Pressure-Volume-Temperature Properties of Sulfur Dioxide

T. L. KANG ${ }^{1}$, L. J. HIRTH ${ }^{2}$, K. A. $K O B E{ }^{3}$, and J. J. McKETTA University of Texas, Austin, Tex.

Psulfur dioxide were determined using a Burnett apparatus and a Beattie-type apparatus. The temperature range was 10° to $250^{\circ} \mathrm{C}$. and the pressure range was 1 to 312 atm . Critical constants of sulfur dioxide were also determined. Vapor pressures and orthobaric densities were measured and correlated. Latent heats of vaporization were evaluated from the Clapeyron equation. Based on Hirth's (10) and Kang's work (13), smoothed compressibility factors and fugacity coefficients for gaseous sulfur dioxide were calculated for pressures up to 315 atm . over the temperature range from 10° to $250^{\circ} \mathrm{C}$. Second virial coefficients were evaluated by Hirth from the low-pressure $P-V-T$ data.

EXPERIMENTAL

Purity. The sulfur dioxide was supplied by the Tennessee Corp., Atlanta, Ga., with the specification of 99.9975% purity. Further purification was undertaken as suggested by Couch and others (7) and Vohra and Kobe (18). Samples of the purified sulfur dioxide were analyzed in a mass spectrometer. No foreign substance was found. It was concluded that the minimum purity was 99.998%.

Method and Apparatus. The Beattie-type apparatus is essentially the same as that used by Beattie (2). Apparatus, experimental procedures, and data treatment have been described (13). The design, construction, and calibration of the Burnett apparatus used by Hirth in this investigation are described by Silberberg, Kobe, and McKetta (16). Couch and others (7) have critically evaluated these two methods of data collection.

Reproducibility of Data. During the measurements of
${ }^{1}$ Present address, Research Center, The B.F. Goodrich Co., Brecksville, Ohio.
${ }^{2}$ Present address, Esso Research and Engineering Co., Florham Park, N. J.
${ }^{3}$ Deceased.
$P-V-T$ data several different sizes of samples were chosen to provide some overlap in volume ranges. The agreement of the volume measurements in the overlapping area indicated an excellent reproducibility of data. The compressibility factors thus obtained were consistent and reproducible within $\pm 0.2 \%$. The vapor pressure measurement reproducibility is estimated to be well within ± 0.01 atm. The agreement between Hirth's data and Kang's data is generally very good. Discrepancies are discussed later.

Experimental Data. By means of the Beattie-type apparatus the pressure-volume-temperature data of sulfur dioxide in the gaseous phase were measured at $50^{\circ}, 75^{\circ}$, $100^{\circ}, 125^{\circ}, 150^{\circ}, 157.5^{\circ}, 175^{\circ}, 200^{\circ}, 225^{\circ}$, and $250^{\circ} \mathrm{C}$. from 5 atm. to either the vapor pressure at the prevailing temperature or the maximum pressure of 312 atm . Below the critical temperature, which was determined to be $157.5^{\circ} \mathrm{C}$. in this work, vapor pressures as well as specific volumes of both the saturated liquid and the saturated vapor were determined at 5° intervals above $50^{\circ} \mathrm{C}$.

In the liquid phase, $P-V \cdot T$ data were measured from the vapor pressures to about 312 atm . for five isotherms$50^{\circ}, 75^{\circ}, 100^{\circ}, 125^{\circ}$, and $150^{\circ} \mathrm{C}$. In the course of determining the critical constants of sulfur dioxide, seven additional isotherms- $157^{\circ}, 157.2^{\circ}, 157.3^{\circ}, 157.35^{\circ}, 157.4^{\circ}, 157.45^{\circ}$, and $157.5^{\circ} \mathrm{C}$.-were measured.

By means of the Burnett aparatus, compressibility factor isotherms were determined at intervals of $10^{\circ} \mathrm{C}$. between 10° and $50^{\circ} \mathrm{C}$. and of $25^{\circ} \mathrm{C}$. between 75° and $200^{\circ} \mathrm{C}$. At least two runs were made to define each isotherm. Below the critical point, pressures were measured ranging from atmospheric to just below the vapor pressure. Above the critical point the maximum pressure measured was 68 atm .

Hirth's and Kang's experimental compressibility data for gaseous sulfur dioxide are shown in Figures 1 and 2, respectively. The $P-V-T$ data in the high-pressure region, presented partly in Table I, are shown in Figure 3. The $P-V-T$ measurements in the critical region are presented in Table II and shown in Figure 4.

Figure 1. Compressibility factor of sulfur dioxide in the low-pressure region

Figure 2. Compressibility factors of sulfur dioxide

Figure 3. Pressure-volume isotherms for sulfur dioxide in the high-pressure region

Figure 4. Pressure-volume isotherms in the critical region of sulfur dioxide

DERIVED QUANTITIES

All of the work on the correlations and calculations was done by using an IBM 650 digital computer.
Smoothed Vapor Pressures. The vapor pressures measured by Kang in this work were correlated by the method of least squares into a Nernst-type equation after appropriate weighing factors were multiplied to the observed results. Equation 1 is the final form of the correlation for temperatures between 50° and $157.5^{\circ} \mathrm{C}$.
$\log P=14.400840-1437.1878 / T-4.0200950 \log T$
$+0.032898989 T$
(1)

Table I. Experimental Pressure-Volume Isotherms for Liquid Sulfur Dioxide
$\begin{array}{cccccc}\text { Vol., } & \text { Pressure, } & \text { Vol., } & \text { Pressure, } & \text { Vol., } & \text { Pressure, } \\ \text { Cc./G. } & \text { Atm. } & \text { Cc./G. } & \text { Atm. } & \text { Cc./G. } & \text { Atm. }\end{array}$
8.1841 Grams
$t=50^{\circ} \mathrm{C}$.

0.7715	8.490
0.7706	8.506
0.7704	9.981
0.7699	12.399
0.7679	26.698
0.7641	50.998
0.7610	75.845
0.7573	101.58

$\begin{array}{ll}0.7573 & 101.58 \\ 0.7536 & 127.67\end{array}$
$\begin{array}{ll}0.7499 & 154.29 \\ 0.7465 & 181.31\end{array}$
$\begin{array}{ll}0.7430 & 20.15 \\ 0.7439 & 233.75\end{array}$
$\begin{array}{ll}0.7369 & 260.58 \\ 0.7339 & 28585\end{array}$
$0.7309 \quad 314.31$

$t=55^{\circ} \mathrm{C}$	
0.7795	10.320
0.7794	12.043
0.7789	14.074

0.7789	14.074
$t=60^{\circ} \mathrm{C}$	
0.7891	12.050
0.7889	13.840
0.7885	14.813
0.7882	16.636

$t=65^{\circ} \mathrm{C}$	
0.7993	13.858
0.7989	15.402
0.7986	16.539
0.7984	18.009

$t=70^{\circ} \mathrm{C}$	
0.8114	14.578
0.8109	15.551
0.8105	17.485

$t=75^{\circ} \mathrm{C}$	
0.8229	16.576
0.8225	17.678
0.8223	18.934
0.8220	21.920
0.8194	32.576
0.8151	41.979
0.8085	75.882

$0.8085 \quad 75.882$

		0.9540	37.011	1.2248	72.627
		0.9528	38.232	1.1583	83.154
0.8024	102.12	0.9513	39.748	1.0980	101.96
0.7968	129.88	0.9503	41.444	1.0476	128.07
0.7917	155.87			1.0159	154.51
0.7868	181.60	$t=120^{\circ} \mathrm{C}$.	0.9909	180.41	
0.7821	209.23			0.9709	206.82
0.7779	233.59	0.9798	41.719	0.9535	233.57
0.7735	259.26	0.9788	42.550	0.9433	259.55
0.7698	286.36	0.9771	43.820	0.9268	285.67
0.7665	313.50			0.9149	312.50

$t=80^{\circ} \mathrm{C}$.	$t=125^{\circ} \mathrm{C}$		Mass of Sample $=$ 8.1841 Grams		
		1.0078	45.274	$t=155^{\circ} \mathrm{C}$.	
0.8357	18.325	1.0054	46.381	1.4406	74.859
0.8350	20.162	1.0021	49.166	1.4301	74.911
0.8345	22.098	0.949	54.132	1.4176	74.974
		0.9870	60.313	1.3956	75.311
		0.9706	75.376	1.3525	76.393
		0.9477	101.68	1.3192	77.708
					7.29494

The observed vapor pressures and the smoothed results calculated from Equation 1 indicate that the maximum residual is about 0.02 atm ., while the maximum deviation is within $\pm 0.05 \%$. Hirth smoothed his vapor pressure data by means of pressure residuals. The maximum uncertainty of Hirth's smoothed vapor pressures is estimated to be 0.30% from 0° to $40^{\circ} \mathrm{C}$. and 0.25% from 50° to $150^{\circ} \mathrm{C}$. Both sets of smoothed data are tabulated in Table III.
Table IV compares the smoothed vapor pressures with the literature values for sulfur dioxide. Hellwig's results (8) agree within 0.5% with the smoothed vapor pressures in this work. The deviations between the reported values of Cardoso and Fiorentino (4) and the smoothed values in this work are generally less than 1%. Toriumi and Hara's data (18) are consistently lower. The International Critical Tables (11) give the least reliable vapor pressure data for sulfur dioxide. Riedel's vapor pressure at $50^{\circ} \mathrm{C}$. (15) was extrapolated from his vapor pressure correlation.
Orthobaric Densities. Kang's observed orthobaric densities were smoothed by fitting them to Equations 2 and 3 by means of the method of the steepest descent.

Table II. Experimental Pressure-Volume Isotherms in the Critical Regions of Sulfur Dioxide

Volume, Pressure, Volume, Pressure,
Cc./G.

Atm.
Cc./G.

Atm.
Mass of Sample $=2.8466$ Grams

$t=157^{\circ} \mathrm{C}$	
2.4109	7
2.3461	7
2.2296	7
2.2168	7
2.1519	7
2.0871	7
1.9575	77
1.8277	7
1.6730	77
1.6984	7
1.6336	7
1.5682	7

77.094
77.136
77.160
77.179
77.183
77.182
77.185
77.185
77.186
77.182
77.256
77.391

2.3476	77.465
2.3460	77.470
2.2141	77.536
2.0844	77.556
1.9550	77.557
1.8258	77.557
1.7621	77.557
1.6956	77.639
1.6319	77.736
1.5672	77.862

t	$=157.2^{\circ} \mathrm{C}$.
2.3478	

2.3478	77.344	2.3455	77.524
2.2179	77.416	2.2158	77.592
2.1523	77.432	2.1507	77.614
2.0881	77.434	2.0860	77.619
2.0228	77.435	2.0212	77.620
2.0208	77.435	1.9566	77.620
1.8921	77.435	1.8917	77.620
1.7632	77.435	1.8269	77.621
1.6972	77.456	1.7621	77.633
1.6648	77.494	1.7080	77.699
1.6332	77.546	1.6327	77.813
1.5676	77.678		
$t=157.4^{\circ} \mathrm{C}$.	$t=157.5^{\circ} \mathrm{C}$		
2.3440	77.585	2.3453	77.686
2.2143	77.646	2.2156	77.744
2.0847	77.681	2.0860	77.782
2.0194	77.682	2.0212	77.799
1.9545	77.682	1.9563	77.804
1.8897	77.683	1.8915	77.815
1.8250	77.683	1.8268	77.837
1.7602	77.716	1.7620	77.876
1.7007	77.784	1.7080	77.919
1.6308	77.870	1.6319	77.997

Mass of Sample $=8.6522$ Grams

2.3463	77.631
2.2159	77.693
2.0858	77.740
2.0211	77.747
1.9560	77.748
1.8907	77.748
1.8263	77.749
1.7611	77.794
1.6968	77.854
1.6327	77.921

2.3633	77.673
2.1393	77.767
1.6186	78.122

Table III. Smoothed Vapor Pressure Orthobaric Density and Latent Heat of Vaporization Data for Sulfur Dioxide

t	Vapor Pressure, Atm.		Density, G./Cc.			ΔH_{c}, Cal. per G. Kang
			Vapor		Liquid, Kang	
${ }^{\circ} \mathrm{C}$.	Kang	Hirth	Kang	Hirth		
10		2.268		0.00661		
20		3.260		0.00930		
30		4.556		0.01274		
40		6.218		0.01715		
50	8.484	8.302	0.02336	0.02264	1.2970	74.81
55	9.683		0.02667		1.2804	74.08
60	11.010		0.03029		1.2635	73.23
65	12.474		0.03424		1.2464	72.26
70	14.085		0.03858		1.2289	71.16
75	15.853	15.760	0.04338	0.04302	1.2111	69.93
80	17.787		0.04868		1.1928	68.57
85	19.898		0.05458		1.1740	67.06
90	22.198		0.06117		1.1546	65.40
95	24.696		0.06854		1.1344	63.57
100	27.406	27.425	0.07684	0.07798	1.1134	61.57
105	30.337		0.08623		1.0914	59.38
110	33.503		0.09689		1.0682	56.98
115	36.916		0.1091		1.0435	54.34
120	40.589		0.1232		1.0170	51.45
125	44.534	44.572	0.1396	0.1404	0.9882	48.25
130	48.767		0.1589		0.9566	44.69
135	53.299		0.1821		0.9212	40.68
140	58.147		0.2107		0.8805	36.09
145	63.324		0.2474		0.8317	30.66
150	68.845	68.824	0.2980	0.2903	0.7691	23.86
155	74.727		0.3831		0.6721	13.84
157			0.4571		0.5933	
157.5	77.807					

$$
\begin{align*}
\mathrm{d}=\left(\frac{\mathrm{d}_{L}+\mathrm{d}_{g}}{2}\right)=0.52462015+ & 1.1863691 \times 10^{-3}\left(t_{c}-t\right) \\
& +6.9451764 \times 10^{-7}\left(t_{c}-t\right)^{2} \tag{2}
\end{align*}
$$

$$
\begin{align*}
\Delta=\left(\frac{\mathrm{d}_{L}-\mathrm{d}_{\underline{g}}}{2}\right)= & 9.8206457 \times 10^{-2}\left(t_{\mathrm{c}}-t\right)^{0.0813}-3.7254523 \\
& \times 10^{-3}\left(t_{\mathrm{c}}-t\right)+6.0192965 \times 10^{-6}\left(t_{\mathrm{c}}-t\right)^{2} \tag{3}
\end{align*}
$$

During the equation fitting, suitable weighing factors were multiplied to the observed values, to obtain the correlations with the best fit to the experimental data. Table III lists the smoothed orthobaric densities. The deviations between the observed and the smoothed values are less than $\pm 0.37 \%$. Hirth's molal volumes for the saturated vapor were obtained by extending his compressibility isotherms to the smoothed vapor pressures given in Table III. The maximum error in his smoothed values is estimated to be slightly greater than 0.55% at $150^{\circ} \mathrm{C}$. but falls off to 0.1 to 0.3% at temperatures further from the initial temperature. Tables V and VI compare the smoothed saturated volumes of both liquid and vapor of sulfur dioxide with values reported in the literature. The saturated liquid specific volumes reported in International Critical Tables
(11) are in close agreement with this work. There is a maximum deviation of 2.1% between Hellwig's saturated vapor specific volumes (8) and the smoothed results of this work. Riedel's (15) high specific volume of the saturated vapor at $50^{\circ} \mathrm{C}$. again was an extrapolated value from his correlation. The saturated vapor specific volumes reported in International Critical Tables (11) are in complete disagreement with the smoothed results in this work.

Critical Constants. Figure 4 plots the pressure-volume isotherms in the critical region. The critical constants were determined graphically. Table VII presents the comparison with other experimental results in the literature. The agreement is good.

The critical volume, then, is 1.905 cc . per gram, and the critical compressibility factor is 0.2697 .

Latent Heat of Vaporization. The latent heats of vaporization were evaluated by means of the Clapeyron equation,

$$
\begin{equation*}
\Delta H_{v}=T\left(V_{g}-V_{l}\right) \frac{d P}{d T} \tag{4}
\end{equation*}
$$

using V_{L} taken from Table V, V_{g} from Table VI, and $d P / d T$ from Equation 1. The calculated latent heats of vaporization of sulfur dioxide are presented in Table III. These were also correlated using Equation 5 for temperatures between 50° and $157.5^{\circ} \mathrm{C}$.

$$
\begin{align*}
& \Delta H_{\mathrm{v}}=8.7759469\left(t_{\mathrm{c}}-t\right)^{0.4984}-1.0021178 \times 10^{-2}\left(t_{c}-t\right) \\
&-1.2866153 \times 10^{-3}\left(t_{c}-t\right)^{2} \tag{5}
\end{align*}
$$

The deviations between the values from Equation 5 and the values from the Clapeyron equation are less than 0.9%.
Smoothed Compressibility Factors. The volume residuals of gaseous sulfur dioxide were calculated from Hirth's compressibility data and the P-V-T data in Kang's work. Fourteen isotherms of volume residuals- $10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}$, $50^{\circ}, 75^{\circ}, 100^{\circ}, 125^{\circ}, 150^{\circ}, 157.5^{\circ}, 175^{\circ}, 200^{\circ}, 225^{\circ}$, and $250^{\circ} \mathrm{C}$.-were plotted us. pressure on a large graph readable to $\pm 0.001 \mathrm{cc}$. per gram. Smooth curves were drawn through these points. The volume residuals read from the smoothed curves were regarded as the smoothed values. The smoothed compressibility factors of sulfur dioxide in this work were calculated with a high degree of accuracy from these smoothed volume residuals by using Equation 6.

$$
\begin{equation*}
Z=1-\gamma P / R T \tag{6}
\end{equation*}
$$

The smoothed compressibility factors, thus obtained, are tabulated in Table VIII. The smoothed compressibility factors in Kang's work are in close agreement with Hirth's smoothed values. However, higher deviations (up to 0.37%) were found in the vicinity of the two-phase region and at high pressures. The maximum errors in Hirth's smoothed values are estimated to be less than 0.55% at $150^{\circ} \mathrm{C}$., decreasing to 0.1 to 0.3% at temperatures further removed from the critical. Hellwig's experimental compressibility factors (8) are generally higher than Kang's smoothed results in this work. The maximum deviation is 1.87%.

Fugacity Coefficient. The fugacity coefficient, ν, is defined by Equation 7 .

Table IV. Comparison of Smoothed Vapor Pressures with Literature Values for Sulfur Dioxide													
Temp.,$t,{ }^{\circ} \mathrm{C} .$	$\begin{gathered} \text { Kang's (13) } \\ \text { P., Atm. } \end{gathered}$	Hirth (10)		Cardoso (4)		I.C.T. (11)		Toriumi (17)		Hellwig (8)		Riedel (15)	
		P	Dev.	$P^{\text {c }}$	Dev. ${ }^{\text {b }}$	P	Dev.	P	Dev.	P	Dev.	P	Dev.
50	8.484	8.302	2.15	8.34	1.70	8.176	3.63	8.35	1.58	8.45	0.40	8.583	-1.17
75	15.853	15.760	0.57	15.87	-0.11	15.684	1.07			15.94	-0.49		
100	27.406	27.425	-0.09	27.25	0.57	27.714	-1.12	27.25	0.57	27.45	-0.16		
125	44.534	44.572	-0.09	44.34	0.44	45.457	-2.07			44.50	0.08		
150	68.845	68.824	0.03	68.40	0.65	68.405	0.64	68.20	0.94	68.75	0.14		
${ }^{a} P=$ atmo ${ }^{b}$ Deviatio	phere. $\%=$ (smooth	vapor	ssure -	eratur	alue) \times	/smo	ed vapo	pressu					

Table V. Comparison of Smoothed Saturated Liquid Specific Volumes with Literature Values for Sulfur Dioxide

Temp.,	Smoothed	I.C.T. (11)		Cailletet (3)		Hellwig (8)		Cardoso (5)	
$t,{ }^{\circ} \mathrm{C}$.	V_{L}, Cc./G.	V_{L}	Dev. ${ }^{\text {a }}$	V_{L}	Dev.	V_{L}	Dev.	V_{L}	Dev.
50	0.7710	0.7722	-0.16	0.7740	-0.39	0.7750	-0.52		
75	0.8257	0.8254	0.04	0.8264	-0.08	0.8266	-0.11		
100	0.8981	0.8977	0.04	0.8981	0.00	0.9002	-0.23		
125	1.0119	1.0111	0.08	1.0103	0.16	1.0136	0.17		
150	1.3003	1.3038	-0.27	1.3179	-1.35	1.2783	1.59	1.1980	7.87
155	1.4880			1.5699	-5.99			1.3026	12.46

${ }^{a}$ Deviation, $\%=($ smoothed value - literature value) $\times 100 /$ smoothed value.
Table VI. Comparison of Smoothed Saturated Vapor Specific Volumes with Literature Values for Sulfur Dioxide

Temp.,$t,{ }^{\circ} \dot{\mathrm{C}}$	$\begin{gathered} \text { Kang's (13) } \\ V_{\&}, \mathrm{Cc} . / \mathrm{G} . \end{gathered}$	Hirth (8)		I.C.T. (11)		Hellwig (8)		Cardoso (5)		Riedel (15)	
		V_{R}	Dev. ${ }^{\text {a }}$	V_{t}	Dev.	V_{R}	Dev.	V g	Dev.	V_{k}	Dev.
50	42.812	44.215	-3.27	40.65	5.05	42.10	1.66			44.6	-4.18
75	23.054	23.242	-0.82	23.29	-1.02	22.83	0.97				
100	13.013	12.823	1.46	12.94	0.56	12.92	0.71				
125	7.1655	7.124	0.58	7.069	1.35	7.191	-1.35				
150	3.3553	3.445	-2.69	3.256	2.96	3.285	2.10	3.4352	2.38		

Figure 5. Fugacity coefficients for sulfur dioxide

$$
\begin{equation*}
\nu=\frac{f}{P}=e^{\left[-(1 / R T) \int_{0}^{f} \gamma d P\right]} \tag{7}
\end{equation*}
$$

In calculating the fugacity coefficients of sulfur dioxide, the smoothed volume residuals were first read from the smoothed curves. Then the integrand, $\int_{0}^{p} \gamma d P$, was evaluated numerically by using Weddle's rule. The fugacity coefficients, which were calculated from Equation 7, are presented in Figure 5.

Second Virial Coefficients. Hirth's experimental residual volume isotherms of sulfur dioxide appear in Figure 6. The experimental second virial coefficients, obtained by extrapo-
lation of the curves in Figure 6 to zero pressure, are presented in Table IX and plotted in Figure 7. Smoothed values of the second virial coefficient read from the curve in Figure 7 are also shown in Table IX. The smoothed second virial coefficients are estimated to have a maximum error of 0.020 liter per gram mole at $10^{\circ} \mathrm{C}$., which decreases to 0.007 liter per gram mole at $200^{\circ} \mathrm{C}$.

Second virial coefficients calculated from the low pressure measurements of Baume (1), Cawood and Patterson (6), Jacquerod and Scheurer (12), and Leduc (14) are shown in Figure 7 along with the values from the present work. The maximum deviation does not exceed 0.008 liter per gram

Table VII. Critical Constants for Sulfur Dioxide

$$
\begin{aligned}
& t_{c},{ }^{\circ} \mathrm{C} . \\
& 15.0 \\
& 157.5 \pm 0.05 \\
& 157.5 \pm 0.05
\end{aligned}
$$

$\begin{aligned} 77.79 & \pm 0.05 \\ \ldots & \\ 77.803 & \pm 0.005 \\ 77.808 & \pm 0.02\end{aligned}$

$\quad \mathrm{d}_{\mathrm{c}}, \mathrm{G} . / \mathrm{Cc}$.
0.52
\ldots
0.524
0.522
0.525 ± 0.001

Table VIII. Smoothed Compressibility Factors of Sulfur Dioxide

mole, which is considered excellent for second virial coefficients.

Second virial coefficients computed from the Berthelot relation using Kang's critical constants are presented in Table IX, as well as second virial coefficients calculated by
the Stockmayer potential function (9) for polar gases. The parameters used were $t^{*}=0.6, e / k=455^{\circ} \mathrm{K}$., and $b_{0}=$ 0.03029 liter per gram mole. The maximum difference between the values calculated by the Stockmayer potential and those of this work is 0.007 liter per gram mole.

Table IX. Second Virial Coefficients of Sulfur Dioxide

	$-B$, Liters/G. Mole			
Temp.,	Exptl.	Smoothed	Berthelot a	Stockmayer 6
${ }^{\circ}$ C.	0.5000	0.503	0.412	0.5000
10	0.4520	0.448	0.382	0.4447
20	0.4040	0.404	0.355	0.4026
30	0.3328	0.366	0.330	0.3654
40	0.334	0.309	0.3331	
50	0.2790	0.276	0.262	0.2718
75	0.2325	0.234	0.255	0.2272
100	0.2010	0.199	0.192	0.1934
125	0.1711	0.170	0.167	0.1672
150	0.1441	0.145	0.145	0.1463
175	0.1258	0.124	0.126	0.1293
200				

${ }^{c}$ From equation. $B=\frac{9 R T_{c}}{128 P_{c}}\left[1-\frac{6}{T_{c}^{2}}\right]$.
${ }^{b}$ Parameters. $t^{*}=0.6, e / k=455^{\circ} \mathrm{K} ., b_{o}=0.03029$ liter $/ \mathrm{g}$. mole.

NOMENCLATURE

$B=$ second virial coefficients
$b_{0}=$ parameter in Stockmayer potential function
$\mathrm{d}_{\mathrm{c}}=$ critical density, g./cc.
$\mathrm{d}_{\mathrm{p}}=$ density of saturated vapor, g. $/ \mathrm{cc}$.
$\mathrm{d}_{\mathrm{R}}=$ density of saturated liquid, $\mathrm{g} . / \mathrm{cc}$.
$e / k=$ parameter in Stockmayer potential function
$f=$ fugacity
$\Delta H_{c}=$ latent heat of vaporization
$P=$ absolute pressure
$P_{c}=$ critical pressure, atm .
$R=$ gas constant
$T=$ absolute temperature
$t=$ temperature,${ }^{\circ} \mathrm{C}$.
$t^{*}=$ parameter in Stockmayer potential function
$T_{c}=$ critical temperature,${ }^{\circ} \mathrm{K}$.
$t_{c}=$ critical temperature, ${ }^{\circ} \mathrm{C}$.
$T_{r}=$ reduced temperature
$V=$ volume
$V_{\mathrm{g}}=$ specific volume of saturated vapor, cc./g.
$V_{L}=$ specific volume of saturated liquid, cc. $/ \mathrm{g}$.
$Z=$ compressibility factor, $P V / R T$
$\gamma=$ volume residual, $R T / P-V$
$\nu=$ fugacity coefficient, f / P

ACKNOWLEDGMENT

Financial assistance was given by the Office of Ordnance Research, Phillips Petroleum Co., E.I. du Pont de Nemours and Co., the Robert Glenn Rapp Foundation, and American Chemical Society Petroleum Research Fund. The authors are grateful for this assistance.

literature cited

(1) Baume, G., J.chim. phys. 6, 1 (1908).
(2) Beattie, J.A., Proc. Am. Acad. Arts Sci. 69, 389 (1934).
(3) Cailletet, L., Mathias, E., Compt. rend. 104, 1563 (1887).
(4) Cardoso, E., Fiorentino, U., J. chim. phys. 23, 841 (1926).
(5) Ibid., 24, 81 (1927).
(6) Cawood, W., Patterson, H.S., J. Chem. Soc. 1933, p. 619.
(7) Couch, E.J., Hirth, L.J., Kobe, K.A., J. Chem. Eng. Data 6, 229 (1961).
(8) Hellwig, L.R., "Pressure-Volume-Temperature Properties of Sulfur Dioxide," Ph.D. dissertation in chemical engineering, University of Texas, Austin, Tex., 1955.
(9) Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., "Molecular

Figure 6. Experimental residual volume isotherms for sulfur dioxide

Figure 7. Second virial coefficients for sulfur dioxide

Theory of Gases," pp. 211-20, Wiley, New York, 1954.
(10) Hirth, L.J., "Gas Compressibility of Nitrous Oxide and of Sulfur Dioxide by the Burnett Method,', Ph.D. dissertation in chemical engineering, University of Texas, Austin, Tex., 1958.
(11) International Critical Tables, Vol. III, p. 236, McGraw-Hill, New York, 1928.
(12) Jacquerod, A., Scheurer, O., Compt. rend. 140, 1384 (1905).
(13) Kang, T.L., "Thermodynamic Properties of Sulfur Dioxide," Ph.D. dissertation in chemical engineering, University of Texas, Austin Tex., 1960.
(14) Leduc, A., Sacerdote, P., Compt. rend. 125, 297 (1897).
(15) Riedel, L., Bull. Intern. Inst. Refrig. 20, No. 4, Annex No. 5, B1 (1939).
(16) Silberberg, I.H., Kobe, K.A., McKetta, J.J., J. Chem. Eng. Data 4, 314-23 (1959).
(17) Toriumi, T., Hara, R., J. Soc. Chem. Ind. (Japan) 47, 502 (1944).
(18) Vohra, P.S., Kobe, K.A., J. Chem. Eng. Data 4, 329-30 (1959).

Received for review July 11, 1960. Accepted November 15, 1960.

