the saturation curve near the critical point (29). By successive trials, the value of t_{c} for which ($\mathrm{d}_{i}-\mathrm{d}_{g}$) showed the proper dependence on $\left(t_{c}-t\right)^{1 / 3}$ was determined to be $36.434^{\circ} \mathrm{C}$. With this value of the critical temperature, the critical pressure was calculated from Equation 2 and the critical density was calculated from the rectilinear diameter given by Equation 4. The resulting critical properties of nitrous oxide are:

$$
\begin{aligned}
t_{c} & =36.434^{\circ} \pm 0.005^{\circ} \mathrm{C} . \\
P_{c} & =71.5960 .07 \mathrm{~atm} . \\
\mathrm{d}_{\mathrm{c}} & =0.4525 \pm 0.001 \mathrm{gram} \text { per ml. } .
\end{aligned}
$$

These values are shown in comparison with the critical constants reported by other investigators in Table V.

Latent Heat of Vaporization. The observed latent heat values presented in Table IV were evaluated by use of the Clapeyron equation,

$$
\begin{equation*}
\Delta H_{v}=J T\left(v_{\mathrm{g}}-v_{L}\right)(d P / d T) \tag{6}
\end{equation*}
$$

in conjunction with the smoothed orthobaric densities of Table IV and the vapor pressure relation given by Equation 2. In evaluating the slope of the vapor pressure curve, the residual term, r_{p}, was differentiated and smoothed graphically. This residual derivative, $d r_{p} / d T$, contributed a maximum of 1% to the slope of the vapor pressure curve calculated from Equation 2.

In smoothing the latent heat data, the observed values were fitted to the equation:

$$
\begin{equation*}
\Delta H_{v}=a\left(t_{c}-t\right)^{b}+c\left(t_{c}-t\right)+r_{u} \tag{7}
\end{equation*}
$$

Table V. Comparison of Critical Properties

Date	$t_{c},{ }^{\circ} \mathrm{C}$.	P_{c}, Atm.	$\mathrm{d}_{\mathrm{c}}, \mathrm{G} . / \mathrm{Ml}$.	Investigator
1956	36.434	71.596	0.4525	This work
1953	36.39	71.4	0.452	Cook (10)
1929			0.459	Quinn and Wernimont (27)
1912	36.50	71.65		Cardoso and Arni (6)
1895	36.0	71.9		Kuenen (24)
1894	38.8	77.5	0.454	Villard (33)
1886			0.41	Cailletet and Mathias (5)
1884	35.4	75.0		Dewar (13)
1878	36.4	73.07	. .	Janssen (21)

Figure 5. Orthobaric densities of nitrous oxide
where

$$
\begin{aligned}
& a=12.9922 \\
& c=-0.082167 \\
& b=0.417796 \\
& t_{c}=36.434^{\circ} \mathrm{C}
\end{aligned}
$$

The residuals, r_{v}, were smoothed graphically and the smoothed latent heats calculated from Equation 7 are shown in Table IV. These latent heat data are considered to be reliable to 1% for temperatures below $35^{\circ} \mathrm{C}$.

CONCLUSIONS

While the accuracy of the experimental $P-V-T$ measurements is discussed above, a realistic estimation of the reliability of the derived quantities is difficult. In some cases, notably the orthobaric densities and latent heat values, the above tabulations contain more significant figures than the probable accuracy warrants. These additional figures have been retained not only as an indication of the internal consistency of the smoothed tabulations, but also with a view to the possible use of these data in subsequent thermodynamic calculations wherein differences and differential coefficients must be evaluated. In using the data as such, the limitations on their reliability should be borne in mind.

Gas Compressibility Factors at Low Pressures

The pressure range of the gas compressibility factor isotherms is extended to pressures as low as 1 atm . over the temperature range -30° to $150^{\circ} \mathrm{C}$. Also given are smoothed values of the second virial coefficient for nitrous oxide, parameters for use with the Lennard-Jones potential function which predicts values of the second virial coeffcient, and fugacity coefficients for gaseous nitrous oxide for pressures up to 315 atm . over the temperature range from -30° to $150^{\circ} \mathrm{C}$.

EXPERIMENTAL

Nitrous Oxide Purity. The nitrous oxide used is described above. It was further purified by cooling to $-70^{\circ} \mathrm{C}$. and then discharging gas from the vapor phase until the original weight was reduced by 10%.

Apparatus. The design, construction, and calibration of the Burnett apparatus used in this investigation are described by Silberberg, Kobe, and McKetta (30). The equipment was modified to extend the lower temperature limit to $-30^{\circ} \mathrm{C}$.

RESULTS

Compressibility. The compressibility factor is defined as

$$
\begin{equation*}
z=P V / R T \tag{8}
\end{equation*}
$$

The experimental data were treated graphically (30). Large scale plots of $P_{r} N^{r}$ vs. P_{r} were made to determine P_{o} / z_{o}, the ordinate at zero pressure. On these plots ordinates could be read to 0.01 to 0.02% with commensurate precision for the abscissas. The compressibility factor, z_{r}, at each pressure, P_{r}, was calculated by dividing each $P_{r} N^{r}$ by P_{0} / z_{0}.

Compressibility factor isotherms were measured at $15^{\circ} \mathrm{C}$. intervals from -30° to $30^{\circ} \mathrm{C}$. for pressures ranging from atmospheric to slightly below the vapor pressure. Between 50° and $150^{\circ} \mathrm{C}$. the isotherm increment was $25^{\circ} \mathrm{C}$. and pressures up to 65 atm . were measured. However, since the gas compressibility factors at the higher pressures agree so well with Couch's results (11), only the experimental data below 10 atm . are shown in Table VI.

The maximum error, including that from pressure and temperature, in the compressibility factor values of Table

VI is estimated to be 0.20% at -30° and $-15^{\circ} \mathrm{C} ., 0.25 \%$ at $0^{\circ} \mathrm{C} ., 0.30 \%$ at $15^{\circ} \mathrm{C} ., 0.75 \%$ at $30^{\circ} \mathrm{C} ., 0.25 \%$ at $50^{\circ} \mathrm{C}$., and 0.20% at $75^{\circ}, 100^{\circ}, 125^{\circ}$, and $150^{\circ} \mathrm{C}$.

Second Virial Coefficients. The residual volume, α, was defined above as

$$
\begin{equation*}
\alpha=\frac{R T}{P}-V=\frac{R T}{P}(1-z) \tag{1}
\end{equation*}
$$

For each isotherm residual volumes were calculated from the experimental compressibility data by Equation 1 and plotted against pressure. Smoothed curves were drawn through the experimental points and extrapolated to zero pressure, where the intercept is the numerical value of the second virial coefficient with the sign reversed (31).

The experimental residual volume isotherms of nitrous oxide are shown in Figure 6 along with the values computed from Couch's results (11). The experimental second virial coefficients are presented in Table VII and plotted in Figure 7. Smoothed values of the second virial coefficient read from the curve in Figure 7 appear in Table VII. It is estimated that the error in the smoothed second virial coefficients does not exceed 0.025 liter per gram mole at $-30^{\circ} \mathrm{C}$. and decreases to 0.010 liter per gram mole at $150^{\circ} \mathrm{C}$.
Fugacity Coefficients. Lewis (26) defined fugacity as:

$$
\begin{equation*}
R T(d \ln f)=V d P=d G \tag{9}
\end{equation*}
$$

If Equation 9 is combined with Equation 1,

$$
\begin{equation*}
\int_{0}^{P} d \ln \left(\frac{f}{P}\right)=-\frac{1}{R T} \int_{0}^{P} \alpha d P \tag{10}
\end{equation*}
$$

Integrating the left side of Equation 10,

$$
\begin{equation*}
\ln \left(\frac{f}{P}\right)=-\frac{1}{R T} \int_{0}^{P} \alpha d P+\left.\ln \left(\frac{f}{P}\right)\right|_{P=0} \tag{11}
\end{equation*}
$$

By definition, $f / P=1.0$ at $P=0$. Therefore, the last term of Equation 11 is zero.
The value of α at $P=0$ is not indeterminate, as Equation 11 might indicate. Experiment shows that α approaches a finite value at zero pressure (Figure 6).

The ratio of fugacity to pressure is termed the fugacity coefficient, v, Equation 11 may be rewritten as

$$
\begin{equation*}
\nu=\frac{f}{P}=\exp \cdot\left[-\frac{1}{R T} \int_{0}^{P} \alpha d P\right] \tag{12}
\end{equation*}
$$

Fugacity coefficients for nitrous oxide were calculated by Equation 12. The experimental α values of Couch (11) and this work were plotted against pressure with temperature as a parameter. The scale of the plot permitted α to be read to 0.0001 liter per gram mole and the pressure to 0.02 atm . A smoothed curve was drawn through the data for each isotherm and residual volumes were read from the curve at intervals of 1.5 atm . The integration in Equation 12 was performed mathematically by calculating areas under the α vs. P curve at increments of 3 atm. using Simpson's rule.

Values of the fugacity coefficient for gaseous nitrous oxide from -30° to $150^{\circ} \mathrm{C}$. are presented in Table VIII and plotted in Figure 8. The maximum error in these values is estimated to be 0.20%.

DISCUSSION

Low pressure gas compressibility measurements at $0^{\circ} \mathrm{C}$. and 1 atm. were reported by Batuecas (1), Cawood and Patterson (8), and Johnston and Weimer (22). The agreement of their results with those of this work ranges from 0.05 to 0.10%.

Second virial coefficients computed from the low pressure compressibility data of Batuecas (1), Bottomley, Massie,

Table VI. Nitrous Oxide Low Pressure Experimental Compressibility Isotherms

Pressure, Atm.	$\begin{aligned} & \text { Volume, } \\ & \text { Liters/G. } \\ & \text { Mole } \\ & -30^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} z= \\ P V / R T \end{gathered}$	Pressure, Atm.	Volume, Liters/G. Mole $30^{\circ} \mathrm{C}$.	$\begin{gathered} z= \\ P V / R T \end{gathered}$
9.9066	1.7830	0.8853	10.3712	2.2639	0.9440
7.2631	2.5233	0.9184	7.4627	3.2055	0.9614
5.2663	3.5700	0.9424	5.3329	4.5358	0.9722
3.7875	5.0511	0.9591	3.7997	6.4158	0.9802
2.7088	7.1507	0.9706	2.7013	9.0806	0.9861
1.9309	10.1163	0.9790	1.9171	12.8535	0.9903
1.3730	14.3137	0.9851	9.1635	2.5827	0.9512
			6.5720	3.6526	0.9653
8.4645	2.1310	0.9040	4.6943	5.1716	0.9757
6.1674	3.0159	0.9321	3.3415	7.3139	0.9828
4.4496	4.2665	0.9516	2.3736	10.3525	0.9879
3.1929	6.0387	0.9663	1.6826	14.6558	0.9910
2.2781	8.5445	0.9756	1.1925	20.7255	0.9938
1.6218	12.0907	0.9828			
1.1515	17.1071	0.9874	8.1798 5.8551	2.9103 4.1179	0.9568 0.9691
			4.1768	. 8.8243	0.9782
9.5308	6.0493	0.8903	2.9719	8.2477	0.9850
6.9747	2.6372	0.9220	2.1082	11.6631	0.9887
	$-15^{\circ} \mathrm{C}$.		1.4958	16.5087	0.9927
8.3072	2.3524	0.9228		$50^{\circ} \mathrm{C}$.	
6.0117	3.3298	0.9450	8.0016	3.2029	0.9665
4.3174	4.7096	0.9603	5.7136	4.5324	0.9766
3.0877	6.6684	0.9719	4.0644	6.4139	0.9831
2.2003	9.4325	0.9800	2.8868	9.0761	0.9881
1.5641	13.3499	0.9858	2.0474	12.8424	0.9916
1.1094	18.8947	0.9895	9.9677	2.5479	0.9578
10.3084	1.8566	0.9035	7.1362	3.6054	0.9703
7.5104	2.6272	0.9315	5.0900	5.1022	0.9794
5.4196	3.7169	0.9511	3.6187	7.2199	0.9853
3.8861	5.2597	0.9651	2.5682	10.2167	0.9895
2.7744	7.4451	0.9750	1.8207	14.4562	0.9926
1.9754	10.5329	0.9824	8.9511	2.8498	0.9620
1.4032	14.9050	0.9874	6.3966	4.0327	0.9728
			4.5573	5.7068	0.9808
	$0^{\circ} \mathrm{C}$.		3.2382	8.0750	0.9861
8.2453	2.5483	0.9376	2.2983	11.4267	0.9904
5.9366	3.6075	0.9553	1.6289	16.1693	0.9933
4.2546	5.1048	0.9688		$75^{\circ} \mathrm{C}$.	
3.0348	7.2234	0.9778		75.7527	
2.1572	10.2198	0.9836	10.0417	2.7527	0.9676 0.9765
1.5318	14.4596	0.9884	7.1621	3.8951	0.9765
1.0868	20.4673	0.9922	5.0969	5.5120	0.9834
			3.6203	7.7996	0.9884
9.8028	2.1157	0.9253	2.5668	11.0376	0.9917
7.0882	2.9934	0.9468			
5.0916	4.2372	0.9623		$100^{\circ} \mathrm{C}$.	
3.6386	5.9953	0.9732	8.6398	3.4614	0.9767
2.5932	8.4844	0.9814	6.1473	4.8982	0.9834
1.8429	12.0034	0.9870	4.3685	6.9313	0.9889
1.3068	16.9812	0.9904	$\begin{aligned} & 3.0957 \\ & 2.1934 \end{aligned}$	$\begin{array}{r} 9.8079 \\ 13.8788 \end{array}$	$\begin{aligned} & 0.9916 \\ & 0.9942 \end{aligned}$
	$15^{\circ} \mathrm{C}$.		10.3202	2.8871	0.9731
8.2859	2.7016	0.9467	7.3534	4.0853	0.9811
5.9522	3.8237	0.9623	5.2246	5.7809	0.9864
4.2565	5.4079	0.9738	3.7068	8.1810	0.9904
3.0308	7.6565	0.9812	2.6271	11.5758	0.9932
2.1535	10.8305	0.9866			
1.5284	15.3251	0.9908		$125^{\circ} \mathrm{C}$.	
1.0841	21.6982	0.9945	7.9811	4.0255	0.9834
			5.6682	5.6964	0.9883
10.2745	2.1489	0.9341	4.0172	8.0603	0.9911
7.4117	3.0409	0.9535	2.8473	11.4066	0.9941
5.3119	4.3046	0.9670	2.0157	16.1399	0.9958
3.7910	6.0891	0.9766		$150^{\circ} \mathrm{C}$.	
2.6990	8.6173 12	0.9838		4.2106	
1.9161	12.1931	0.9884	8.1284 5.7692	4.2106 5.9583	0.9857 0.9900
0.9622	17.2573	0.9914	5.7692 4.0878	5.9583 8.4320	0.9900 0.9927
	24.4282	0.9938	4.0878 2.8967	8.4320 11.9317	0.9927 0.9954
9.1777	2.4280	0.9424	2.0520	16.8840	0.9978
6.6021	3.4365	0.9593	9.7801	3.4928	0.9838
4.7224	4.8617	0.9710	6.9447	4.9428	0.9886
3.3669	6.8812	0.9796	4.9243	6.9947	0.9920
2.3927	9.7320	0.9851	3.4873	9.8971	0.9940
1.6988	13.7796	0.9898	2.4711	14.0050	0.9967
1.2047	19.4842	0.9932	1.7492	19.8187	0.9984

Figure 6. Residual volume isotherms of nitrous oxide
and Whytlaw-Gray (3), Cawood and Patterson (8), Johnston and Weimer (22), Leduc and Sacerdote (25), and Rayleigh (28) appear in Figure 7 along with the experimental values of the present work. The ICT value (20) was calculated from Rayleigh's work. Smoothed second

Figure 7. Experimental second virial coefficients of nitrous oxide

Table VII. Second Virial Coefficients of Nitrous Oxide
$-B$, Liter/G. Mole

Temp., ${ }^{\circ} \mathrm{C}$.	Exptl.	Smoothed	Berthelot ${ }^{\circ}$	LennardJones ${ }^{\text {b }}$
-30	0.2120	0.2132	0.2180	0.1970
-15	0.1869	0.1842	0.1902	0.1760
0	0.1609	0.1609	0.1675	0.1576
15	0.1423	0.1423	0.1477	0.1418
30	0.1278	0.1272	0.1312	0.1276
50	0.1091	0.1095	0.1134	0.1113
75	0.0920	0.0920	0.0944	0.0939
100	0.0794	0.0788	0.0790	0.0791
125	0.0680	0.0688	0.0650	0.0666
150	0.0582	0.0582	0.0548	0.0560
rom Eq aramete	on 13. $e / k=189$	$b_{0}=0.122$	er/g. mole.	

virial coefficients obtained in this study agree with the work of these other investigators within the estimated experimental accuracy, 0.025 liter per gram mole.

The virial form of the Berthelot equation of state may be used to calculate second virial coefficients. The expression for B derived from the Berthelot equation is

$$
\begin{equation*}
B=\frac{9 R T_{c}}{128 P_{c}}\left[1-\frac{6}{T_{R}^{2}}\right] \tag{13}
\end{equation*}
$$

Couch's critical constants (11) were used in Equation 13 to calculate values of B from -30° to $150^{\circ} \mathrm{C}$. (Table VII). The maximum deviation of the calculated second virial coefficients from the smoothed values of this work is 0.007 liter per gram mole.

Another theoretical relation for computing the second virial coefficients of nonpolar gases is the Lennard-Jones " $6-12$ " potential function described by Hirschfelder, Curtiss, and Bird (16). Hirschfelder's suggested parameters (17) for nitrous oxide were used- $e / k=189^{\circ} \mathrm{K}$. and $b_{0}=0.122$ liter per gram mole. The maximum difference between the calculated second virial coefficients (Table VII) and the smoothed values is 0.016 liter per gram mole at $-30^{\circ} \mathrm{C}$., which is within the experimental accuracy of this work.

Other values for the parameters in the Lennard-Jones function, such as $e / k=195^{\circ}, 180^{\circ}$, and $175^{\circ} \mathrm{K}$. and $b_{0}=$ $0.120,0.145$, and 0.149 liter per gram mole, led to calculated second virial coefficients which gave larger deviations from the experimental results than Hirschfelder's values.

For polar gases, the Stockmayer potential function usually gives good predictions of the second virial coefficient. The Stockmayer function depends not only of the reduced temperature but also on the dipole moment of the gas. For nitrous oxide the dipole moment is so small (0.14 debye) that the function ($\left.T^{*} / t^{*}\right) B^{*}(16)$ cannot be evaluated. Consequently, the Stockmayer potential function is not satisfactory for predicting the second virial coefficients of nitrous oxide, a relatively nonpolar gas.

NOMENCLATURE

[^0]Table VIII. Fugacity Coefficients for Gaseous Nitrous Oxide

	Temptrature ${ }^{\circ} \mathrm{C}$.					$\begin{gathered} \text { Pressure, } \\ \text { Atm. } \\ 123 \end{gathered}$	Temperature, ${ }^{\circ} \mathrm{C}$.				
Pressure, Atm.	Fugaci y Coefficient, $v=f / P$						Fugacity Coefficient, $v=f / P$				
0	1.0000	1.0000	1.0000	1.0000	1.0000		0.5139	0.6323	0.7119	0.7705	0.8162
3	0.9683	0.9740	0.9784	0.9819	0.9847	126	0.5054	0.6245	0.7058	0.7656	0.8123
6	0.9372	0.9482	0.9570	0.9639	0.9694	129	0.4972	0.6168	0.6998	0.7608	0.8084
9	0.9063	0.9226	0.9357	0.9460	0.9542	132	0.4895	0.6092	0.6938	0.7560	0.8045
12	0.8752	0.8970	0.9144	0.9281	0.9391	135	0.4820	0.6018	0.6870	0.7512	0.8007
13.052	$0.8642^{\text {a }}$					138	0.4749	0.5946	0.6820	0.7465	0.7969
15		0.8712	0.8931	0.9102	0.9240	141	0.4680	0.5876	0.6763	0.7419	0.7931
18		0.8456	0.8721	0.8924	0.9089	144	0.4615	0.5807	0.6706	0.7373	0.7894
20.559		$0.7864^{\text {a }}$				147	0.4552	0.5740	0.6650	0.7328	0.7857
21			0.8508	0.8746	0.8939	150	0.4492	0.5675	0.6594	0.7283	0.7820
24			0.8295	0.8568	0.8789						
27			0.8081	0.8390	0.8639	153	0.4434	0.5612	0.6540	0.7238	0.7784
30			0.7864	0.8212	0.8489	156	0.4378	0.5551	0.6486	0.7195	0.7748
30.786			$0.7806^{\text {a }}$			159	0.4324	0.5491	0.6434	0.7151	0.7712
33				0.8033	0.8340	162	0.4273	0.5433	0.6382	0.7108	0.7677
36				0.8033 0.7853	0.8340 0.8190	165	0.4223	0.5377	0.6331	0.7066 0.7024	0.7643
39				0.7672	0.8041	168 171	0.4175 0.4128	0.5323 0.5270	0.6281 0.6233	0.7024 0.6983	0.7608 0.7574
42				0.7487	0.7891	174	0.4128 0.4084	0.5219	0.6185	0.6943	0.7574 0.7541
44.438				$0.7334^{\text {a }}$		174 177	0.4084 0.4041	0.5219 0.5170	0.6185 0.6138	0.6943 0.6903	0.7541 0.7507
45					0.7740	180	0.3999	0.5122	0.6092	0.6863	0.7474
48					0.7589	180	0.399	0.512	0.6032	0.6863	0.747
51					0.7436						
54					0.7281	183	0.3959	0.5075	0.6047	0.6824	0.7442
57					0.7124	186	0.3920	0.5030	0.6003	0.6786	0.7410
60					0.6961	189	0.3882	0.4986	0.5960	0.6748	0.7379
62.359					$0.6828^{\text {a }}$	192	0.3846	0.4943	0.5918	0.6712	0.7348
	Temperature, ${ }^{\circ} \mathrm{C}$.					195	0.3811	0.4902	0.5876	0.6675	0.7317
	50	75	100	125	150	201	0.3744	0.4823	0.5796	0.6604	0.7256
0	1.0000	1.0000	1.0000	1.0000	1.0000	204	0.3712	0.4785	0.5758	0.6569	0.7227
3	0.9876	0.9904	0.9923	0.9938	0.9950	207	0.3681	0.4748	0.5720	0.6535	0.7198
6	0.9754	0.9808	0.9846	0.9876	0.9901	210	0.3651	0.4712	0.5683	0.6502	0.7169
9	0.9631	0.9712	0.9770	0.9815	0.9852						
12	0.9509	0.9616	0.9694	0.9753	0.9803	213	0.3622	0.4677	0.5647	0.6469	0.7141
15	0.9387	0.9521	0.9618	0.9693	0.9755	216	0.3594	0.4643	0.5612	0.6437	0.7113
18	0.9266	0.9426	0.9542	0.9632	0.9706	219	0.3567	0.4610	0.5578	0.6405	0.7085
21	0.9145	0.9332	0.9467	0.9572	0.9658	222	0.3540	0.4578	0.5544	0.6374	0.7058
24	0.9024	0.9238	0.9392	0.9512	0.9610	225	0.3515	0.4547	0.5511	0.6343	0.7032
27	0.8903	0.9144	0.9318	0.9452	0.9563	228	0.3490	0.4517	0.5479	0.6313	0.7005
30	0.8783	0.9050	0.9243	0.9393	0.9515	231	0.3466	0.4488	0.5448	0.6284	0.6979
33	0.8663	0.8956	0.9169	0.9334	0.9468	234	0.3442	0.4459	0.5418	0.6255	0.6954
36	0.8544	0.8863	0.9095	0.9275	0.9421	237	0.3419	0.4431	0.5388	0.6226	0.6929
39	0.8424	0.8770	0.9022	0.9216	0.9375	240	0.3397	0.4404	0.5358	0.6198	0.6904
42	0.8305	0.8678	0.8948	0.9158	0.9330						
45	0.8186	0.8585	0.8876	0.9100	0.9284	243	0.3375	0.4378	0.5330	0.6171	0.6880
48	0.8067	0.8493	0.8803	0.9043	0.9238	246	0.3354	0.4352	0.5302	0.6144	0.6856
51	0.7948	0.8402	0.8731	0.8985	0.9192	249	0.3333	0.4327	0.5275	0.6118	0.6832
54	0.7830	0.8310	0.8659	0.8928	0.9146	252	0.3313	0.4302	0.5248	0.6092	0.6809
57	0.7711	0.8220	0.8588	0.8872	0.9100	255	0.3294	0.4278	0.5223	0.6067	0.6786
60	0.7592	0.8129	0.8517	0.8815	0.9055	258	0.3275	0.4255	0.5197	0.6042	0.6764
63	0.7474	0.8039	0.8446	0.8759	0.9010	261	0.3256	0.4233	0.5172	0.6018	0.6742
66	0.7355	0.7950	0.8376	0.8703	0.8965	264	0.3238	0.4211	0.5148	0.5994	0.6720
69	0.7235	0.7860	0.8306	0.8648	0.8920	270	0.3221 0.3204	0.4189 0.4168	0.5125 0.5102	0.5971 0.5948	0.6699 0.6678
72	0.7115	0.7771	0.8236	0.8592	0.8876	270	0.3204	0.4168	0.6102	0.5048	0.6678
75	0.6994	0.7683	0.8167	0.8538	0.8832	273	, 0.3187	0.4148	0.5079	0.5926	0.6657
78	0.6871	0.7594	0.8098	0.8483	0.8788	276	-0.3171	0.4128	0.5057	0.5904	0.6637
81	0.6784	0.7506	0.8030	0.8428	0.8744	279	0.3156	0.4108	0.5035	0.5882	0.6617
84	0.6622	0.7419	0.7962	0.8374	0.8701	282	0.3140	0.4089	0.5014	0.5861	0.6598
87	0.6500	0.7332	0.7894	0.8321	0.8658	285	0.3125	0.4071	0.4994	0.5841	0.6578
90	0.6377	0.7245	0.7827	0.8268	0.8615	288	0.3110	0.4053	0.4974	0.5820	0.6560
93	0.6245	0.7158	0.7760	0.8214	0.8572	291	0.3096	0.4035	0.4954	0.5801	0.6541
96	0.6114	0.7072	0.7694	0.8162	0.8530	294	0.3082	0.4018	0.4935	0.5781	0.6523
99	0.5986	0.6986	0.7628	0.8110	0.8488	297	0.3069	0.4002	0.4916	0.5762	0.6505
102	0.5862	0.6901	0.7563	0.8058	0.8446	300	0.3056	0.3985	0.4898	0.5744	0.6488
105	0.5744	0.6816	0.7498	0.8006	0.8405						
108	0.5631	0.6732	0.7434	0.7955	0.8364	303	0.3043	0.3969	0.4880	0.5725	0.6471
111	0.5523	0.6649	0.7370	0.7904	0.8323	306	0.3030	0.3954	0.4862	0.5708	0.6454
114	0.5420	0.6566	0.7306	0.7854	0.8282	309	0.3018	0.3938	0.4845	0.5690	0.6437
117	0.5322	0.6484	0.7243	0.7804	0.8242	312	0.3006	0.3924	0.4829	0.5673	0.6421
120	0.5228	0.6403	0.7181	0.7754	0.8202	315	0.2995	0.3909	0.4812	0.5656	0.6406

[^1]

Figure 8. Fugacity coefficients for gaseous nitrous oxide
$\Delta H_{v}=$ latent heat of vaporization, cal./g.
$J=$ mechanical equivalent of heat, $0.0242179 \mathrm{cal} . / \mathrm{ml}$. atm.
$\mathrm{M}=$ molecular weight (44.016 for nitrous oxide)
$N=$ Burnett apparatus constant
$P=$ absolute pressure, atm.
$R=$ gas constant, 0.0820545 liter atm./g. mole ${ }^{\circ} \mathrm{K}$.
$r_{d}=$ density residual, g. $/ \mathrm{ml}$.
$r_{e}=$ density residual, g. $/ \mathrm{ml}$.
$r_{P}=$ logarithmic vapor pressure residual
$r_{v}=$ residual latent heat of vaporization, cal. $/ \mathrm{g}$.
$T=$ absolute temperature, ${ }^{\circ} \mathrm{K}$. (ice point $=273.16^{\circ} \mathrm{K}$.)
$t=$ temperature, ${ }^{\circ} \mathrm{C}$.
$V=$ molal volume, liter/g. mole
$v=$ specific volume, ml. g .
$z=$ compressibility factor, $z=P V / R T$
$\alpha=$ residual volume, liter $/ \mathrm{g}$. mole
$\nu=$ fugacity coefficient, f / p

Subscripts

$c=$ critical state
$g=$ saturated gas phase
$L=$ saturated liquid phase
$0=$ initial state of a run
$r=$ number of the expansion

Superscript

* = parameter in Stockmayer potential function

ACKNOWLEDGMENT

Financial assistance for the work at high pressures was provided by the Humble Oil and Refining Co. and the Office of Ordnance Research.
H.R. Heichelheim aided in the experimental measurements and computer calculations on the fugacity coefficients of nitrous oxide.

Financial assistance for the work at low pressures was given by the Office of Ordnance Research, Phillips Petroleum Co., E.I. du Pont de Nemours and Co., and the Robert Glenn Rapp Foundation.

literature cited

(1) Batuecas, T., J. chim. phys. 28, 572-86 (1931).
(2) Beattie, J.A., Proc. Am. Acad. Arts Sci. 69, 389-405 (1934).
(3) Bottomley, G.A., Massie, D.S., Whytlaw-Gray, R., Proc. Roy. Soc. (London) A200, 201-18 (1950).
(4) Britton, G.T., Trans. Faraday Soc. 25, 520-5 (1929).
(5) Cailletet, L., Mathias, E., Compt. rend. 102, 1202-7 (1886).
(6) Cardoso, E., Arni, E., J. chim. phys. 10, 504-8 (1912).
(7) Carlton-Sutton, T., Ambler, H.R., Williams, G.W., Proc. Phys. Soc. (London) 48, 189-202 (1936).
(8) Cawood, W., Patterson, H.S., J. Chem. Soc. 1933, pp. 619-24.
(9) Cherney, B.J., Marchman, H., York., R., Ind. Eng. Chem. 41, 2653-8 (1949).
(10) Cook, D., Trans. Faraday Soc. 49, 716-23 (1953).
(11) Couch, E.J., "Thermodynamic Properties of Nitrous Oxide," Ph. D. dissertation in chemical engineering, University of Texas, Austin, Tex., 1956.
(12) d'Andréeff, E., Ann. chim. phys. 56, 317-33 (1859).
(13) Dewar, J., Phil. Mag. 18, 210-6 (1884).
(14) Grunmach, L., Ann. Physik. 15, 401-6 (1904).
(15) Hellwig, L.R., "Pressure-Volume-Temperature Properties of Sulfur Dioxide," Ph. D. dissertation in chemical engineering, University of Texas, Austin, Tex., 1955.
(16) Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., "Molecular Theory of Gases," pp. 162-70, Wiley, New York, 1954.
(17) Ibid., p. 1111.
(18) Hirth, L.J., "Gas Compressibility of Nitrous Oxide and of Sulfur Dioxide by the Burnett Method," Ph. D. dissertation in chemical engineering, University of Texas, Austin, Tex., 1958.
(19) Hoge, H.J., J. Research Natl. Bur. Standards 34, 281-93 (1945).
(20) "International Critical Tables," Vol. III, p. 229, McGrawHill, New York, 1928.
(21) Janssen, W.J., Beibl. Ann. Physik. 2, 136-41 (1878).
(22) Johnston, H.L., Weimer, H.R., J. Am. Chem. Soc. 56, 625-30 (1934).
(23) Keyes, F.G., Proc. Am. Acad. Arts Sci. 68, 505 (1933).
(24) Kuenen, J.P., Phil. Mag. 40, 173-94 (1895).
(25) Leduc, A., Sacerdote, P., Compt. rend. 125, 297-9 (1897).
(26) Lewis, G.N., Proc. Am. Acad. Arts Sci. 37, 36-9 (1901).
(27) Quinn, E.L., Wermimont, G., J. Am. Chem. Soc. 51, 2002-8 (1929).
(28) Rayleigh, L., Phil. Trans. 204, 351-72 (1905).
(29) Rice, O.K., J. Chem. Phys. 23, 164-73 (1955).
(30) Silberberg, I.H., Kobe, K.A., McKetta, J.J., J. Chem. Eng. Data 4, 314-23 (1959).
(31) Ibid., pp. 323-9.
(32) Villard, P., Ann. chim. phys. 10 (7), 387-432 (1897).
(33) Villard, P., Compt. rend. 118, 1096-9 (1894).

Received for review March 30, 1960. Accepted November 15, 1960.

[^0]: $B=$ second virial coefficient
 $b_{0}=$ parameter in Lennard-Jones and Stockmayer potential functions
 $\mathrm{d}=$ density, g./ml.
 $e / k=$ parameter in Lennard-Jones and Stockmayer potential functions
 $f=$ fugacity
 $G=$ molal free energy

[^1]: ${ }^{a}$ Value at saturation.

