $^e\beta$ -Selinene coeluting with methyl 3,6-dodecadienoate. $f\alpha$ -Ylangene coeluting with 2-dodecanone and decanoic acid (branched). $f\alpha$ -Ylangene coeluting with 2-dodecanone. h β-Farnesene is present in traces.

applied to the keys for varietal characterization published by Kenny (1990) and Peacock and McCarty (1992), they were shown to be characteristic for this variety.

Galena hops has shown to be rich in esters. The relative percentages of methyl 6-methylheptanoate and monoterpene β -ocimene are shown to be higher in Galena hops than in the other three varieties, and the percentage of methyl decanoate was higher in Galena than in Nugget and Willamette varieties. The ester methyl 3,6-dodecadienoate is reported in Galena and Nugget but not in Willamette and Cluster varieties. Another ester, octyl propanoate, is found in Galena and Willamette but not in Nugget and Cluster varieties.

Willamette Hops. In the Willamette hop variety, 144 volatile compounds were reported by DTD-GC-MS. The presence and amounts of key oil components, as well as their ratios, are seen to be characteristic of Willamette on the basis of the keys of Kenny (1990) and Peacock and McCarty (1992).

Willamette is characterized as a high-farnesene hop variety, and our results show a high amount of farnesene present in the Willamette sample. Because the other three varieties analyzed are low-farnesene hops, Willamette can be easily distinguished from the others just by the amount of farnesene present. In addition, it has been observed that Willamette hops have a higher percentage of methyl geranate than other varieties analyzed. Willamette hops have been shown to be the only variety in which ethyl heptanoate and sesquiterpene $\alpha\text{-bergamotene}$ were found. Together with Galena, this variety differs from Nugget and Cluster hops by the presence of octyl propanoate.

Cluster Hops. A total of 151 volatile compounds were identified by DTD-GC-MS for Cluster hops. When the data were used to follow the key for varietal characterization of Kenny (1990), they were in good agreement with the characteristics of the Cluster variety.

Among the varieties analyzed, Cluster hops have been shown to have a greater amount of isobutyl isobutyrate and geraniol in relation to the other three varieties, as well as a high amount of β -myrcene and peak 135 (as referred to Table 1) with a retention index of 1296 (an unknown lactone). On the other hand, the relative percentage of sesquiterpene cadinene has been shown to be smaller in Cluster when compared to other varieties analyzed. The ester 2-methylheptyl propanoate, although present in other varieties, was not found in Cluster hops.

As mentioned above and shown in Table 2, hop oil content was higher when determined by DTD-GC-FID. However, the trends are in agreement with the SDE results in which the amount of essential oil is highest in Nugget, followed by Galena, Willamette, and Cluster hops in that order.

The higher essential oil content observed for DTD-GC-FID can be accounted for by minimal losses during the sample preparation, which in the case of SDE could be significant due to evaporative loss during sample concentration steps or incomplete extraction. Sensory evaluation of distillation pot residues from SDE indicated aroma still to be present, suggesting nonquantitative recovery of hop oil by SDE. In contrast, the residue in the desorption tube was odorless, suggesting that quantitative recovery occurred.

There is also a difference in the temperature used for DTD (150 °C) versus SDE (100 °C), which may have

contributed to the difference in the essential oil yields for these two methods. Although the higher temperature used in DTD analysis raises the possibility that degradation of some nonvolatile hop constituents may yield volatile compounds that could appear among hop volatiles, it should be noted that the desorption time (at which sample and adsorbent were exposed to high temperature) was only 5 min, and the analysis was performed in an inert atmosphere, which excludes oxidation and hydrolysis reactions. Moreover, except for 2,3-dihydro-3,5-dihydroxy-6-methyl-4*H*-pyran-4-one, which is known to be a product of dehydration and thermal degradation of sugar, no known degradation products of hop constituents were found, and five unknown compounds found only in DTD data were present in very small amounts.

The possibility that compounds present only in DTD data come from Tenax TA was excluded because analysis of desorption tubes filled with Tenax TA and conditioned at 320 °C showed no volatiles present.

As seen from Table 3, the ratios of key oil compounds determined by DTD-GC-FID were mostly in reasonable agreement with those determined by SDE-GC-FID. In the case of the H/F ratio, the difference was greater, but for the purpose of varietal characterization is not significant because the H/F ratio of 3 is used in the key of Kenny (1990). Ratios determined by DTD-GC-FID are shown to be typical for the varieties analyzed. As seen from the table, the DTD-GC-FID method has shown high reproducibility in determination of ratios of oil components useful for varietal characterization.

CONCLUSION

When used for essential oil profiling of hops, the DTD method has proven to be as sensitive as the conventional SDE method. The data obtained by DTD-GC-MS have proven to be in generally good agreement with SDE data and with the literature data for the varieties analyzed. By analyzing other hop varieties, the DTD method can be used to create a database useful for the confirmation of hop variety identities. Due to the minimal losses during the sample preparation, DTD has a higher essential oil yield than conventional SDE. The DTD-GC has also been shown to be highly reproducible in determination of ratios of key oil components used for varietal characterization of hops. The ratios were in generally good agreement with the SDE data and typical for the varieties analyzed. DTD can, therefore, be used successfully for varietal characterization of hops for the varieties analyzed.

In addition to the significant time saving that DTD offers (the time needed for sample preparation prior to GC-MS profiling of hops was ~20 min as compared to 6 h in the case of conventional SDE), DTD has other advantages over methods for essential oil analysis of hops that are currently in use. First, the method requires only \sim 1 g of hop sample, which economizes storage space, reduces the time needed for sample preparation, and, more important, makes the method suitable for the analysis of individual cones in cases when identification of hop mixtures is needed. Second, the method does not require use of solvent, so the solvent exposure, as compared to the other methods, is significantly reduced. Third, the method does not require elaborate procedures. The thermal desorber apparatus is easy to operate, and sample cleaning is reduced to a minimum. Its labor and time efficiencies make DTD a method that can significantly increase the number of hop samples that can be analyzed daily in the laboratory. For research purposes, the method can be of great significance for studies involving the analysis of large numbers of hop samples.

ACKNOWLEDGMENT

We thank Stratton Ballew, PLLC, Yakima, WA, for arranging sample donations and Yakima Chief Ranches, Inc., Yakima, WA, for generous donation of hop samples. We acknowledge the Center for Advanced Food Technology (CAFT) Mass Spectrometry Laboratory facility for providing instrumentation for this project. CAFT is an initiative of the New Jersey Commission on Science and Technology.

LITERATURE CITED

- Buttery, R. G.; Ling, L. C. Identification of hop varieties by gas chromatographic analysis of their essential oils. J. Agric. Food Chem. **1967**, 15, 531–535.
- Grant, H. L. Hops. In Handbook of Brewing; Hardwick, W. A., Ed.; Dekker: New York, 1995.
- Green, C. P. Use of chromatography data to identify varieties in binary mixtures of hops. J. Inst. Brew. 1997, 103, 293-
- Green, C. P.; Osborne, P. Rapid method for obtaining essential oil from hops. J. Inst. Brew. 1993, 99, 335-339.
- Grimm, C. C.; Lloyd, S. W.; Miller, J. A.; Spanier, A. M. The analysis of food volatiles using direct thermal desorption. In Techniques for Analyzing Food Aroma; Marsili, R., Ed.; Dekker: New York, 1998.
- Hartman, T. G.; Overton, S. V.; Manura, J. J.; Baker, C. W.; Manos, J. N. Short path thermal desorption: Food science applications. *Food Technol.* **1991**, *45*, 104–105.
- Hartman, T. G.; Karmas, K.; Chen, J.; Shevade, A.; Deagro, M.; Hwang, H. I. Determination of vanillin, other phenolic compounds and flavors in vanilla beans by direct thermal desorption-gas chromatography and gas chromatographymass spectrometry analysis. In Phenolic Compounds in Food and Their Effects on Health; ACS Symposium Series 506; Ho, C.-T., Lee, C. Y., Huang, M.-T., Eds.; American Chemical Society: Washington, DC, 1992.
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography, Academic Press: New York, 1980; pp 58-87.

- Katsiotis, S. T.; Langezaal, C. R.; Schefer, J. J. C.; Verpoorte, R. Comparative study of the essential oils from hops of various Humulus lupulus L. cultivars. Flavour Fragrance *J.* **1989**, *4*, 187–191.
- Kenny, S. T. Identification of US-grown hop cultivars by hop acid and essential oil analysis. J. Am. Soc. Brew. Chem. **1990**, 48, 3-8.
- Lam, K. C.; Nickerson, G. B.; Deinzer, M. A rapid solvent extraction method for hop essential oils. J. Agric. Food Chem. 1986, 34, 63-66.
- Langezaal, C. R.; Chandra, A.; Katsiotis, S. T.; Scheffer, J. J. C.; De Haans, A. B. Analysis of supercritical carbon dioxide extracts from cones and leaves of a Humulus lupulus L. cultivar. J. Sci. Food Agric. 1990, 53, 455-463.
- Likens, S. T.; Nickerson, G. B. Identification of hop varieties by gas chromatographic analysis of their essential oils. J. Agric. Food Chem. 1967, 15, 525-530.
- Maarse, H.; Visscher, C. A. Hop oil. In Volatile Compounds in Food; Maarse, H., Visscher C. A., Eds.; TNO-CIVO Food Analysis Institute: Utrechtseweg, The Netherlands, 1989.
- Majlat, P.; Erdos, Z.; Takacs, J. Calculation and application of retention indices in programmed temperature gas chromatography. J. Chromatogr. 1974, 91, 89-110.
- Manura, J. J.; Hartman, T. G. Application of a short-path thermal desorption GC accessory. *Am. Lab.* **1992**, *5*, 46–
- Nickerson, G. B.; Likens, S. T. Gas chromatographic evidence for the occurrence of hop oil components in beer. J. Chromatogr. 1966, 21, 1-5.
- Peacock, V. E.; McCarty P. Varietal identification of hops and hop pellets. MBAA Tech. Q. 1992, 29, 81-85.
- Peppard, T. L.; Ramus, S. A.; Witt, C. A.; Siebert, K. J. Corelation of sensory and instrumental data in elucidating the effect of varietal differences on hop flavor in beer. J. Am. Soc. Brew. Chem. 1988, 47, 18-26.
- Perpette, P. Varietal discrimination of hop pellets by essential oil analysis I. Comparison of fresh samples. J. Am. Soc. Brew. Chem. 1998, 56, 104-108.
- Pickett, J. A.; Coates, J.; Sharpe, F. R. Distortion of essential oil composition during isolation by steam distillation. Chem. Ind. 1975, 13, 571-572.
- Pickett, J. A.; Sharpe, F. R.; Peppard, T. L. Aerial oxidation of humulene. Chem. Ind. 1977, 1, 30-31.

Received for review November 2, 1999. Revised manuscript received February 4, 2000. Accepted February 7, 2000.

JF9911850