Thermodynamic Properties of n-Propyl Alcohol

J. L. COSNER ${ }^{1}$, J. E. GAGLIARDO ${ }^{2}$, and T. S. STORVICK
University of Missouri, Columbia, Mo.

V ARIOUS USES of n-propyl alcohol as a solvent and chemical intermediate prompted a study of its derived thermodynamic properties. Sufficient volumetric, thermal, and vapor pressure data are available in the literature to evaluate these properties from 77° to $540^{\circ} \mathrm{F}$. and pressures up to 700 p.s.i.a.
Extensive measurements of the volumetric behavior of n-propyl alcohol were made by Ramsey and Young (6) over the range from 30° to $263.6^{\circ} \mathrm{C}$. and pressures from 800 to $53,480 \mathrm{~mm}$. of mercury. Foz Gazulla, Morcillo, and Mendes (2) measured vapor densities in the low pressure range from 100 to 760 mm . of mercury and the temperature range from 75° to $130^{\circ} \mathrm{C}$. Saturated vapor and liquid densities were reported by Young (11).

The vapor pressure-temperature data for n-propyl alcohol have been summarized by Stull (9).

The heat capacity data at zero pressure, calculated from spectroscopic measurements and reported by Kobe, Harrison, and Pennington (4), compare favorably with the calorimetric data of Sinke and De Vries (8).

Calorimetric measurements of the heat of vaporization of n-propyl alcohol were reported by Bennewitz and Rossner (1). The normal boiling point data and the heat of vaporization at the normal boiling point were summarized in International Critical Tables (3).

The critical constants $T_{c}=537.3^{\circ} \mathrm{K} ., P_{c}=50.2 \mathrm{~atm}$., and $V_{c}=220 \mathrm{cc} . / \mathrm{gram}$ mole are reported by Lyderson, Greenkorn, and Hougen (5) and these values were used in this work. The molecular weight of n-propyl alcohol used in all the calculation in this work was 60.09 . The calculations were based on 1 pound of n-propyl alcohol, and the enthalpy and entropy were set equal to zero at $77^{\circ} \mathrm{F}$. for the saturated liquid at its vapor pressure.

VAPOR PRESSURE AND HEATS OF VAPORIZATION

The vapor pressure data reported by Stull (9) were fitted to the following empirical equation:

$$
\begin{equation*}
\log P_{v}=(B / T-43)+C+D(T-43)+E(T-43)^{2} \tag{1}
\end{equation*}
$$

To improve the fit, Equation 1 was applied over a low and a high temperature range. The constants obtained were:

	Temperature Range, ${ }^{\circ} \mathrm{K}$	
Constant	$273-373$	$373-537$
B	-1645.194	-2173.147
C	6.660707	
D	0.590031×10^{-2}	11.16614
E	-6.46252×10^{-6}	3.520663×10^{-2}
		3.5849×10^{-6}

The latent heats of vaporization were calculated with the thermodynamically rigorous Clapeyron equation

$$
\begin{equation*}
\frac{d P_{v}}{d T}=\frac{\Delta H_{0}}{T\left(V_{0}-V_{L}\right)} \tag{2}
\end{equation*}
$$

The necessary temperature derivatives of the vapor pressure were obtained from Equation 1. The saturated vapor $\left(V_{v}\right)$ and liquid $\left(V_{L}\right)$ volumes of Young allowed evaluation

[^0]of ΔH_{v}. The heats of vaporization used in preparing Table I are smoothed values calculated from Equation 2. At atmospheric pressure the value given in Table I is 295.0 B.t.u. per pound and compares favorably with 295.9 B.t.u. per pound reported in International Critical Tables (3), less favorably with 299.0 B.t.u. per pound reported by Bennewitz and Rossner (1).

VAPOR PHASE THERMODYNAMIC PROPERTIES

Residual volumes were calculated from the volumetric data of Ramsey and Young (6). Low pressure data on the high temperature isotherms were not reported. An extrapolating equation was developed for this low pressure vapor region based on dimerization of the n-propyl alcohol in the vapor phase. The data of Foz Gazulla, Morcillo, and Mendes (2) were used to confirm the extrapolated results. These two sources of volumetric data had so few common values that no direct comparison was possible.

The curves of residual volume $v s$. pressure were prepared and used to calculate the fugacity coefficients. The relationship used was

$$
\begin{equation*}
\ln \left(\frac{f}{P}\right)=\frac{-1}{R T} \int_{0}^{P} \alpha d P \tag{3}
\end{equation*}
$$

Equation 3 was evaluated graphically.
The enthalpies of the superheated vapor were calculated as differences between the enthalpy of the gas at pressure P and the value in the zero pressure or ideal state for each isotherm, The thermodynamic relationship used was

$$
\begin{equation*}
\left(H-H^{\circ}\right)_{T}=\int_{0}^{P}\left[T\left(\frac{\partial \alpha}{\partial T}\right)_{P}-\alpha\right] d P \tag{4}
\end{equation*}
$$

To integrate Equation 4, a curve of α vs. temperature was prepared by cross-plotting the α-pressure diagram. The derivatives, $T\left(\frac{\partial \alpha}{\partial T}\right)_{P}$, were evaluated numerically using the Gregory-Newton backward and forward interpolation formulas (10) at the ends of the curves and Stirling's formula (7) in the central position. A plot of $T\left(\frac{\partial \alpha}{\partial T}\right)_{P}$ was prepared and Equation 4 evaluated graphically.

The entropies of the superheated vapor were calculated as differences between the entropy of the gas at pressure P and the ideal gas state at zero pressure by the expression

$$
\begin{equation*}
\left(S-S^{\circ}\right)_{T}=\int_{0}^{P}-\left(\frac{\partial V}{\partial T}\right)_{P} d P \tag{5}
\end{equation*}
$$

When the residual volume is substituted in Equation 5, the integral becomes indeterminate at the lower limit. Equation 5 can be evaluated from $P=0$ to $P=P^{*}$, an ideal gas state at unit fugacity. When this is substracted from Equation 5, the lower limit $P=0$ is eliminated and the result is

$$
\begin{equation*}
\left(S-S^{*}\right)_{\tau}=\left(S-S^{\circ}\right)_{r}=\int_{P^{*}}^{P}\left(\frac{\partial \alpha}{\partial T}\right)_{P} d P-\int_{P^{*}}^{P}\left(\frac{R}{P}\right) d P \tag{6}
\end{equation*}
$$

Equation 6 was evaluated using the results of Equations

Table I. Thermodynamic Properties of Saturated n-Propyl Alcohol

$\begin{aligned} & \text { Temp., } \\ & \circ \text { F. } \end{aligned}$	Pressure, P.S.I.A.	Volume, Cu. Ft./Lb.		Enthalpy, B.t.u./Lb.			Entropy, B.t.u./Lb. ${ }^{\circ}$ R.			Fugacity Ratio, f/P
					Vaporization	Vapor		Vapori- zation	Vapor	
		Liquid	Vapor	Liquid			Liquid			
77	0.39	0.0200	244.7	0.0	337.5	337.5	0.0	0.629	0.629	0.997
100	0.85	0.0203	116.4	12.60	333.0	345.6	0.103	0.595	0.698	0.994
140	2.83	0.0208	37.26	35.74	324.5	360.0	0.243	0.541	0.784	0.986
180	7.94	0.0214	13.98	60.24	315.6	375.9	0.358	0.493	0.851	0.973
280	14.696	0.0217	7.86	90.02	295.0	385.0	0.455	0.442	0.897	0.959
220	19.17	0.0219	6.21	99.81	291.8	390.0	0.486	0.429	0.915	0.952
260	40.18	0.0231	2.94	139.4	268.4	402.7	0.580	0.373	0.953	0.924
300	76.17	0.0237	1.55	165.4	249.6	415.0	0.659	0.328	0.987	0.886
340	132.9	0.0249	0.880	208.9	218.8	427.7	0.752	0.274	1.026	0.842
380	216.5	0.0265	0.530	243.6	194.1	437.7	0.823	0.231	1.054	0.788
420	333.1	0.0289	0.321	284.0	160.6	445.0	0.905	0.182	1.087	0.747
460	488.2	0.0320	0.186	329.7	116.1	445.8	0.977	0.126	1.103	0.687
500	688.5	0.0410	0.0995	380.6	58.1	440.0	1.053	0.060	1.113	0.652
507	737.9	0.0587	0.0587	414.5	0.0	414.5	1.115	0.0	1.115	

3 and 4. Dividing Equation 4 by T and substracting from this, R times Equation 3 gives the first integral in Equation 6. Thus:

$$
\begin{equation*}
\left(S-S^{\circ}\right)_{r}=\left(\frac{H-H^{\circ}}{T}\right)-R \ln \left(\frac{f}{P}\right)-R \ln \left(\frac{P}{P^{*}}\right) \tag{7}
\end{equation*}
$$

Equation 7 was used to evaluate the superheated vapor entropy values.

The ideal gas, or zero pressure enthalpies were calculated from the heat capacity data of Kobe, Harrison, and Pennington (4) with the expression

$$
\begin{equation*}
d H=C_{p}^{\circ} d T \tag{8}
\end{equation*}
$$

The ideal gas entropy values were obtained from the expression

$$
\begin{equation*}
d S=C_{\rho}^{\circ} / T d T \tag{9}
\end{equation*}
$$

Saturated enthalpy values were obtained by plotting a temperature-enthalpy diagram and extrapolating the isobars to the saturated temperature. The saturated entropy values were obtained in a similar manner on a temperatureentropy diagram.
Enthalpy and entropy data for the saturated liquid were obtained by subtracting the enthalpy and entropy of vaporization from their saturated vapor values. The data were smoothed by plotting on enthalpy-entropy, tempera-

Figure 1. Pressure-enthalpy diagram for n-propyl alcohol
Reference state: $H=0, S=0$ at $77^{\circ} \mathrm{F}$., saturated liquid

Table II. Thermodynamic Properties of Superheated n-Propyl Alcohol

$\begin{aligned} & \text { Temp., } \\ & \circ \mathbf{F} . \end{aligned}$	Volume, Cu . Ft./Lb.	Enthalpy, B.t.u./Lb. 0 P.S.I.A.	Entropy, B.t.u. per Lb. ${ }^{\circ}$ R.	Fugacity, Ratio, f / P	$\begin{aligned} & \text { Temp., } \\ & \circ \text { F } . \end{aligned}$	Volume, Cu. Ft./Lb. 100	Enthalpy, B.t.u./Lb.	Entropy, B.t.u. per Lb. ${ }^{\circ}$ R. . ${ }^{\text {a }}$)	Fugacity Ratio, f / p
77	Undefined	337.7	0.509	1.000	340	1.243	436.3	1.042	0.8804
100		346.0	0.604	1.000	380	1.349	458.8	1.101	0.9008
140		361.3	0.732	1.000	420	1.439	481.5	1.155	0.9155
180		377.4	0.833	1.000	460	1.526	504.2	1.210	0.9274
220		394.4	0.918	1.000	500	1.610	527.5	1.252	0.9368
260		412.1	0.993	1.000	540	1.690	550.9	1.296	0.9440
300		430.6	1.058	1.000					
340		450.5	1.119	1.000	150 P.S.I.A. (345 ${ }^{\circ}$ F. ${ }^{\text {a }}$)				
380 420		469.9 490.6	1.174 1.226	1.000 1.000	360	0.803	438.4	1.051	0.8423
460		512.0	1.275	1.000	380	0.848	452.2	1.082	0.8561
500		534.1	1.321	1.000	420	0.928	476.3	1.138	0.8772
540		556.5	1.362	1.000	460	0.984	499.8	1.189	0.8957
10 P.S.I.A. (190 ${ }^{\circ} \mathrm{F}^{\circ}$)					500 540	1.044	524.0	1.236	${ }^{0.9098}$
220	11.414	392.5	0.915	0.9708	200 P.I.S.A. (374 ${ }^{\circ} \mathrm{F} .{ }^{\text {a }}$)				
260	11.803	410.6	0.990	0.9795					
300	13.349	429.4	1.056	0.9838	380	0.584	442.5	1.062	0.8124
340	14.094	449.2	1.117	0.9870	420	0.656	471.3	1.123	0.8431
380	14.837	468.6	1.172	0.9892	460	0.711	496.0	1.176	0.8662
420 460	15.565 16.294	489.5 511.2	${ }_{1}^{1.225}$	0.9908 0.9920	500 540	0.761 0.807	520.6 544.9	1.224 1.269	0.8843 0.8979
500	17.011	533.4	1.321	0.9927	540	0.807	544.9	1.269	0.8979
540	17.743	556.0	1.361	0.9934	250 P.S.I.A. (393 ${ }^{\circ} \mathrm{F} .{ }^{\text {a }}$)				
14.696 P.S.I.A. ($208{ }^{\circ} \mathrm{F} .{ }^{\text {a }}$)					400	0.452	446.7	1.076	0.7895
220	7.932	392.5	0.913	0.9526	420	0.493 0.546	463.8 496.5	1.109 1.164	${ }_{0}^{0.8239}$
260	8.201	409.7	0.988	0.9709	500	0.590	517.1	1.214	0.8602
300	9.016	429.1	1.054	0.9770	540	0.632	542.0	1.260	0.8773
340	9.532	448.7 468.4	1.116	${ }_{0}^{0.9812}$	300 P.S.I.A. ($410^{\circ} \mathrm{F} .{ }^{\circ}$)				
380 420	10.041 10.546	468.4 489.2	1.171 1.224	0.9843 0.9867					
460	11.047	510.8	1.273	0.9883	420	0.373	453.4	1.093	0.7725
500	11.545	533.0	1.319	0.9899	460	0.433	486.1	1.154	0.8094
540	12.043	555.7	1.359	0.9913	500 540	0.475 0.510	513.5 539.2	1.205 1.252	0.8363 0.8564
25 P.S.I.A. (233 ${ }^{\circ}$ F. ${ }^{\text {a }}$)					400 P.S.I.A. (439 ${ }^{\circ} \mathrm{F} .{ }^{\text {a }}$)				
240 260	4.712 4.883	395.6 407.5	0.934 0.971	${ }_{0}^{0.9451}$	460	0.284	471.3	1.131	0.7283
300	5.373	428.4	1.037	0.9610	${ }^{480}$	0.308	489.4	1.161	0.7524
340	5.530	447.5	1.098	${ }_{0}^{0.9681}$	500 540	0.329 0.363	504.8 533.0	1.188 1.238	0.7898 0.8170
380	${ }_{6}^{5.837}$	467.2 488.3	${ }_{1}^{1.155}$	0.9734 0.9774	540	0.363	533.0	1.238	0.8170
420	6.141 6.442	488.3 510.0	1.217 1.256	0.9774 0.9804	500 P.S.I.A. ($459^{\circ} \mathrm{F} .{ }^{\text {. }}$)				
460 500	6.442 6.739	510.0 532.4	1.256 1.302	0.9884 0.988					
540	7.032	554.9	1.346	0.9849	480 500	${ }_{0}^{0.236}$	492.8	1.171	0.7441
50 P.S.I.A. ($273{ }^{\circ} \mathrm{F}^{\circ}{ }^{\circ}$)					520	0.254 0.266	509.1 525.7	1.198 1.224	0.7633 0.7785
280	2.377	410.0	0.973	0.9167	540	0.266	525.7	1.224	
300	2.441	422.1	1.009	0.9244	600 P.S.I.A. (479 ${ }^{\circ} \mathrm{F}^{\text {a }}$)				
340	2.677	444.2	1.072	0.9375	500	0.167	472.9	1.152	0.6966
380	2.842	464.5	1.129	0.9476	520	0.190	497.3	1.182	0.7211
420	${ }^{3.005}$	486.2	1.181	0.9555 0.9618	540	0.205	515.9	1.209	0.7402
460	3.160	505.7	1.231	0.9618					
460	3.160	505.7	1.231	0.9618	700 P.S.I.A. ($501{ }^{\circ} \mathrm{F} .{ }^{\circ}$)				
500	${ }_{3.315}$	530.8	1.277	0.9667	520	0.136	480.5	1.161	0.6774
540	3.464	553.8	1.322	0.9706	540	0.152	505.3	1.196	0.7025
${ }^{\text {a }}$ Saturated temperature.									

ture-enthalpy, and temperature-entropy diagrams. Tabulated data are given in Tables I and II, and the data are plotted on a pressure-enthalpy diagram (Figure 1).

The calculated data were checked for internal consistency with the combined first and second law of thermodynamics

$$
\begin{equation*}
d H=T d S+V d P \tag{10}
\end{equation*}
$$

Equation 10 was integrated graphically at both constant pressure and constant entropy and compared with the enthalpy from the calculated data. These checks showed that the data presented are internally consistent.
The accuracy of the data cannot be checked by direct comparison, because the necessary data are lacking. The vapor phase enthalpy values are probably accurate to
± 1.00 B.t.u. per pound and the entropy values to ± 0.001 B.t.u. per pound ${ }^{\circ} R$.

ACKNOWLEDGMENT

The authors acknowledge financial assistance from the Chemical Engineering Department, University of Missouri, during part of this work.

NOMENCLATURE

$B, C, D, E=$ constants in Equation 15
$. C_{p}=$ constant pressure heat capacity
$C_{p}=$ pure component fugacity

H	$=$ enthalpy
P	$=$ pressure
R	$=$ universal gas constant, 1.9872 B.t.u. $/$ lb.-mole $\circ R$.
S	$=$ entropy
T	$=$ temperature
V	$=$ volume
$\alpha=$ residual volume	

Superscripts

- = zero pressure, ideal gas state
* = unit fugacity, ideal gas state

Subseripts

$c=$ critical constants
$L=$ liquid phase
$v=$ vapor phase

LITERATURE CITED

(1) Bennewitz, K., Rossner, W., Z. physik. Chem. B39, 126 (1938).
(2) Foz Gazulla, O.R., Morcillo, J., Mendez, A., Anales real. soc. españ. fis. y quim. (Madrid) 50B, 17 (1954).
(3) International Critical Tables, Vol. III, p. 218, Vol. V, p. 137, McGraw-Hill, New York, 1928.
(4) Kobe, K.A., Harrison, R.H., Pennington, R.E., Petrol. Refiner 30, No. 8, 119 (1951).
(5) Lyderson, A.L., Greenkorn, A.R., Hougen, O.A., "Gereralized Properties of Pure Fluids," Eng. Expt. Station, Univ. Wisconsin, Rept. 4 (October 1955).
(6) Ramsey, William, Young, Sidney, Phil. Trans. Roy. Soc. (London) 180A, 137 (1889).
(7) Scarborough, J.B., "Numerical Mathematical Analysis," 4th ed., p. 128, Johns Hopkins Press, Baltimore, Md., 1958.
(8) Sinke, G.C., De Vries, Thomas, J. Am. Chem. Soc. 75, 1815 (1953).
(9) Stull, D.R., Ind. Eng. Chem. 39, 517 (1947).
(10) Wylie, C.R., Jr., "Advanced Engineering Mathematics," p. 512, McGraw-Hill, New York, 1951.
(11) Young, Sidney, Z. physik. Chem. 70, 620 (1910).

Received for review June 29, 1960. Accepted September 12, 1960.

CORRECTION

In "Prediction of Equilibrium Ratios from Nomograms of Improved Accuracy" [B.C. Cajander, H.G. Hipkin, and J.M. Lenoir, J. Chem. Eng. Data 5, 251 (1960)] the figures entitled "Equilibrium ratios of aliphatic hydrocarbons at 10 p.s.i.a." in the right column on page 254 are incorrect.

The line labeled butadiene-1,2 is low by about 30%. The line labeled 2 or 3 -methylbutene- 1 is correct for 3 -methyl-butene-1, but 2 -methylbutene-1 should lie between pentene1 and isoprene. The corrected figures appear as shown below.

[^0]: ${ }^{1}$ Present address, Columbia Southern Chemical Co., Barberton, Ohio.
 ${ }^{2}$ Present address, U.S.S. Glennon (DD840), F.P.O., New York, N. Y.

