# Vapor-Liquid Equilibrium in the Propylene-Water System

C. C. Li<sup>1</sup> and JOHN J. McKETTA The University of Texas, Austin, Texas

Experimental data are presented covering the mutual solubilities of propylene in water in (a) the 2-phase region of vapor and water-rich liquid, (b) the 2-phase region of propylene-rich liquid and water-rich liquid, and (c) the 3-phase region of the vapor, propylene-rich liquid and water-rich liquid. The experimental temperatures range from 100° to 280° F., while the pressure range is from 36.2 to 4794.7 p.s.i.a.

 $T_{\rm HE}$  KNOWLEDGE of the behavior of systems involving hydrocarbons and water, especially at high pressure and temperature, is of considerable importance in petrochemical, refining, and producing industries. The purpose of this study is to contribute to the knowledge of the phase behavior of the propylene-water binary system. The experimental work of this investigation covers the mutual solubilities of propylene and water in the two-phase region of vapor and water-rich liquid, the two-phase region of

<sup>1</sup>Present address, Allied Chemical Co., Morristown, N. J.

propylene-rich liquid and water-rich liquid, and the threephase region of vapor, propylene-rich liquid, and waterrich liquid. The experimental temperatures range from  $100^{\circ}$  to  $280^{\circ}$  F. while the pressure range is from 36.2 to 4794.7 p.s.i.a.

The experimental data are presented as total pressurecomposition diagrams, at a constant temperature, thoughout the investigation except in the three-phase region. The three-phase data are plotted as temperature vs. composition since here the temperature and pressure are uniquely defined in a binary system.

| Temp.,<br>° F. | Pressure,<br>P.S.I.A. | Water-Rich<br>Liquid Mole<br>Fraction of<br>Propylene × 10 <sup>4</sup> | Propylene-Rich<br>Vapor Mole<br>Fraction of<br>Water × 10 <sup>4</sup> | Temp.,<br>°F. | Pressure,<br>P.S.I.A. | Water-Rich<br>Liquid Mole<br>Fraction of<br>Propylene × 10 <sup>4</sup> | Propylene-Rich<br>Vapor Mole<br>Fraction of<br>Water × 10 <sup>4</sup> |
|----------------|-----------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|-----------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| 100.05         | 37.0                  | 1.5236                                                                  | 269.6                                                                  | 220,20        | 1534.0                | 13.2022                                                                 | 111.3                                                                  |
| 100.10         | 66.3                  | 2.9767                                                                  | 126.1                                                                  | 220.20        | 1832.2                | 13.5276                                                                 | 97.1                                                                   |
| 100.00         | 93.0                  | 4.1805                                                                  | 90.0                                                                   | 220.25        | 2037.7                | 13.7631                                                                 |                                                                        |
| 100.05         | 130.0                 | 5.5750                                                                  | 63.9                                                                   | 220.20        | 2123.0                |                                                                         | 89.8                                                                   |
| 100.10         | 167.7                 | 7.0699                                                                  | 46.5                                                                   | 220.20        | 2450.0                | 14.2283                                                                 | 84.7                                                                   |
| 100.10         | 205.0                 | 7.6421                                                                  | 39.2                                                                   | 220.20        | 3046.0                | 14.9856                                                                 | 84.3                                                                   |
| 100.00         | 215.6                 | 7.9896                                                                  | 36.5                                                                   | 220.25        | 3708.0                | 15.5092                                                                 | 81.4                                                                   |
| 160.25         | 77.2                  | 2.0360                                                                  | 619.2                                                                  | 220.25        | 4283.5                | 16.0112                                                                 | 77.3                                                                   |
| 160.20         | 136.6                 | 4.2861                                                                  | 344.9                                                                  | 220.30        | 4701.0                |                                                                         | 78.0                                                                   |
| 160.25         | 187.0                 | 5.5390                                                                  | 234.6                                                                  | 280.02        | 209.3                 |                                                                         | 2585.8                                                                 |
| 160.20         | 219.0                 | 5.3539                                                                  | 183.7                                                                  | 280.02        | 229.2                 | 4.6776                                                                  |                                                                        |
| 160.25         | 289.5                 | 6.9974                                                                  | 139.9                                                                  | 280.02        | 309.5                 | 6.0831                                                                  | 1809.5                                                                 |
| 160.25         | 328.0                 | 8.1204                                                                  | 125.5                                                                  | 280.05        | 408.0                 | 8.0909                                                                  | 1186.8                                                                 |
| 160.00         | 370.5                 | 8.4676                                                                  | 104.0                                                                  | 280.05        | 507.0                 | 9.5986                                                                  | 968.6                                                                  |
| 160.25         | 432.0                 | 9.1853                                                                  | 96.4                                                                   | 279.92        | 596.0                 | 12.4658                                                                 | 785.4                                                                  |
| 220.10         | 117.1                 | 1.9709                                                                  | 1629.3                                                                 | 280.02        | 710.0                 |                                                                         | 692.5                                                                  |
| 220.05         | 183.1                 | 3.0152                                                                  | 926.0                                                                  | 280.02        | 848.0                 | 13.9960                                                                 | 554.4                                                                  |
| 220.20         | 247.0                 | 4.9579                                                                  | 757.4                                                                  | 279.85        | 1123.0                | 16.3154                                                                 | 446.1                                                                  |
| 220.20         | 344.8                 | 6.2384                                                                  | 510.0                                                                  | 279.85        | 1324.0                | 17.1891                                                                 | 356.1                                                                  |
| 220.20         | 393.5                 | 6.8842                                                                  | 440.9                                                                  | 279.85        | 1489.0                | 17.1560                                                                 | 341.7                                                                  |
| 220.20         | 488.0                 | 8.4674                                                                  | 328.8                                                                  | 279.85        | 1910.0                | 18.1504                                                                 | 276.6                                                                  |
| 220.20         | 586.0                 | 9.7630                                                                  | 283.8                                                                  | 279.85        | 2210.0                | 18.7990                                                                 | 278.4                                                                  |
| 220.30         | 693.5                 | 11.1659                                                                 | 248.1                                                                  | 279.85        | 2813.0                | 19.5650                                                                 | 253.0                                                                  |
| 220.20         | 816.0                 | 12.1382                                                                 | 192.1                                                                  | 279.85        | 3274.0                | 20.3464                                                                 | 248.6                                                                  |
| 220.20         | 1038.5                | 12.8830                                                                 | 161.6                                                                  | 279.85        | 3755.0                | 21.0183                                                                 | 234.3                                                                  |
| 220.25         | 1252.5                | 13.3389                                                                 | 131.6                                                                  | 279.85        | 4670.0                | 22.6356                                                                 | 207.3                                                                  |

Table I. Experimental data in the two-phase vapor-liquid region

#### EXPERIMENTAL

Apparatus. The apparatus was essentially the same as described in detail by Wehe and McKetta (7, 8). Only a few minor changes were made to adapt the equipment to this system. The apparatus consisted of a high pressure windowed equilibrium cell which is enclosed within an insulated constant temperature air bath, charging lines to admit the propylene and water, and separate sampling lines for removing portions of the equilibrium phases.

Portions of the lightest phase were taken from the top of the equilibrium cell and pumped into the bottom of the cell using a positive displacement magnetic pump. Auxiliary equipment included temperature and pressure controls, and storage reservoirs for the propylene, water and mercury.

The pressure was measured using two Heise Bourdon tube gages (a 0 to 600 p.s.i. range and a 0 to 5000 p.s.i. range). At the start and at the end of each isotherm the gages were calibrated against an Aminco dead weight gage.

The analytical equipment for the propylene-rich phases consisted of a modified electrolytic water analyzer (Model W, Manufacturing Equipment and Engineering Co.), a Honeywell Type 153 Electronik recorder with a range of 0 to 50 mv. and a continuous integrator. The entire apparatus was calibrated before and after the experimental work using known samples. The analytical apparatus for the water-rich phase was discussed in detail by Wehe and McKetta (9).

#### MATERIALS

The propylene used in this work was obtained from Phillips Petroleum Co. A chromatographic analysis of the liquid portion of the cylinders averaged 99.65% propylene and 0.35% propane. The water was taken from the departmental distilled water supply. To remove dissolved gases, the water was heated to boiling under reduced pressure and charged to the equilibrium cell immediately. No trace of Cl<sup>-</sup> or Ca<sup>--</sup> ions was detected in the water.

#### RESULTS

The experimental results on the compositions of the equilibrium phases are shown in Table I, II, and III.

| Table II. Experimental Data in the Two-Phase<br>Liquid-Liquid Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temp.,<br>° F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pressure,<br>P.S.I.A.                                                                                                                                                                                         | Water-Rich<br>Liquid Mole<br>Fraction of<br>Propylene × 10 <sup>4</sup>                                                                                            | Propylene-Rich<br>Liquid Mole<br>Fraction of<br>Water × 10 <sup>4</sup>                                                                                     |
| $\begin{array}{c} 100.05\\ 100.00\\ 100.20\\ 100.25\\ 100.25\\ 100.30\\ 100.25\\ 100.25\\ 160.27\\ 160.20\\ 160.20\\ 160.30\\ 160.15\\ 160.00\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 160.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\ 100.30\\$ | $\begin{array}{c} 470.0\\ 1093.3\\ 1751.8\\ 2287.0\\ 2913.0\\ 3188.0\\ 3513.5\\ 4122.7\\ 4781.0\\ 770.0\\ 929.0\\ 1277.0\\ 1756.9\\ 2243.0\\ 2268.2\\ 2748.4\\ 3063.2\\ 3779.7\\ 3893.0\\ 4058.5 \end{array}$ | 8.0886<br>9.8059<br>10.2631<br>11.2611<br><br>12.2040<br>12.9589<br>13.1481<br>13.4538<br>9.5567<br>9.6743<br><br>11.2017<br>11.4832<br><br>12.3313<br><br>13.9303 | 9.012<br>8.331<br>7.699<br>7.328<br>7.470<br>7.001<br>7.022<br>6.877<br>6.402<br>36.135<br><br>35.630<br><br>32.790<br>30.180<br>30.890<br>30.650<br>30.110 |
| $160.30 \\ 160.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $4667.7 \\ 4791.7$                                                                                                                                                                                            | $\frac{14.0519}{\dots}$                                                                                                                                            | 28.310                                                                                                                                                      |

#### Table III. Experimental Data in the Three-Phase Region

| Temp.,<br>°F. | Pressure,<br>P.S.I.A. | Water-Rich<br>Liquid Mole<br>Fraction of<br>Propylene<br>× 10 <sup>4</sup> | Propylene-<br>Rich Liquid<br>Mole<br>Fraction of<br>Water × 10 <sup>4</sup> | Propylene-<br>Rich Vapor<br>Mole Fraction<br>of Water × 10 <sup>4</sup> |
|---------------|-----------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 100.30        | 234.3                 | 8.932                                                                      | 8.537                                                                       | 38.463                                                                  |
| 121.50        | 305.4                 | 8.777                                                                      | 18.053                                                                      | 51.644                                                                  |
| 141.30        | 380.0                 | 8.913                                                                      | 27.224                                                                      | 72.900                                                                  |
| 160.35        | 467.7                 | 9.458                                                                      | 40.956                                                                      | 86.660                                                                  |
| 182.10        | 578.2                 | 10.005                                                                     | 53.174                                                                      | 104.142                                                                 |
| 194.70        | 661.0                 | 10.478                                                                     | 66.935                                                                      | 104.336                                                                 |
| 197.80        | 675.4                 |                                                                            | 96.542                                                                      | 95.126                                                                  |

These data are also shown on Figures 1-4 and 7-9. The graphically smoothed data are presented in Table IV, V, and VI. In Figures 1, 2, and 3 the solubility of propylene in water is shown at various pressures and temperatures for the two-phase and three-phase regions. In Figure 4 the solubility of propylene in water is compared with the solubility of other hydrocarbons in water at  $100^{\circ}$  F. (1-6) showing the trend of type and molecular weight of the hydrocarbon.

Figures 5 and 6 show the solubility of water in the propylene rich phases exhibiting the three-phase envelope. The three-phase critical conditions are shown at Figure 7. The three-phase critical conditions are: Temperature,  $197.9^{\circ}$  F; pressure, 676 p.s.i.a.; composition, 0.0096 mole fraction water.

In Figure 8 the solubility of water in the hydrocarbonrich liquid is shown and compared with the work of other



Figure 1. Solubility of propylene in water-rich liquid at low pressures



Figure 2. Solubility of propylene in water-rich liquid at high pressures



Figure 3. Solubility of propylene in 3-phase region



Figure 4. Solubility of hydrocarbons in water at 100° F.



Figure 5. Solubility of water in propylene-rich phases at low pressures



Figure 6. Solubility of water in propylene-rich phase at high pressures



Figure 8. Solubility of water in hydrocarbons liquids at 100° F.



Figure 7. Solubility of water in 3-phase region



Figure 9. Solubility of water in hydrocarbon vapors at  $100^\circ$  F.

#### Table IV. Smoothed Data in the Two-Phase Vapor-Liquid Region Water-Rich Propylene-Rich Liquid Mole Vapor Mole

|              |           | Liquid Mole                   | Vapor Molo                |
|--------------|-----------|-------------------------------|---------------------------|
| <b>m</b> - 1 | <b>D</b>  | Equid Mole                    | vapor Mole                |
| 1 emp.,      | Pressure, | Fraction of                   | r raction of              |
| ° F.         | P.S.I.A.  | Propylene $\times 10^{\circ}$ | Water $\times 10^{\circ}$ |
| 100          | 50        | 2.175                         | 166.0                     |
| 100          | 75        | 3.420                         | 112.0                     |
| 100          | 100       | 4.505                         | 85.8                      |
| 100          | 125       | 5.405                         | 66.0                      |
| 100          | 150       | 6.195                         | 52.3                      |
| 100          | 175       | 6.915                         | 44.0                      |
| 100          | 200       | 7.603                         | 40.0                      |
| 100          | 225       | 8.250                         | 38.0                      |
| 160          | 75        | 2.080                         | 633.0                     |
| 160          | 100       | 3.040                         | 478.5                     |
| 160          | 150       | 4.480                         | 310.5                     |
| 160          | 200       | 5.600                         | 215.5                     |
| 160          | 250       | 6.570                         | 175.0                     |
| 160          | 300       | 7.460                         | 142.0                     |
| 160          | 350       | 8.296                         | 120.0                     |
| 160          | 400       | 8.990                         | 100.0                     |
| 160          | 420       | 9.240                         | 1010.0                    |
| 220          | 200       | 2,430                         | 1210.0                    |
| 220          | 200       | 4.540                         | 699.0                     |
| 220          | 200       | 5.460                         | 580.0                     |
| 220          | 400       | 7 140                         | 460.0                     |
| 220          | 500       | 8 640                         | 325.0                     |
| 220          | 600       | 9,950                         | 255.0                     |
| 220          | 700       | 11.065                        | 210.0                     |
| 220          | 800       | 12 040                        | 183.0                     |
| 220          | 1000      | 12,010                        | 150.0                     |
| 220          | 1500      | 13.200                        | 113.0                     |
| 200          | 2000      | 13.870                        | 93.4                      |
| 220          | 2500      | 14,450                        | 86.8                      |
| 220          | 3000      | 14.950                        | 82.7                      |
| 220          | 3500      | 15.440                        | 80.5                      |
| 220          | 4000      | 15.740                        | 79.3                      |
| 220          | 4500      | 16.220                        | 78.6                      |
| 220          | 5000      | 16.620                        | 78.1                      |
| 280          | 300       | 6.090                         | 1850.0                    |
| 280          | 400       | 7.900                         | 1242.0                    |
| 280          | 500       | 9.600                         | 950.0                     |
| 280          | 600       | 11.240                        | 794.0                     |
| 280          | 700       | 12.780                        | 690.0                     |
| 280          | 800       | 13.980                        | 606.0                     |
| 280          | 900       | 14.750                        | 528.0                     |
| 280          | 1000      | 15.500                        | 459.0                     |
| 280          | 1250      | 16.625                        | 377.0                     |
| 280          | 1500      | 17.390                        | 326.0                     |
| 280          | 2000      | 18,470                        | 284.0                     |
| 280          | 2500      | 19.315                        | 266.0                     |
| 280          | 3000      | 20.100                        | 201.0                     |
| 280          | 3000      | 20.870                        | 200.0                     |
| 280          | 4000      | 21.000                        | 220.0                     |
| 200          | 4000      | 22.000                        | 210.0                     |

#### Table V. Smoothed Data in the Two-Phase Liquid-Liquid Region

| Temp.,<br>°F. | Pressure,<br>P.S.I.A. | Water-Rich<br>Liquid Mole<br>Fraction of<br>Propylene × 10 <sup>4</sup> | Propylene-Rich<br>Liquid Mole<br>Fraction of<br>Water × 10 <sup>4</sup> |
|---------------|-----------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 100           | 500                   | 8,435                                                                   | 8.972                                                                   |
| 100           | 1000                  | 9.420                                                                   | 8.422                                                                   |
| 100           | 1500                  | 10.260                                                                  | 8.016                                                                   |
| 100           | 2000                  | 10.940                                                                  | 7.690                                                                   |
| 100           | 2500                  | 11.540                                                                  | 7.415                                                                   |
| 100           | 3000                  | 12.120                                                                  | 7.183                                                                   |
| 100           | 3500                  | 12.620                                                                  | 6.977                                                                   |
| 100           | 4000                  | 13.000                                                                  | 6.775                                                                   |
| 100           | 4500                  | 13.360                                                                  | 6.578                                                                   |
| 160           | 1000                  | 9.940                                                                   | 36.020                                                                  |
| 160           | 1500                  | 10.780                                                                  | 34.827                                                                  |
| 160           | 2000                  | 11.440                                                                  | 33.667                                                                  |
| 160           | 2500                  | 11.980                                                                  | 32.552                                                                  |
| 160           | 3000                  | 12.500                                                                  | 31.560                                                                  |
| 160           | 3500                  | 12.970                                                                  | 30.685                                                                  |
| 160           | 4000                  | 13.400                                                                  | 29.912                                                                  |
| 160           | 4500                  | 13.800                                                                  | 29.915                                                                  |
| 160           | 4750                  |                                                                         | 28.890                                                                  |

# Table VI. Smoothed Data in the Three-Phase Region

|               |                                                                         |                                                                         | •                                                                      |
|---------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| Temp.,<br>°F. | Water-Rich<br>Liquid Mole<br>Fraction of<br>Propylene × 10 <sup>4</sup> | Propylene-Rich<br>Liquid Mole<br>Fraction of<br>Water × 10 <sup>4</sup> | Propylene-Rich<br>Vapor Mole<br>Fraction of<br>Water × 10 <sup>4</sup> |
| 100           | 8.927                                                                   | 10.08                                                                   | 37.90                                                                  |
| 110           | 8.782                                                                   | 13.00                                                                   | 45.70                                                                  |
| 120           | 8.765                                                                   | 17.80                                                                   | 53.50                                                                  |
| 130           | 8.817                                                                   | 22.70                                                                   | 61.43                                                                  |
| 140           | 8.920                                                                   | 27.90                                                                   | 69.32                                                                  |
| 150           | 9,075                                                                   | 33.25                                                                   | 77.05                                                                  |
| 160           | 9.290                                                                   | 38.70                                                                   | 84.82                                                                  |
| 170           | 9.575                                                                   | 44.90                                                                   | 92.68                                                                  |
| 180           | 9.925                                                                   | 52.66                                                                   | 100.75                                                                 |
| 190           | 10.315                                                                  | 64.80                                                                   | 108.10                                                                 |
| 191           | 10.350                                                                  | 66.50                                                                   | 108.20                                                                 |
| 195           | 10.500                                                                  | 75.10                                                                   | 105.90                                                                 |
| 197           | 10.615                                                                  | 81.80                                                                   | 101.50                                                                 |
| 198           | 10.650                                                                  | 93.50                                                                   | 93.50                                                                  |
|               |                                                                         |                                                                         |                                                                        |

investigators (2-6) on other hydrocarbons. Again the trend is shown for various molecular weights and types of hydrocarbons. In Figure 9 the water content of the hydrocarbon vapor is shown. Here the effect of the molecular weight and type of hydrocarbon is much less pronounced than for the liquid solubility.

Accuracy. A summary of the estimated accuracies of the measured variables and experimental errors are as follows:

| Measured    | Estimated            |                                      |
|-------------|----------------------|--------------------------------------|
| Variable    | Accuracy             | Max. Exptl. Error                    |
| Temperature | $\pm 0.1^{\circ}$ F. |                                      |
| Pressure    | $\pm 0.5$ p.s.i.     | Pressure fluctuates $\pm 1.0$ p.s.i. |
|             |                      | during sampling period               |

Concentration:

| Water-rich liquid       | 4.1% based on smoothed curve |
|-------------------------|------------------------------|
| Hydrocarbon-rich liquid | 4.8% based on smoothed curve |
| Hydrocarbon-rich vapor  | 2.7% based on smoothed curve |

### ACKNOWLEDGMENT

Phillips Petroleum Co. furnished the propylene.

## LITERATURE CITED

- Bradbury, E.J., McNulty, D., Savage, R.L., McSweeney, E.E., Ind. Eng. Chem. 44, 211-12 (1952).
- (2) Culberson, O.L., McKetta, J.J., Trans. A.I.M.E. 192, 297-300 (1951).
- (3) Kobayashi, R., Katz, D.L., Ind. Eng. Chem. 45, 440-6 (1953).
  (4) Leland, T.W., McKetta, J.J., Kobe, K.A., Ibid., 47, 1265-71
- (1955). (5) Reamer, H.H., Olds, R.H., Sage, B.H., Lacey, W.N., *Ibid.*,
- (b) Reamer, H.H., Olds, R.H., Sage, B.H., Lacey, W.N., *Ibid.*, 36, 381-3 (1944).
   (6) Reamer, H.H., Sage, B.H., Lacey, W.N., *Ibid.*, 44, 609-15
- (6) Reamer, H.H., Sage, B.H., Lacey, W.N., *Ibid.*, 44, 609-15 (1952).
   (7) No. 10 (1952).
- Wehe, A.H., Ph.D. dissertation, University of Texas, Austin, Tex., 1960.
   Weine, M.M., M.M., Marker, M. & Company, and A. 197, 200
- (8) Wehe, A.H., McKetta, J.J., J. CHEM. ENG. DATA 6, 167-72 (1961).
- (9) Wehe, A.H., McKetta, J.J., Anal. Chem. 33, 291-3 (1961).

**RECEIVED** for review October 19, 1962. Accepted February 18, 1963. Work supported by National Science Foundation.