Metal in F	eed, G./L.	Wt. Ratio.	Co after Extr	action, G./L.	Distribution	Error,
Ni	Co	Co to Ni	Raffinate	Extract	Coeff.	%
30.871	3.024	0.0979	1.514	1.509	1.0	3.2
30.871	1.515	0.0490	0.756	0.756	1.0	5.3
30.871	0.760	0.0246	0.384	0.376	1.0	10.1
30.871	0.377	0.0122	0.177	0.200	1.1	8.6

Table II. Cobalt Extraction Is Unchanged in Presence of Nickel

aqueous extracts or raffinates by precipitation as sulfides. Another approach to metal recovery is electrodeposition.

The calcium chloride solution remaining after deposition of nickel from aqueous raffinates could be recycled to effect necessary process economy.

CONCLUSIONS

Furfural is an effective selective solvent for the separation of cobalt from nickel when present as chlorides in aqueous solutions.

Calcium chloride is an excellent complexing additive. High purity nickel and cobalt may be obtained via a process based on this extraction system.

The general utility of furfural as an extraction solvent for metal separations has been further substantiated.

LITERATURE CITED

- Brown, L.H., Cole, F.K. (to The Quaker Oats Co.), U.S. (1)Patent 2,943,912 (July 5, 1960).
- Cole, F.K., Brown, L.H., Ind. Eng. Chem. 51, 58 (1959). Garwin, L., Hixson, A.N., Ibid., 41, 2298, 2303 (1949). Kylander, R.L., Garwin, L., Chem. Eng. Progr. 47, 186 (1951). (2)
- (3)
- (4)
- Lutjen, G.P., Eng. Mining J. 155 (6), 81 (1954). (5)
- Nicholson, I.W., Brooks, P.T., Clemmer, J.B., Rocky (6)Mountain Minerals Conf., A.I.M.E., Salt Lake City, Utah, Sept. 17, 1958.
- (7)Rigamonti, R., Spaccamela-Marchetti, E., Chim. e ind. (Milan) 36, 91 (1954).
- Sharp, R.A., Wilkinson, G., J. Am. Chem. Soc. 77, 6519 (1955). (8)

RECEIVED for review September 19, 1960. Accepted December 30, 1960.

Tables of Ozone Properties

A. G. STRENG

The Research Institute of Temple University, Philadelphia 44, Pa.

OZONE is a highly active, allotropic form of oxygen. It has been known since 1785, the year in which van Marum observed the formation of this gas in an electric spark discharge in oxygen. Schoenbein recognized ozone in 1840 as a new substance. Soret showed in 1866 that the chemical composition of ozone is that of triatomic oxygen.

At ordinary temperatures, ozone is a gas, is light blue in color, and has a characteristic pungent odor from which its name was derived from the Greek word ozein, to smell. The odor permits recognition of ozone in concentrations down to about 0.1 p.p.m. Gaseous ozone is a highly active, irritating, oxidizing substance. It is characterized by its strong oxidizing power and by the tendency to revert to molecular oxygen according to the reaction

 $O_3 \rightarrow \frac{3}{2} O_2$

The rate of reaction depends upon the temperature, pressure, and concentration of the ozone. The reaction proceeds slowly at ordinary temperatures, but fairly quickly, even to the velocity of thermal explosion, at elevated temperatures. In addition, the reaction is catalyzed by many sensitizers. Low temperatures contribute to the conservation of ozone.

In the liquid phase, ozone has an indigo-blue color. At temperatures around 90° K. (-183° C.), liquid ozone may be kept without noticeable decomposition for long periods. Fast warming to the boiling point or rapid cooling causes explosions. The liquid ozone must be evaporated or frozen, therefore, very slowly with appropriate precautions. Liquid ozone can be supercooled readily.

Solid ozone has a deep blue-violet color. A layer 0.2 to 0.5 mm. is transparent, but solid ozone in a layer 1 mm. thick is almost opaque. Solid ozone (at 77.35° K.) was compressed to 22.5 atm. without any difficulty. Slight impact and slight friction at that temperature did not cause an explosion.

Gaseous, liquid, or solid ozone explodes easily if exposed to heat, spark, flame, or shock. When working with highly concentrated ozone, improper handling may cause a violent explosion. A knowledge of the properties and safety precautions is very important. Impurities sensitize the ozone vigorously.

In recent years, ozone has attracted attention as a highenergy chemical with a potential use in powerful propellant and explosive systems. Being an endothermic compound and a highly active oxidizer, ozone can burn and detonate by itself and in combination with various fuels. Ozone also represents the simplest combustible and explosive system. When combined with fuels, ozone produces systems with much higher energy content than does oxygen.

Much work has been devoted to the investigation of properties of ozone. Two surveys of ozone literature have been made (10, 36), but since then much more has been published. A critical review and compilation of ozone data have become a necessity. Tables of selected data on ozone properties are presented in Tables I, II, and III.

ACKNOWLEDGMENT

The author thanks A.V. Grosse for helpful suggestions and L.V. Streng for help in the systematization of this material.

LITERATURE CITED

- (1)Benson, S.W., Axworthy, A.E., Jr., J. Chem. Phys. 26, 1718 (1957)
- Birtsall, C.M., Jenkins, A.C., Di Paolo, S.F., Ibid., 23, 441 (2)(1955)

147.1 cc./mole

Brabets, R.I., McDonough, J.M., Ibid., 27, 880 (1957). (3)

- Brabets, R.I., Waterman, T.E., Ibid., 28, 1212 (1958). (4)
- (5)Brinner, E., Porretted, E., Helv. Chim. Acta 22, 397 (1939). (6)Brown, C., Berger, A.W., Hersh, C.K., J. Chem. Phys. 23, 1340 (1955).
- Cook, G.A., Spading, E., Kiffer, A.D., Clumpp, C.V., Ind. (7)Eng. Chem. 48, 736 (1956).
- Danti, A., Lord, R.C., J. Chem. Phys. 30, 1310 (1959). Gill, E.K., Laidler, K.J., Trans. Faraday Soc. 55, 713 (1959). (8)
- (9)
- Grosse, A.V., Streng, A.G., "Study of Ultra High Tempera-tures," Tech. Note 4, Research Institute, Temple University, (10)Philadelphia, Pa., Aug. 1, 1957; U.S. Dept. of Commerce, Office of Technical Services, Washington, D. C., PB 131732.
- Grosse, A.V., Streng, A.G., U.S. Patent 2,298,529 (March 15, (11)1960).
- Guenther, P., Wassmuth, E., Schryver, L.A., Z. physik. (12)Chem. A158, 297 (1932).
- (13)Harper, S.A., Gordon, W.E., Advances in Chem. Ser. No. 21. 28 (1959).
- Hersh, C.K., Berger, A.W., Brown, J.R.C., *Ibid.*, p. 22. *Chem. Ser.* 21, ACS, Washington, D. C., 1959. (14)
- (15)Hersh, C.K., Brabets, R.I., Platz, J.M., Swehla, R.J., Kirsh, D.P., Am. Rocket Soc. J. 30, 264 (1960).
- (16)Hoslowski, S.A., Ph.D. dissertation, University of Missouri, 1956.
- Hughes, R.H., J. Chem. Phys. 24, 131 (1956). (17)
- Jenkins, A.C., Birdsall, C.M., Ibid., 20, 1158 (1952). (18)
- (19)Jenkins, A.C., Di Paolo, F.S., Birdsall, C.M., Ibid., 23, 2049 (1955).
- (20)Jenkins, A.C., Di Paolo, F.S., Ibid., 25, 296 (1956)
- (21) Klein, M.J., Klevelent, F.F., Meister, A.G., Ibid., 19, 1068 (1951)
- (22)Miller, R.O., J. Phys. Chem. 63, 1054-7 (1959).

(Continued on page 436)

		Table I.	Pure Ozone				
Molecular weight 48.0		Reference Specific volume of liquid			V = 0.551	Reference (3)	
Molecular structure	Triangular, apex angle 116° 49′	(9, 17)	77.4°-174.2° K. $(-195.8°-$ + (6.25×10^{-4}) T -99.0° C.), cc./g. + (3.35×10^{-1})		$ \begin{array}{r} ^{\circ -} &+ (6.25 \times 10^{-4}) T \\ &+ (3.35 \times 10^{-6}) T \end{array} $	12	
Molecular constants	Interatomic distance 1.278 ×10 ⁻⁸ cm.; collision diam- eter 3.35×10^{-8} cm.; with the second	(8, 9, 37, 38)	Density Gaseous, at NTP Liquid		2.1415 g./liter	(3, 14, 20)	
	vibration frequency 3.164 $\times 10^{-13}$ sec. ⁻¹ ; dipole moment 0.53 Debye unit; asymmetry parameter, $\epsilon = 4.031 \times 10^{-3}$; centrifu- gal distortion constant, $D_{\kappa} = 1.96 \times 10^{-4}$ cm. ⁻¹		° K. 77.4 77.6 77.8 85.2 87.6 90.2 90.2	°C. -195.8 -195.6 -195.4 -188.0 -185.6 -183.0 -183.0	$\begin{array}{rrrr} 1.613 \; (\text{supercooled}) \\ 1.6130 \; \pm \; 0.0004 \\ 1.614 \; \pm \; 0.004 \\ 1.595 \; \pm \; 0.003 \\ 1.5839 \; \pm \; 0.0011 \\ 1.571 \; \pm \; 0.003 \\ 1.574 \end{array}$		
Melting point	$\begin{array}{c} 80.7\pm0.4^\circ\mathrm{K}.\\ (-192.5\pm0.4^\circ\mathrm{C}.) \end{array}$	(20)	90.3 103.2 123.2	-182.9 -170.0 -150.0	$\begin{array}{rrrr} 1.5727 \ \pm \ 0.0004 \\ 1.536 \\ 1.473 \\ \end{array}$		
Boiling point	$\begin{array}{c} 161.3 \pm 0.3^{\circ} \text{ K.} \\ (-111.9 \pm 0.3^{\circ} \text{ C.}) \end{array}$	(18)	153.2 161 Solid	-120.0 -112	$\begin{array}{rrrr} 1.376 \\ 1.354 & \pm & 0.001 \end{array}$	(31)	
Vapor pressure Temp. range 90.2- 243.2° K., (-183°- 20° C) mm Hg	Log P = 8.25313 - 814.941587/T - 0.001966943 T	(18)	° K. 77.4 Volume expans	° C. –195.8 ion on	1.728 ± 0.002	(02)	
At 80.2° K., –193.0° C.	- 0.001900943 1		melting		+7.1%	(31)	
(triple point of ozone) At 90.2° K., -183.0° C.	0.00859 mm. Hg		Viscosity Gaseous			(10, 14, 20)	
(b.p. O_2) At 195° K $-78.2°$ C	0.10 mm. Hg		<u>° K.</u>	° C.	Poise		
dry ice temperature	6.18 atm. (90.8 p.s.i.)		298	25	133×10^{-6} 127 × 10^{-6}		
Critical temperature	261.1° K. (-12.1° C.)	(18)	195	-78	107×10^{-6}		
		(- 0)	Li	quid	$\eta \simeq \frac{1}{1549 - 945 d}$ poise	e	
Critical pressure, derived from critical temperatu	re 54.6 atm.	(18)	77.6	-195.6	$\begin{array}{r} 0.0414 \pm 0.0005 \\ \text{(supercooled)} \end{array}$		
			90.2	-183.0	0.0156 ± 0.0002		

-111.9

0.00272

161.3

(36)

Critical volume

Table I. Pure Ozone (Continued)

Surface ter	nsion			Reference
At				
° K.	° C.	Dy	nes/Cm.	
77.2	-196.0	43.8	\pm 0.1	(14)
90.2	-183.0	38.	4 ± 0.7	(14)
90.5	-182.7	38.	1 ± 0.2	(20)
Heat of to	rmation			
Gaseou	s, ai 1/2 100 C	Ka	nl /Molo	
291°	$\mathbf{K}_{\cdot,\cdot}$ 10° U.	24.00	0 + 0.190	(19)
Cons	tant volume	22 02	0 ± 0.180	(12)
Liquid	at pressure	00.02	5 ± 0.100	
00 10	at • K _183.0• C	29.83	+ 0.20	(31)
Solid a	+	20.00	T 0.20	(01)
80 7º	K -192.5°C	29.3		(31)
00.1	11., 102.0 0.			
Heat of va	porization, at b.	p. 3.63	0	(15)
	• (+-)	0.5		
Heat of tu	sion (esta.)	0.5		
Heat cond	uctivity			
11041 00114	Gaseous			
		0.1.40	$(\mathbf{G}_{\mathbf{G}}, \mathbf{O}_{\mathbf{G}})$	
° K.	° C.	Cal./(S	ec.)(Sq. Cm.)	
	(calcd.)	(° (U./Um.)	
298	25	3.3	$\times 10^{-3}$	
	Liquid			
° K.	° C.			(39)
145.2	-128.0	5.5	$2 \times 10^{-4} \ (\pm 5\%)$. /
108.2	-165.0	5.4	2×10^{-4}	
90.2	-183.0	5.3	1×10^{-4}	
77.4	-195.8	5.2	1×10^{-4}	
		C I		(\mathbf{A})
Heat capa	icity	Ca	l./G. °C.	(4)
Liquid,	temp. range			
90°-1	100° K.,	C = 0.495	(0.0014(T - 00))	
(-103 • V	° to –123° C.)	$C_p = 0.420$	+ 0.0014(1 - 30)	
οΛ.	-183	0.4	25	
150	-103	0.4	09	
100	120	0.0		
				(0.01)
Thermody	namic quantities	ot ozone		(2, 21)
	Heat			
	A 1		Free Energy,	Heat
	Content		Function	~ .
	Function,	Enthropy,	T unction,	Capacity,
° K.	Function, $(H^\circ - H_0^\circ/T)$	Enthropy, S°	$-(F-H_0^\circ/T)$	Capacity, C_{P}^{0}
° K.	Content Function, $(H^\circ - H_0^\circ / T)$	Enthropy, S ^o	$-(F - H_0^\circ/T)$	Capacity, C_{p}^{0}
° K.	Content Function, $(H^\circ - H_0^\circ/T)$ As a	Enthropy, S ⁰ In Ideal Gas ir	$-(F - H_0^\circ/T)$ n Cal./° Mole	Capacity, C_{p}^{0}
° K. At 1 atr	Content Function, $(H^{\circ} - H_0^{\circ}/T)$ As a n.	Enthropy, S ⁰ In Ideal Gas in	$-(F - H_0^{\circ}/T)$ n Cal./° Mole	Capacity, C_{p}^{0}
° K. At 1 atr 150 200	Content Function, $(H^\circ - H_0^\circ/T)$ As a n. 7.961 8.022	Enthropy, S ⁰ In Ideal Gas ir 51.171 53.519	$-(F - H_0^{\circ}/T)$ n Cal./° Mole 43.208 45.505	Capacity, C_p^0 8.059 8.374
° K. At 1 atr 150 200 250	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138	Enthropy, S ⁰ In Ideal Gas ir 51.171 53.519 55.444	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole 43.208 45.505 47.308	Capacity, C_{p}° 8.059 8.374 8.847
° K. At 1 atr 150 200 250 298.15	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297	Enthropy, S ^o In Ideal Gas ir 51.171 53.519 55.444 57.046	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole 43.208 45.505 47.308 48.749	Capacity, C ^o 8.059 8.374 8.847 9.367
° K. At 1 atr 150 200 250 298.15 300	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.046 57.105	$-(F - H_{0^{\circ}}/T)$ $h \text{ Cal.}/^{\circ} \text{ Mole}$ 43.208 45.505 47.308 48.749 48.798	Capacity, C ^o 8.059 8.374 8.847 9.367 9.387
° K. At 1 atr 150 200 250 298.15 300 350	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 9.700	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590	$-(F - H_{0^{\circ}}/T)$ $n \text{ Cal.}/^{\circ} \text{ Mole}$ 43.208 45.505 47.308 48.749 48.798 50.095	Capacity, C ^o 8.059 8.374 8.847 9.367 9.387 9.387 9.929
° K. At 1 atr 150 200 250 298.15 300 350 400	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 c1 210	$-(F - H_{0^{\circ}}/T)$ $a \text{ Cal.}/^{\circ} \text{ Mole}$ 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282	Capacity, C ^o 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873
° K. At 1 atr 150 200 298.15 300 350 400 450 500	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231	Capacity, C_p^{0} 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11 258
° K. At 1 atr 150 200 250 298.15 300 350 400 450 550	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole 43.208 45.505 47.308 48.749 48.749 48.749 48.798 50.095 51.245 52.282 53.231 54.111	Capacity, C_p^{0} 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584
° K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Beal Gas in	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal. (° Mala	Capacity, C_p° 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in	$-(F - H_0^{\circ}/T)$ a Cal./° Mole 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole	Capacity, C ^o 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 At 1 atr 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m.	Enthropy, S ^o In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in	$-(F - H_0^{\circ}/T)$ a Cal./° Mole 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole	Capacity, C_p° 8.059 8.374 8.847 9.367 9.387 9.387 9.929 10.432 10.873 11.258 11.584 (2)
 K. At 1 atr 150 200 250 298.15 300 400 450 550 At 1 atr 200 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951	Enthropy, S ^o in Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474	$-(F - H_0^{\circ}/T)$ a Cal./° Mole 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole 45.531	Capacity, C_p° 8.059 8.374 8.847 9.367 9.387 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497
 K. At 1 atr 150 200 250 298.15 300 400 450 500 550 At 1 atr 200 298.15 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 0.121	Enthropy, S ^o in Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole $\frac{43.208}{45.505}$ $\frac{45.505}{47.308}$ $\frac{48.749}{48.798}$ $\frac{48.798}{50.095}$ $\frac{51.245}{52.282}$ $\frac{53.231}{54.111}$ Cal./° Mole $\frac{45.531}{48.757}$	Capacity, C_p° 8.059 8.374 8.847 9.367 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406
 K. At 1 atr 150 200 250 298.15 300 400 450 500 550 At 1 atr 200 298.15 350 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As n. 7.951 8.272 8.481	Enthropy, S ^o in Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole $\frac{43.208}{45.505}$ $\frac{45.505}{47.308}$ $\frac{48.749}{48.798}$ $\frac{48.798}{50.095}$ $\frac{51.245}{52.282}$ $\frac{53.231}{54.111}$ Cal./° Mole $\frac{45.531}{48.757}$ $\frac{48.757}{50.100}$	Capacity, C_p° 8.059 8.374 8.847 9.367 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 At 1 atr 200 298.15 350 At 5 atr 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 n.	Enthropy, S° n Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579	$-(F - H_{0^{\circ}}/T)$ a Cal./° Mole $\frac{43.208}{45.505}$ $\frac{45.505}{47.308}$ $\frac{48.749}{48.798}$ $\frac{48.798}{50.095}$ $\frac{51.245}{52.282}$ $\frac{53.231}{54.111}$ Cal./° Mole $\frac{45.531}{48.757}$ $\frac{48.757}{50.100}$	Capacity, C_p^{0} 8.059 8.374 8.847 9.367 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 At 1 atr 200 298.15 350 At 5 atr 200 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.301 8.497 8.301 8.497 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665	Enthropy, S ^o in Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094	$-(F - H_{0^{\circ}}/T)$ $-(F - H_{0^{\circ}}/T)$ $a Cal./^{\circ} Mole$ 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./^{\circ} Mole 45.531 48.757 50.100 42.436	Capacity, C_p° 8.059 8.374 8.847 9.367 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987
 K. At 1 atr 150 200 250 298.15 300 450 500 550 At 1 atr 200 298.15 350 At 5 atr 200 298.15 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173	Enthropy, S° n Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765	$-(F - H_{0^{\circ}}/T)$ $-(F - H_{0^{\circ}}/T)$ $a Cal./^{\circ} Mole$ 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./^{\circ} Mole 45.531 48.757 50.100 42.436 45.593	Capacity, C_p^0 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564
 K. At 1 atr 150 200 250 298.15 300 400 450 500 550 At 1 atr 200 298.15 350 At 5 atr 200 298.15 350 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415	Enthropy, S° n Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335	$-(F - H_{0^{\circ}}/T)$ n Cal./° Mole $\frac{43.208}{45.505}$ 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole $\frac{45.531}{48.757}$ 50.100 $\frac{42.436}{45.593}$	Capacity, C_p^{0} 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059
 K. At 1 atr 150 200 250 298.15 300 350 400 450 550 At 1 atr 200 298.15 350 At 5 atr 200 298.15 350 At 10 a 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415 tm.	Enthropy, S° n Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335	$-(F - H_{0^{\circ}}/T)$ n Cal./° Mole $\frac{43.208}{45.505}$ 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole $\frac{45.531}{48.757}$ 50.100 $\frac{42.436}{45.593}$ 46.922	Capacity, C_p^{0} 8.059 8.374 8.847 9.367 9.387 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 At 1 atr 200 298.15 350 At 10 at 298.15 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415 ttm. 8.048	Enthropy, S° n Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335 52.305	$-(F - H_{0^{\circ}}/T)$ $-(F - H_{0^{\circ}}/T)$ $a Cal./^{\circ} Mole$ 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./^{\circ} Mole 45.531 48.757 50.100 42.436 45.593 46.922 44.257	Capacity, C_p^{0} 8.059 8.374 8.847 9.367 9.387 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059 9.761
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 At 1 atr 200 298.15 350 At 5 atr 200 298.15 350 At 10 at 298.15 350 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415 tm. 8.048 8.332	Enthropy, S° n Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335 52.305 53.901	$-(F - H_{0^{\circ}}/T)$ n Cal./° Mole $\frac{43.208}{45.505}$ 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole $\frac{45.531}{48.757}$ 50.100 $\frac{42.436}{45.593}$ 46.922 $\frac{44.257}{45.570}$	Capacity, C_p° 8.059 8.374 8.847 9.367 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059 9.761 10.190
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 At 1 atr 200 298.15 350 At 5 atr 200 298.15 350 At 10 at 298.15 350 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415 tm. 8.048 8.332	Enthropy, S° n Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335 52.305 53.901	$-(F - H_{0^{\circ}}/T)$ n Cal./° Mole 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole 45.531 48.757 50.100 42.436 45.593 46.922 44.257 45.570	Capacity, C_p° 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059 9.761 10.190
 K. At 1 atr 150 200 250 298.15 300 350 400 450 550 At 1 atr 200 298.15 350 At 5 atr 208.15 350 At 10 at 298.15 350 At 10 at 298.15 350 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415 tm. 8.048 8.332 ts of thermal exe	Enthropy, S° In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335 52.305 53.901 Sension	$-(F - H_{0^{\circ}}/T)$ n Cal./° Mole 43.208 45.505 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole 45.531 48.757 50.100 42.436 45.593 46.922 44.257 45.570	Capacity, C_p° 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059 9.761 10.190
 K. At 1 atr 150 200 250 298.15 300 350 400 450 500 550 At 1 atr 200 298.15 350 At 5 atr 200 298.15 350 At 10 at 298.15 350 At 10 at 298.15 350 S0 At 10 at 298.15 350 	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415 tm. 8.048 8.332 ts of thermal exp 7°-175° K.,	Enthropy, S° In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335 52.305 53.901 Demsion $\alpha = 0$	$-(F - H_{0^{\circ}}/T)$ n Cal./° Mole $\frac{43,208}{45,505}$ 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole $\frac{45.531}{48.757}$ 50.100 $\frac{42.436}{45.593}$ 46.922 $\frac{44.257}{45.570}$	Capacity, C_p° 8.059 8.374 8.847 9.367 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059 9.761 10.190 (3)
° K. At 1 atr 150 200 250 298.15 300 350 400 450 550 At 1 atr 200 298.15 350 At 5 atr 200 298.15 350 At 5 atr 200 298.15 350 At 10 at 298.15 350 Coefficien range 7 (-196°	Content Function, $(H^{\circ} - H_{0}^{\circ}/T)$ As a n. 7.961 8.022 8.138 8.297 8.301 8.497 8.708 8.926 9.139 9.347 As m. 7.951 8.272 8.481 m. 7.665 8.173 8.415 tm. 8.048 8.332 ts of thermal exp 7°-175° K., to -98° C.)	Enthropy, S° In Ideal Gas in 51.171 53.519 55.444 57.046 57.105 58.590 59.949 61.219 62.375 63.460 a Real Gas in 53.474 57.030 58.579 50.094 53.765 55.335 52.305 53.901 Definition $\alpha = 0$ b = 6	$-(F - H_{0^{\circ}}/T)$ n Cal./° Mole $\frac{43,208}{45,505}$ 47.308 48.749 48.798 50.095 51.245 52.282 53.231 54.111 Cal./° Mole $\frac{45.531}{48.757}$ 50.100 $\frac{42.436}{45.593}$ 46.922 $\frac{44.257}{45.570}$ 0.551 6.25 × 10 ⁻⁴	Capacity, C_p° 8.059 8.374 8.847 9.367 9.387 9.387 9.929 10.432 10.873 11.258 11.584 (2) 8.497 9.406 9.955 8.987 9.564 10.059 9.761 10.190 (3)

	initia eta j				Reference
Activation of ther	n energy mal decon	nosition			(1)
of gas	seous ozo	ne. low			
pressu	re	,			
• M +	$O_3 \rightarrow M$	$+ O_2 + 0$			
_ (fe	or $M = O_3$	24,0	00 cal.	0.5 1.012	
Rate	e of energi:	zation K ₁ = ex lit	$= 4.61 \pm 0.00$ ter mole ⁻¹ sec	RT^{-1} ,	
Heat cap	acity		Cal./G. °	C.	(4)
Liquid 90°–	, temp. ra: 150° K.,	nge			
(-183 ⁻	° to -123°	C.) $C_p =$	= 0.425 + 0.00	014(T-90)	
° K.		0.	0.405		
90 150		183	0.420		
100		20	0.000		
Minimum	ionition o	nerav			(35)
1 atm	298° K	25° C. 7 x	10 ⁻⁵ mioules		(00)
i um	., 200 11.,		$(16 \times 10^{-9} c)$	al.)	
Informe	ability limi	**			
Gaseo	us. 1 atm.	. 298° K			
init	iation by s	shock			
way	/e	9.2	mole $\% O_3$ in	oxygen	(13, 16)
Liqui	d, 90° K.,	–183° C.,	0.0		
init spa	iation by	electrical 1	in liquid O	3	(7)
		II 10.	• -		(1)
Inermai	explosion Ha (max	and min cal	cd)		(1)
	16. (max.	V V	essel, Liters		
° K.	° C.	0.5	1	2	
343	70	535-1020	424-810	336-640	
353	80	348-656	275-525	218-416	
363 372	90 100	222-424 149-285	174-332 118-225	138-264 94-180	
383	110	101-193	80-153	64-122	

Burning velocity, (calcd.)								
-	-		Pressure,	Atm.				
° K.	° C.	1	2	5	10	100		
		Cn	n./Sec.					
	G	aseous (Ref	erence 23, 2	8, 34)				
298 273	$ \begin{array}{ccc} 25 & 4 \\ 0 & 4 \\ \hline 4 \\ 2 & 4 \end{array} $	72 ± 12^{a}	•••	4 88 	50 4	529 		
233 195 161	-40 -78 2 -112 2	325 70 ± 7° 205	282	295	304	317		
		Liquid (F	Reference 24)				
		0.361 (161° K., -112° C. initial temp.)	0.738 (172.5° K. –100.7° C.	, ,)	3.84 (206° K., -67° C.)	•••		
		Solid (Ref	erence 25)					
70 -20 63 -2 20 -2 Flame temp	03 0.30 10 0.29 53 0.27 perature (c:	20112 (2001 14 14 14 alcd.)						
	Atm.	° K.	°C.	o	К.			
	G	aseous (Refe	erence 23, 28	3, 34)				
	$\begin{smallmatrix}1\\2\\5\\10\end{smallmatrix}$	298 298 298 298	25 25 25 25 25	2 2 2 2	677 716 761 789			
	1 2 5 10	195 195 195 195	-78 -78 -78 -78	2 2 2 2 2	648 683 723 748			

Table I. Pure Ozone (Continued)

Flame temperature (continued) Reference					
	Liquid	(Reference 24)			
1 2 10	161 172.5 206	$-112 \\ -100.7 \\ -67$	2400 2414 2436		
	Solid (Reference 25)			
1 1 1	20 63 70	-253 -210 -203	2287 2339 2346		
Flame pressure (calcd.) 1 atm., 298° K.	, 25° C.,	,4.1 mm. Hg		(34)	
Quenching diameter in cylinder 1 atm., 298° K	(11, 35)				
Quenching diameter vs. in cylinder at 298° K $\text{Log } d_c = 1.953 - 1$	pressure ., 25° C. .111 Log	; <i>P</i> ; <i>d</i> , in microns;	P in Atn	n. (35)	
Quenching diameter vs. in cylinder at 1 atm. $d_c = 347.5 - 0.864$	temper $T; d_c $ in :	ature, microns; <i>T</i> in ° K		(35)	
Critical boundary velocity gradient for flash back, at 1 atm., 299° K 25° C	1	$q_{\rm c} = 2.0 \times 10^5$ eec	1	(25)	
Minimum gas flow or flo at 1 atm., 298° K., 28	ish back 5° C.	flow	•	(00)	
Burner Tube, Internal Diameter, C 0.065 0.1 0.2 0.3 0.6 0.8 1.0	m.	Min. Flow, Cc./Sec. 7 29 232 725 6090 14500 29000		(35)	
2.0 Dielectric constant, at 1 ° K. 90 - 103 - 118 - 147 - 162 - 175	kilocycle - C. - 183 - 170 - 155 - 126 - 111 - 98	232000 e/sec. 4.75 4.33 3.85 3.33 3.01 2.91		(36)	
185 ^a Experimental.	-88	2.78			

Detonation	velocity			Reference
Gaseous 298° F	5, 1 atm., K., 25° C.	1863	\pm 20 meters/sec.	(32)
Liquid 96° K.	., −177° C.	5730	\pm 460 meters/sec.	(22)
Detonation	temperatu	re (calcd.)		
Gaseous 298° F	, 1 atm., K., 25° C.		3340° K.	(32)
Liquid, 90° K., -	-183° C.		3140° K.	
Detonation	pressure			(32)
Gaseous 1 atm.	., 298° K.,∶	25° C.	30 atm.	()
Liquid 90° K.	, −183° C.		$4 imes 10^4$ atm.	
Magnetic su	usceptibility	,		(36)
G ase ous Liquid o	ozone zone	0.002 0.150	2 × 10 ⁻⁶ cgs units 0 × 10 ⁻⁶ cgs units	
Molar exti Gas at 29	nction coe 95° K	fficients		
GUSUTE	3360	cm. $^{-1}$ mole $^{-1}$ l	it. at 252 mµ (ultrav	iolet)
	1.32	$cm.^{-1}mole^{-1}li$	t. at 605 m μ (visible)
Liquid a	t 77° K.	cm. mole	lit. at 9.49μ (initated	1)
	2.00	$cm.^{-1}mole^{-1}l$	it. at $600m\mu$, dissol	ved in liquid
	oxyg	en		-
	3.10	cm. mole li Freon 12 + 77	t. at 600mµ, dissolv vol. % Freon 13 mix	red in 23 vol. ture.
Solubility in	water			
]	Bunsen Coefficient,	
• K	۰C	G /I iter	Liter Gas in	
273	0.	1 19	1 Litter water	(5)
283	10	0.875	0.408	(\mathbf{J})
293	20	0.688	0.321	
303	30	0.563	0.258	
313	40	0.450	0.210	
323 333	60	0.309	0.172	
بالمد أم دمما	ition			
in water	at 291° K	18º C. 3	04 cal/mole	(5)
III WALCE	at 201 IX.,	10 0. 0	1017 val./ 111012	(0)

Table II. Mixtures of Ozone with Oxygen

Consolute	temp.				Reference	Phase boundaries,			Reference
	93.	$3 \pm 0.5^{\circ}$ K.,	-179.9 \pm	0.5° C.	(19, 26)	mole $\%$ liquid O_3	In Upper Phase	In Lower Phase	
Ozone co	ncentration i	n liquid phas	es (referen Driginal	ce 10)		90.0° K., -183.2° C.	17.6	67.2	(6, 19)
		Mix	ture	In Upper Phase	In Lower Phase	77.5° K ., –195.7° C.	6.9	84.3	
۰K.	° C.	Mole %	Wt. %	Wt. %	$W_{t_1} \%$ Vapor pressure data, extrapolated to 760 mm.				
90.2	-183.0	17.6	24.27	24.27	0.00	Mole $\% O_3$	° K.	° C.	
00.2	100.0	18.2	25.0	23.92	1.80	85.0	94.1	-179.1	(19)
		30.8	40.0	16.8	23.20	90.0	97.2	-176.0	
		40.0	50.0	12.04	37.96	95.0	106.1	-167.1	
		50.0	60 .0	7.32	52. 68	98.0	122.3	-150.9	
		66.7	75.0	0.21	74.79				
		67.2	75.45	0.00	75.45	Density			
77 5	195 7	69	10.0	10.0	0.00	At 90° K., –183.2° C.			
11.0	-100.7	18.2	25.0	8.10	16.90	Mole % O ₃	G./Cc.		
		30.8	40.0	6.20	33.80	18.1	1.2334		(20)
		40.0	50.0	4.93	45.07	72.2	1.4596		. ,
		50.0	60.0	3.67	56.33	81.0	1.5050		
		66.7	75.0	1.77	73.23	95.2	1.5489		
		84.3	89.0	0.00	89.00	100.0	1.574		

Table II. Mixture of Ozone with Oxygen (Continued)

Reference Reference (20)Burning velocity (continued) Viscosity at 90.2° K., -183.0° C. Solid (calcd.) Reference 25) $\log \eta = x_1 \log \eta O_2 + x_2 \log \eta O_3(\pm 5\%)$ x_1 and x_2 = mole fractions of O_2 and O_3 1 Atm. at ° K. $\eta O_3 = 1.56 \text{ cp.}; \eta O_2 = 0.190 \text{ cp.}$ Mole % O₃ 63 70 20 50 75 0.0505 0.0380 Latent heat of vaporization 0.173 0.1470.170100 % O₃ Mole % O3 in 0.2740.294 0.301 O₃ + O₂ Mixture Kcal./Mole Quenching diameter, 3.630 (15)100 in cylinder, 1 atm., 298° K., 25° C. 1.422 90 80 60 40 20 Mole % O3 Mm. 1.499 15.0 25.0 5.000 (11, 35) 1.586 1.642 1.650 1.642 50.0 0.390 1.642 75.0 10 0.165 100.0 0 1.6420.090Quenching diameter, vs. O3 Concentration Critical boundary velocity gradient for flash back, in cylinder, 1 atm., 298° K., 25° C. (35) at 1 atm., 298° K., 25° C. Log $d_c = 6.189 - 2.118$ Log $x; d_c$ in microns; x in vol. % O₃ In cylinder, 1 atm., 195° K., -78° C. Log $d_c = 6.403 - 2.113$ Log x (3) Mole % O₃ (35) $g_f = 8.0 \times 10^2 \text{ sec.}^{-1}$ 25 (35) 8.3×10^{3} 40 50 2.1×10^4 Flame temperature (calcd.) 1.1×10^{6} Gaseous, 1 Atm., 298° K., 25° C. (Reference 28) 75 100 2.9×10^{-10} Mole % O₃ °K. 18.18 1027 Minimum gas flow or flash back flow (reference 35) 40.00 1687 at 1 atm., 298° K., 25° C. 66.67 2277 Burner Tube 2677 100.00 Minimum Gas Flow, Cc./Sec. Internal Diameter. Liquid (Reference 24) 25 75 100 40 50 Cm. Mole % 2 Atm. 1 Atm. 10 Atm. 3 7 0.065 Flame Flame . . . Initial Initial Flame₇ Initial 11 2 29 0.1 0.2 . . . temp., temp., temp., temp., temp., temp., $2\bar{3}\bar{2}$ 17 88 . . . Mole $\% O_3$ ۰ K. ٩Ŕ. ۰ K. ۰K. ۰K. ۰Ň. 21 174 725 0.3 53 275 · . . 17 50 mole % O3 150.5 **609**0 1509 160.5 1508 0.6 441 2310 187.5 1507 75 mole % O3 5500 14500 29000 156.5 2029 0.8 40 415 1050 167 2030198 2031 100 % O3 161 2400 172.5 2414 206 2436 2100 11000 1.0 80 830 2.0 16800 88000 232000 640 6640 Solid (Reference 25) Mole $\% O_3$ Minimum ignition energy 1 Atm., 25° C. Initial Gas Temp. 50 mole % O3 20 1371 63 1445 Mjoules Calories Mole % O₃ or 1894 75 mole % O3 20 1.25×10^{-1} 0.3×10^{-4} 0.7×10^{-6} 25.0 63 70 20 1960 2.9×10^{-3} 50.0 1969 3.3×10^{-4} 7.8×10^{-8} 75.0 100 % O₃ 2287 $7 \times \overline{10}^{-5}$ -9 100.0 16×10^{-1} 63 2339 70 2346**Burning velocity Detonation velocity** Gaseous (Reference 10, 28, 34) Gaseous, 1 Atm., 298° K., 25° C. (Reference 32) 1 Atm., 298° K., 1 Atm., 195° K., Mole % O3 25° C. -78° C. Mole % O₃ Meter/Sec. 17 9.2 25.0 1290 . . . 20 24 28 36 40 46 53 58 75 18.250.0 1633 ± 20 18.0 75.0 1782 ± 40 52.2 100.0 1863 ± 20 44.0 128.4 Liquid (Reference 22) . . . Mole % O₃ 165.9. . . Meter/Sec. 210.1 58.0 4160 ± 140 132.0 65.1 4500 ± 80 331.2 77.6 5100 ± 180 82 209.0 5600 ± 60 472 ± 12 89.5 100 270 ± 7 100.0 5730 ± 460 Liquid (calcd.) (Reference 24) Conversion of mole %, to wt. $\% O_3$ $1 \, \text{Atm}$ 2 Atm. 10 Atm. Cm. Initial Cm. Initial Cm. Initial (mole % O_3) × 214.4 Wt. % $O_3 = \frac{(11016 \times 10^{-3}) \times 10^{-1}}{142.9 + 0.715 \text{ (mole % } O_3)}$ In oxygen temp., per temp. per temp., per Mole % O3 ° K. ۰K. ۰Ŕ. sec. sec. sec. 0.0774

(mole % O₃) 214.4 Wt. % $O_3 = \frac{(11010 \ 70 \ \sqrt{3})^2}{129.3 + 0.851 \ (mole \% \ O_3)}$ In air

0.361

50 75

100

150.5

156.5

161

0.155

0.456

0.738

0.78 2.31

3.84

160.5

172.5

167

187.5 198

206

Table III. Mixtures of Ozone with Various Gases

.

misciplinty and reactive	ту			
	Tempe	rature	Pressure	Time
	° K.	° C.	Mm. Hg	Hrs.
Gas	eous Phase	(Reference	29, 33)	
$H_2 + O_3$ mixtures	195-294	-78 - +21	504-1061	3-20°
$(CN)_2 + 2/3 O_3$	273	0	774	2^{a}
$(CN)_2 2/3 O_3$	296	+23	557	18°
$CH_4 + 4/3 O_3$	195-294	-78-+21	778-910	$1-22^{\circ}$
$CO + 1/3 O_3$	195	-78	752	^d
$N_2O + O_3$	195-273	780	765	3°
$NO + 1/3 O_3$	195	78	785	^d
$NH_3 + 1/2 O_3$	273	0	765	^d
$PH_3 + 4/3 O_3$	195	78	760	^d
$SO_2 + 1/3 O_3$	273	0	76 0	12^{e}
Liq	uid Phase (I	Reference 2	7, <i>33</i>)	
		Temp	oerature	
	0	K.	•	.
$CH_4 + O_3$	9	90	-18	33 <i>4 1</i>
$CO + O_3$,	77	-19	6 ^{6, f}
$F_2 + O_3$		77	-19	96ª. <i>†</i>
$OF_2 + O_3$,	77	-19)6ª./
$O_3F_2 + O_3$	5	9 0	-18	3′
	Slow dec	omposition	of O_3F_2 . Upo	on warming
	to	116° K., the	mixture exp	lodes
$O_2F_2 + O_3$	1	16	-15	57'
	At cooling	to 90° K., C) ₂ F ₂ partially	v crystallizes
	out. Up	on warmin	g above 19	5° K., the
	mixture	explodes		
$ClO_3F + O_3$	9	90	-18	38
	11	16	-15	74
$CCl_2F_2 + O_3$	1	16	-15	57'
$CF_4 + O_3$	ç) 0	-18	34
$CClF_3 + O_3$	11	16	-15	57'
	Only abou	it 12 wt. %	$5 O_3$ is solution	ble in CF ₄
$Ar + O_3$	Only abo	00 11 10 wt (-10 ام او ما	uble in Ar
$N_{a} + \Omega_{a}$	Only abou	77	-19	¥6°
112 1 03	Only 4.41	 + 0.14 m	ole % O ₂ is	soluble in
	liquid N			
		81.8	-19	91.4 ⁸

[°]No visible reaction. ^b Very slow reaction. ^c Slow reaction. ^f Does not mix homogeneously.

- (23) Sandri, R., Can. J. Chem. 36, 1210 (1958).
- (24) Sandri, R., Combustion and Flame 2, 348 (1958).
- (25) Sandri, R., Combustion and Flame 4, 284 (1960).
- (26) Schumacher, H.J., Anales assoc. quim. arg. 41, 197-264 (1953).
- (27) Streng, A.G., Grosse, A.V., Advances in Chem. Ser. No. 21, 38 (1959).
- (28) Streng, A.G., Grosse, A.V., J. Am. Chem. Soc. 78, 1517 (1957).
 (29) Ibid., 79, 3296 (1957).
- (30) Ibid., p. 5583.

Adda at half the second second state of a

- (31) Ibid., 81, 805 (1959).
- (32) Streng, A.G., Stokes, C.S., Streng, L.A., J. Chem. Phys. 29, 458 (1958).
- (33) Streng, A.G., Grosse, A.V., J. Inorg. & Nuclear Chem. 9, 315 (1959).
- (34) Streng, A.G., Grosse, A.V., 6th Symposium on Combustion, Reinhold, New York, 1957.
- (35) Streng, A.G., Grosse, A.V., "Quenching Diameter of Ozone

Miscibility and	reactivity (a	continued)			
	Onl	y 5.1 mole % 77	, O ₃ is solubl	e in liquid N ₂ –196 [#]	
	Onl li	y 8.8 \pm 0.9 quid O ₃	mole $\% N_2$	is soluble in	
$NF_3 + O_3$ ClF ₃ + O ₃		90 133		-183 [/] -140 ^s	
O_3 liquid + (C)	N)2 solid	90		-183°	
Burning velocities $O_2 + H_2$ mixtur	es.		B Velocity		
1 atm., 195° K.	., −78° C. N	Iole % O3	Cm./Sec.	Reference	
		6.0 12.0 18.2 18.5 25.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(29)	
Mixt	tures with h	igher concentr	ation O_3 expl	oded	
O ₃ + (CN) ₂ mix 1 atm. 273° F	αtures, Κ., 0° C.	25.0 33.3 40.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(30)	
Mixt	ures with hi	igher concentr	ation O_3 expl	oded	
Flame Tempera	tures				
2(CN) + 2 O	1 Atm., 14.7 P.S.I.	10 Atm., 147 P.S.I.	40.7 Atm. 600 P.S.I.	, (20)	
3(CN) ₂ + 2 O ₃ 5208° K. 5506° K. 5657° K. (30) Solubility of ozone at low partial pressures Distribution of ozone between air and					
		Solvent	<i>T</i> , ° C.	D	
$D = \frac{\text{concn. in s}}{\text{concn. it}}$	Glaci solvent n air Dich Aceti Prop Prop Carb Wate	ial acetic acid loroacetic acid ic anhydride ionic acid ionic anhydrid on tetrachlori er	$\begin{array}{c} 18.2\\ 20\\ 30.2\\ 38.8\\ 1\\ 0\\ 17.3\\ 16\\ 18.2\\ 18.2\\ 18.2\\ 18.2\\ 0\\ 21\\ 20\\ 0\\ 0\end{array}$	2.5 (40) 2.8 1.6 1.4 1.69 2.15 3.6 2.8 3.15 2.95 0.29 0.49	

 d Immediate explosion. c SO $_{\scriptscriptstyle 3}$ formation. $^\prime$ Mixed homogeneously.

Flame," 17th Intern. Congr. Pure and Applied Chem., Munich, Germany, 1959.

- (36) Thorp, C.E., "Bibliography of Ozone Technology," Vol. 2, Armour Research Foundation, Illinois Institute of Technology, Chicago, Ill., 1955.
- (37) Trambarulo, R., Ghorsh, S.N., Burns, C.A., Jr., Gordy, W., J. Chem. Phys. 21, 851 (1953).
- (38) Trambarulo, R., Ghorsh, S.N., Burns, C.A., Jr., Gordy, W., *Phys. Rev.* 91, 222 (A) (1953).
- (39) Waterman, T.E., Kirsh, D.P., Brabets, R.I., J. Chem. Phys. 29, 905 (1958); 32, 304 (1960).
- (40) Welsbach Corp., Philadelphia, Pa., "Basic Manual of Applications and Laboratory Ozonization Technique," first rev., 1958.

RECEIVED for review March 24, 1960. Accepted September 19, 1960.