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MANY METHODS have been proposed for predicting 
the distribution of a solute between partially miscible 
solvents from a minimum of data. Empirical methods 
which are known as tie-line correlations for ternary systems 
may be useful for interpolation and extrapolation when the 
solubility data and some ternary liquid-liquid equilibrium 
data are available ( 4 ,  6). In  addition, several methods for 
predicting ternary liquid equilibrium relationships by using 
activities of three components and mathematical procedures 
for estimating values of activity coefficients from binary 
and some ternary data have been proposed. The use of 
ternary activity coefficient equations is ordinarily limited 
to cases where the solubility curve of the ternary liquid 
system is known, because location of the triple intersection 
points of the constant activity curves on the triangular 
diagram is a difficult trial and error procedure. 

I n  a regular ternary solution, phase relationships can be 
readily established with only three energy parameters for 
the interaction between different molecules or atoms ( I ,  9). 
Phase diagrams are simpler in the symmetrical type where 
two parameters are equal and the tie lines are parallel to 
the base of the triangle. Hand ( 4 )  presented an interesting 
method of plotting the ternary data in such a manner as 
to make the tie lines parallel to the base of the triangle 
as in a symmetrical type for regular ternary mixtures. This 
method suggests the possibility of correlating the ternary 
liquid equilibrium data with the theory of regular ternary 
mixtures. 

TERNARY DATA METHODS 
IN SYMMETRICAL FORM 

There are few liquid ternary systems in which the solu- 
bility curves are symmetrical in two of the components, 
or the tie lines are parallel to the base of the triangle. 
Hand ( 4 )  has indicated that the tie lines can be made 
horizontal by plotting with properly selected units for one of 
the immiscible liquids, and the distribution equation is 
expressed by the following relation 

E‘ = E” 
S’ + KR’ S” + KR” 

where R ,  E ,  and S denote the mole or weight fractions of 
the diluent, the solute, and the solvent, respectively, and 
K is an empirical constant. The diluent-rich phase is 
designated by one prime, and the solvent rich phase by two 
primes. Examination of many data for systems described in 
the literature shows that the isothermal solubility curves 
(with horizontal tie lines plotted on triangular diagrams by 
changing the units) are not ordinarily symmetrical in two of 
the components, and that the value of K or (E’S” - E ’ S ’ )  / 
(E”R’ - E’R”) is not always a constant over the entire 
range of compositions. In systems which comprise two 
partially miscible pairs of liquids and one miscible, the value 
of K becomes infinite a t  zero concentration of the diluent. 

Let the respective concentrations of the solvent, the 
diluent, and the solute after a change of units be X I ,  X j ,  and 
X i .  Assume that the isotherm can be made symmetrical in 
X ,  and X ,  by using units in which the concentrations of 
each component are multiplied by some proper values. 
Then, 

(34 S‘ b R’ 
x; = s, + QE, + bR’ 1 x; = - S’ + QE‘ + bR’ 

where a, b ,  and c are the empirical coefficients. When either 
a and c is assumed to be a constant, the other may vary on 
changing the concentration of the solute. 

The value of b corresponding to the value of K in Equa- 
tion l is represented by 

b = (S’S”/R’R”)’ ’ (4) 

If the relative distribution ratio is designated by p ,  

When c is assumed to be a constant, a may be expressed 
in terms of the ratios of one component to the other compo- 
nent in one phase as follows: 

Numerical values according to Equations 7 and 8, are 
convenient because these formulas are not dependent on 
use of weight or mole fractions in concentration units. Thus, 
when the compositions are plotted on a triangular graph 
as fractions in which concentrations of the diluent in each 
phase are multiplied by b,  the solute in solvent-rich phase 
by a constant c, and the solute in diluent-rich phase by 
cp(XI’/Xi’), and then the total sum of concentrations in 
each phase after a change of units is brought back to unity, 
the solubility curve of the system will be symmetrical with 
respect to the solvent and the diluent, and the tie lines will 
be parallel to the base of the triangle. 

RELATIONS OF REGULAR TERNARY 
SOLUTION THEORY TO 
TERNARY LIQUID EQUILIBRIUM DATA 

The symmetrical phase diagrams after a change of units 
are similar to those for symmetrical regular ternary mix- 
tures. I f  all the empirical coefficients a, b,  and c in Equations 
3a and 3b are always constant, the system could be treated 
as the regular ternary mixtures. Very few systems satisfy 
the conditions for forming regular ternary mixtures in which 
the molecules are assumed to be alike in size and shape, and 
the empirical coefficients are not always constant, as has 
been stated for K in Equation 1. But it will be possible 
to obtain the empirical relationships between symmetrical 
phase diagrams for regular ternary solutions and those for 
actual ternary solutions. 
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A statistical study has been made of regular ternary 
solutions, and equilibrium equations have been deduced 
using the 0th order and quasi-chemical approximations by 
Bell ( I ) .  In  the 0th approximation which corresponds to the 
limiting form taken by the first approximation when the 
coordination number, z, is made infinite, the conjugate 
phases in cases of the symmetrical type are obtained ( I ,  
9) from 

where x is mole fraction of components, and w / z  is the 
interaction energy of a pair of nearest neighbors, one being 
of species 1 and the other of species 2 ;  k is Boltzmann’s 
constant and T the absolute temperature. The plait point of 
the binodal curve is given by 

XI = x2 

and 

(1 - xs ) (w/kT)  = 2 (10) 

If x 3  = 0, Equations 9 and 10 reduce to the equations for 
the binary system. 

Values of w / k T  may be obtained from the mutual solu- 
bility data of the nonconsolute components with xs = 0, 

where the subscript, 0, refers to the binary solutions of the 
diluent‘ and the solvent. 

To obtain the relation between values derived from the 
theory of regular ternary solutions and from symmetrical 
ternary liquid equilibrium data after a change of units, 
the experimental data in terms of X$’/Xi’ are compared 
with the theoretical values of x3 /x1  assuming XI’IXI’ = 
x2/x1. XI’/XI‘ and x2 /x1  change the values in a similar 
manner with increasing concentration of the third compo- 
nent until they become unity; values of w / k T  are obtainable 
from mutual solubility data of the nonconsolute components 
in terms of X 2 / X l  for most binary nonelectrolyte liquid 
systems (7). Figure 1 shows the plots of E”/S’’ against 
x3 /x1  on double logarithmic coordinates in which values of 
x3 /x1  are calculated from Equations 9 and 10, assuming 
x 2 / x I  = X;‘/XI‘. A linear relation is found to exist between 
log(E”/S”) and 1og(x3/xI), within their probable experi- 
mental accuracy, except a few systems where it seems 
plausible to correlate the data by two straight lines 
changing their slopes. Similar results are obtained between 
the function log(E”/S”) and log(x3/xl) according to  the 
first approximation ( I ) ,  showing little difference between 
the first approximation and the 0th approximation for the 
correlation of the data for isothermal liquid-liquid equi- 
libria. Calculation according to the 0th approximation 
appears practical and less laborious. The relation shown in 
Figure 1 can be expressed by 

log (E”/S”) = n log ( X ? / X I )  + KI (12) 

where n and K 1  are empirical constants. 
Since the existence of linear relation between log(E”/S”) 

and log(E’/R’) has been found ( 4 ) ,  a plot of values of 
E’/ R’ against xR/xl on double logarithmic coordinates may 
give a straight line for the system which comprises two 
miscible, and one partially miscible pair of liquids. There- 
fore 

log(E’/R’) = n‘ log(xa/xl) + K 2  (13) 

However, when E” is less than E’ (E’ will become less 
than E” if the components of the diluent and the solvent 
are exchanged), the method expressed by Equation 1 2  
seems preferable, because plots expressed by Equation 13 
gave more instances in which data can not be correlated 
by a straight line having a definite slope. 

Coefficient 6 is sometimes a variable. When plots of 
corresponding values of l / b  against x 2 / x l  are made, curves 
similar to hyperbolas are obtained. If such curves are 
assumed to be represented by hyperbolas approximately, 
values of b may be obtained from values of x 2 / x 1  by 

b = bob + q /  (x~PI) - ( x ? / x I ) o \ ] / ~  + (4 - b o ) {  ( X ~ X I )  - ( x ~ / x I ) o } ]  (14) 

where the subscript 0 refers to values for the binary solu- 
tions of the solvent and the diluent which correspond to the 
zero concentration of the solute, E = 0; and p and q are the 
empirical constants which are defined from two conjugate 
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Figure 1. Plot of double logarithmic coordinates for several 
systems shows the existence of a simple relation between the 
actual and the symmetrical, regular ternary solutions for 

values of solute-solvent ratio in the solvent-rich phase 
(See Figure 2 for legend) 

ternary liquid equilibrium data and mutual solubility of 
solvent and di1uent.-Plots (Figure 2 )  of bbo/ ( b  - bo) against 
l / (  ( x Z / x l )  - (x2/x1)o}, for several systems show that Equa- 
tion 14 holds over the entire range of compositions within 
their probable experimental accuracy. Ratios of the concen- 
trations of two components in each phase, can be evaluated 
from these three data by the following relations: 

Since a linear relation between log p and log(x2/x1) has 
been found empirically for most systems (6), 

log p = m log(x?/xl) + Ki (17) 

isothermal ternary phase equilibria for the system will be 
established by algebraic Equations 12 or 13, 15, 16, and 5 
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Figure 2. Plot tor several systems describes the 
existence of hyperbolic relation between 1 /b 

5 and x z / x I  approximately 

System Temp., 
R E s C. Reference 

0 ~ - C ~ H I ~ - C ~ H ~ C H T N H ~  20 5 
p HzO-C?H50H-CsHs 25 14 

P ’0 H?O-C?HiOH-CsHs 25 3 
9 H z O - C ~ H ~ O H - C ~ H ~  25 73 
8 Hz0-CH3COOH-CsHs 25 4 

25 76 
CsHs-I ,4-C1HsOz-Hz0 25 2 

- 
a“ 
P O  

A HgO-CH3COOH-CsHsCH7 

- 5  -k CH?CI. CHCIz-CH7COCH3-HzO 25 72 
0 CsHs-n*CiHgOH-Hzo 25 I5 
0 H z O - ~ - C ~ H ~ O H - C ~ H ~  25 I I  

15 IO * HzO-CH IOH-n-C4HgOH 
A H?O-CH1COOH-C~HiOCrH, 25 a 

-IO 
0 50 IO0 

1 /((x*/xI)-(xI/xI)~I 

over the entire range of compositions from values of bo and 
w l k T ,  which are obtained from the binary data for the 
diluent and the solvent, and those of the empirical constants 
p ,  q, m,  n,  or n’, K 1  or K 2  and Ka which are defined from two 
conjugate ternary liquid equilibrium data by Equations 14 
and 1 2  or 13 and 17. 

The method of plotting data according to Equations 12 
or 13, 14, and 17 may be useful for the correlation of 
ternary liquid equilibrium data, especially when the concen- 
trations of two parts in each phase can be easily deter- 
mined. Because phase diagrams from two pairs of tie-line 
data and mutual solubility of the diluent and the solvent 
can be established by this method, the application of these 
correlations by using activities of three components will 
greatly reduce the work in the prediction of ternary liquid 
equilibria, even if the data of ternary solubility curve are 
not available. The calculation of the theoretical values of 
X . ~ / X ]  from x?/xl can be simplified by using a chart correlated 
with the values of x n / x l  and x 2 / x 1 .  

EXAMPLE OF CALCULATION 

A typical example is given to show the application of 
equations and methods of extension of ternary liquid 
equilibrium data. Although the water-2-propanol-benzene 
system a t  25” C., given as an example, is one of the 
“solutropic system,” phase diagrams were established by 
the same procedure not only for ordinary systems, but also 
for those containing two partially miscible pairs. In  the 
extension of limited data by these equations very consistent 
data are required for the evaluation of empirical constants; 
otherwise discontinuity on the solubility curve near the 
plait point may occur. Even if the extrapolation to the 
plait point were unsatisfactory by using consistent data far 
from the plait point, the interpolation of these data would 
be accurate enough to use for practical purposes. 

Such values estimated by interpolation of the experi- 
mental data of Olsen and Washburn (11) as shown in Table 
I were used for the basic data on the calculation of phase 
equilibria. According to Equations 4 and 7, numerical 
values of b and XB’/X:’ = X Z / X I  for these data are calculated 
as shown in Table I. Using values of b and x2 /n l ,  p and q 
are defined from Equation 14 as 

p = -0.01274 q = -0.2657 

From Equation 11 

u: - 1.001026 x log 0.001026 = 2.995 -- 
2.303 kT -0.998974 

Values of X ~ / X I  corresponding to values of x r / n l  between 
0.001026 and 1.0 may be obtained by Equations 9 and 10; 
only three values corresponding to the given data are shown 
inTable I. Values of n and K1 are obtained by Equation 
12,  and values of m and K?,  by Equation 17 as follows: 
n = 1.146, K1 = -0.1402; m = -0.9287, K ,  = -0.0082 
At the plait point, x 2 / x l  = 1. 
According to Equation 10 

x ~ J x ~  = U! kT - 2 = 4.8962 

Denoting values at  the plait point by subscript p ,  

log(EpiSp) = 1.146 log 4.8962 - 0.1402 = log 4.4702 

Also 

l / ( l / l bo  - 1/bp) = -0.01274/(1-0.001026) - 0.2657 = 1/(-3.5920) 

l i b p  = 4.2749 

Table 1. Equilibrium and Some Calculated Weight Fractions for the Water(R)-2-propanol(E)-Benzene(S) System at 25O C. 

E” R” S” E‘ R’ S’ l i b  X6’Jx:’ X d X l  

0 0.0007 0.9993 0 0.9985 0.0015 0.6829 0.001026 0 
0.386 0.044 0.570 0.279 0.710 0.011 2.2321 0.03458 0.9433 
0.419 0.061 0.520 0.285 0.702 0.013 2.5169 0.04661 1.0979 
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Accordingly, A- IBOPROPANOL 

(1 - Sp)/Sp = (E,  + R p ) / S p  = 4.4702 + 4.2749 = 8.7451 

S, = 0.1026, E,  = 0.4586 

At the other value of x2/xl-for instance, x 2 / x I  = 0.01- 

In the way described above, 

log(E”/S”) = log 0.3067 

bbo/ ( b  - bo) = l /  (-0.5931) l i b  = 1.2760 

From Equation 15, 

R“/S“ = 0.01 x 1.276 = 0.01276 (1 - S”)/S” = 0.3195, 

S” = 0.7579, E” = 0.2324 

From Equation 16, 

S‘/R‘ = 0.01/1.276 = 0.00784 

By Equation 17 

log 0 = 0.9287 X 2 - 0.0082 = 1.8492 = 10g(1/0.01415) 

E’/R’ = (E”/S”) / (R”/S”)I  = (0.3067 x 0.01415)/0.01276 = 0.3401 

(1 - R’) /R‘ = 0.3480, and E’ = 0.2523 

Similarly, compositions in the conjugate phases are 
evaluated from any other value of x2/x1. These results are 
shown in Figure 3. Except for the disagreement on the 
solubility curve near the plait point, which is of little 
importance in the design of extraction processes from a 
practical point of view, the agreement of calculated values 
with experimental data is good, and the phase diagram 
can be represented satisfactorily by these equations. 

R’ = 0.7419, 

NOMENCLATURE 

a =  
b =  

E =  
K ,  K , ,  K2, K3r P ,  P = 

k =  
m, n,  n‘ = 

R =  
s =  
T =  

c =  

W I Z  = 

x =  
x =  

z =  
R =  

caX;’/XI’ 
(S’S”/R’R”)‘ 
constant 
mole (or weight) fraction of solute 
empirical constants 
Boltzmann’s constant 
empirical coefficients 
mole (or weight) fraction of diluent 
mole (or weight) fraction of solvent 
absolute temperature 
interaction energy of a pair of nearest 
neighbors, one, of species 1; other, of species 2 
mole (or weight) fraction of the component 
after unit change 
mole fraction of component for symmetrical 
ternary regular mixtures 
coordination number 
relative distribution ratio 

d ”  “ “ “ 
BEUZENE WYBTLR 

0 - - - - E p X F T L .  ( 1 1 ;  
e- C A E D  

Figure 3. Calculated and experimental equilibria for the 

weight fraction 
water-2-propanol-benzene system at 25’ C. 

Subscripts 
1 = solvent 
2 = diluent 
3 = solute 
0 = values for binary solutions of solvent and diluent with E = 0 
p = values at  plait point 

Superscripts 
’ = raffinate phase 
” = extract (solvent) phase 
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