Enthalpy Concentration Diagram of the System Carbon Tetrachloride–Chloroform

JAIME WISNIAK and EUGENIO OSSA

Department of Chemical Engineering, Universidad Católica de Chile, Santiago, Chile

 ${f V}_{
m APOR-LIQUID}$ EQUILIBRIA for the system carbon tetrachloride-chloroform have been determined at 760 mm. of Hg, using a conventional adiabatic Othmer still (7), and used together with published data on specific heats, latent heats of vaporization, and heats of mixing (2, 3, 4, 6) to construct the enthalpy-concentration diagram of the system. Compositions of the liquid and vapor phases were determined through their refractive indices and the data indicated in Table I.

In order to test the thermodynamic consistency of the experimental values, the vapor pressure of chloroform in the range 50° to 75° C. had to be determined. A slightly modified isotenciscope method was used, and the data were fitted with the following equation that predicts the experimental results with a relative error of less than 0.5%:

$$\log P = 6.418 - \frac{859.3}{181.9 + t}$$

A similar equation is given in the literature (1) for carbon tetrachloride:

Activity coefficients were calculated and found to be 1.00 + 0.01. This fact indicates that in spite of the dipole moment of chloroform the behavior of solutions of carbon tetrachloride and chloroform is near ideal. as has been indicated elsewhere (5).

The calorimetric data are summarized in Table II and Figure 1, based on the reference states of pure liquids at 0° C. and their vapor pressure.

Table !. Refractive Indices of Mixtures of of CCl₄ and CHCl₃ at 20° C.								
x _{CCL}	n	$x_{\rm CCl_4}$	n					
0.00	1.4600	0.75	1.4489					
0.10	1.4586	0.90	1.4470					
0.25	1.4563	1.00	1.4459					
0.50	1.4526							

			·						
Temp.	Mole Fraction Chloroform								
°C.	0.00	0.10	0.25	0.50	0.75	0.90	1.00		
			Liquii	Phase					
20 25 30 40 50 60	606 759 914 1224 1537 1854	577 731 879 1187 1494 1804	548 698 846 1148 1450 1757	$519 \\ 665 \\ 811 \\ 1106 \\ 1405 \\ 1708 \\ 1801$	$517 \\ 658 \\ 802 \\ 1091 \\ 1383 \\ 1683$	$530 \\ 670 \\ 810 \\ 1091 \\ 1386 \\ 1680$	$562 \\ 681 \\ 820 \\ 1105 \\ 1392 \\ 1683$		
65 70 75	2017 2177 2339	1961 2113 	1911 2063	1861 	• • • • • • • • •	•••• •••	••• •••		
		SAT	urated I	JQUID C	URVE				
	2390	2266	2112	1925	1796	1470	1725		
LATENT HEAT OF VAPORIZATION.									
	7170	7209	7327	7208	7129	7070	7020		
		SAT	URATED	APOR CU	JRVE.				
	9560	9475	9349	9133	8925	8810	8745		
			Vapor	PHASE.					
65 70 75 90 100	 9839 10050	 9768 9982	9384 9664 9884	9149 9245 9497 9721	8928 9003 9106 9326 9555	8852 8936 9023 9225 9456	8801 8884 8968 9155 9391		

LITERATURE CITED

- (1)Barker, J.A., Brown, I., Smith, F., Discussions Faraday Soc. 15, 143 (1953).
- (2)Chessman, G.H., Whitaker, B., Proc. Roy. Soc. (London), Ser. A212, 406 (1952)
- International Critical Tables, McGraw-Hill, New York, 1927. (3)
- (4)
- Kobe, K.A., Long, E.G., Petrol, Refiner 29, (3), 157 (1950). McGlashan, M.L., Pure, J.E., Sainsbury, J., Tran. Faraday (5)Soc. 50, 1284 (1954).
- Nat. Bur. of Sts., "Selected Values of Thermodynamic Properties," (U. S.) 1953. (6)
- Othmer, D.F., Gilmont, R., Conti, J., Ind. Eng. Chem. 52, (7)625 (1960).

RECEIVED for review August 6, 1962. Accepted April 26, 1963.