Derivatives of 1,1-Dimethyl-3-Oxobutylthiocyanate. I. 1,4-Dihydro-1-(2-Mercaptobenzothiazol-6-Yl)-2-Thioxo-4,4,6-Trimethylpyrimidine.

JOHN J. D'AMICO, CHING CHEN TUNG, ROBERT H. CAMPBELL and DARRELL D. MULLINS Monsanto Chemical Co., Rubber Chemicals Research Laboratories, Nitro, W. Va.

> The reaction of 1,1-dimethyl-3-oxobutylthiocyanate with 6-amino-2-mercaptobenzothiazole under acidic conditions gave 1,4-dihydro-1-(2-mercaptobenzothiazol-6-yl)-2-thioxo-4,4,6-trimethylpyrimidine, I. Oxidation of I gave 2,2'-dithiobis-[6-(1,4dihydro-2-thioxo-4,4,6-trimethylpyrimidin-1-yl)-benzothiazole]. Forty-nine derivatives of I were prepared. The infrared spectrum of I was obtained.

 ${f A}$ LTHOUGH 2-MERCAPTOBENZOTHIAZOLE was prepared by Hofman (6) in 1887 it was not until 1921 that both Bedford (1) and Bruni (2) discovered that it possessed accelerating activity for the vulcanization of rubber with sulfur. This great discovery has stimulated many workers to prepare and extensively evaluate its derivatives. Most of the commercial accelerators, in particular N-cyclohexyl-2-benzothiazolesulfenamide (commercially available as SANTOCURE) (5), N-tert-butyl-2-benzothiaxolesulfenamide (commercially available as SANTOCURE NS) (3), and 2-(2,6-dimethylmorpholinothio)benzothiazole (commercially available as SANTOCURE 26) (4) are still derived from 2-mercaptobenzothiazole. The 2-mercaptobenzothiazole and its derivatives containing substituents, other than the ethoxy, hydroxyl and amino radicals, in the 6position have been prepared only in a limited number of examples. Since 2-thioxo-4,4,6-trimethyl-1,2,3,4-tetrahy-dropyrimidine (7, 8) and its derivatives possess moderate accelerating activity, a compound containing both benzothiazolylthio and 2-thioxo-4,4,6-trimethyl-1,2,3,4-tetrahydropyrimidinyl radicals would exhibit a synergistic effect and produce a chemical with greater activity than 2-mercaptobenzothiazole and its derivatives. The new heterocyclic compound was prepared by the reaction of 6-amino--mercaptobenzothiazole with 1,1-dimethyl-3-oxobutylthiocyanate under acidic conditions producing 1,4-dihydro-1-(2-mercaptobenzothiazol-6-yl)-2-thioxo-4, 4, 6-trimethylpyrimidine, I. The product, a tan colored solid, m.p. 207-209°C. after recrystallization from ethyl alcohol, was obtained in 97.5% yield. The reaction may be represented as:

The infrared spectra of I were obtained as Nujol and halocarbon mulls using a Perkin-Elmer Model 21 Infrared Spectrophotometer. The infrared spectra were consistent with the proposed structure. The C = C stretching vibration assigned to 2-thioxo-4,4,6-trimethyl-1,2,3,4-tetrahydropy-rimidine (9) was observed at 1700 cm.⁻¹. Other band assignments in (cm.⁻¹) were as follows:

3247(M)	Hydrogen-bonded N—H stretching
3030(M)	C—H aromatic and alkene stretching
2985(M)2924(W)	Aliphatic C—H stretching
1600(M)	C = C skeletal in-plant-vibrations
1531(S)	Thioureide $(-N(H)-C=S)$
1486(S) broad	C-H deformation and $C=C$ skeletal in-plane
	vibrations
1399(M)	$-CH_3$ sym. deformation
1344(S)	Unassigned
1339(S)	CN stretching as in 2-mercaptobenzothiazole

The strong 4-adjacent hydrogen out-of-plane band of 2-mercaptobenzothiazole normally found at 756 cm.⁻¹ was absent and a 817 cm.⁻¹ (M) band was observed in the region of 2-adjacent hydrogen which is in agreement with the proposed structure.

The postulated synergistic effect was not observed since the accelerator activity of I and its derivatives was either equal or slightly inferior to 2-mercaptobenzothiazole and its corresponding derivatives. The detailed evaluation data of I and its derivatives will be reported in forthcoming publications.

The oxidation of I with either ammonium persulfate or sodium hypoiodite furnished 2,2'-dithiobis-[6-(1,4-dihydro-2-thioxo-4, 4, 6-trimethylpyrimidin-1-yl)benzothiazole] in yields of 99.5 and 90%, respectively. The product, a tan colored solid, melted at 266-268°C. with decomposition after recrystallization from dimethylformamide. The condensation of I and formaldehyde with hexa-

The condensation of I and formaldehyde with hexamethylenimine or aniline gave 1,4-dihydro-1-(3-hexamethyleniminomethylthiobenzothiazol-6-yl)-2-thioxo-4, 4,-6-trimethylpyrimidine, II, and 1-[3-(anilinomethylthio) benzothiazol-6-yl]-1, 4-dihydro-2-thioxo-4, 4, 6-trimethylpyrimidine, III, in yields of 60 and 80% respectively. Products II and III melted at 208-210° C. with decomposition and 181-183° C. after recrystallization from ethyl alcohol, respectively.

_ _ _ _ _

Table I. 1-(2-Substituted-Thiobenzothiazol-6-yl)-1,4-Dihydro-2-Thioxo-4,4,6-Trimethylpyrimidine

	N ^S CSR	
IZ	5	£H3

			Reacti Conditi	ons	ΓΓ:Λ.								
			Temn	Time	r ieia Crude	M.P.	Empirical	ź	%	Ś	%	CI,	%
No.	R	Halogen Compound	°C.	hr.	%	°C.	Formula	Calcd.	Found	Calcd.	Found	Calcd.	Found
IV		1 1 2.3-Tetrachloro-1-propene	50 - 60	4	51.5	200 - 202	CITHISCI3N3S3	9.04	8.84	20.69	20.61	22.88	22.95
	$-CH_{s}CCI = CHCI$	cis- and trans-1,2,3-tri-	50 - 60	4	23.9	182-186	$C_{17}H_{17}Cl_2N_3S_3$	9.76	9.58	22.35	22.61	16.47	16.79
		chloropropene											
Ν	$-CH_{s}CH = CH_{s}$	Allvl Chloride	50 - 60	e	99.5	$202-203^{a}$	$C_{17}H_{19}N_3S_3$	11.62	12.02	26.61	26.05	•	•
	$-CH_{s}C \equiv CH$	3-Bromo-1-propyne	25 - 30	9	97.5	$204-206^{b}$	C ₁₇ H ₁₇ N ₃ S ₃	11.69	11.23	:	:	:	:
	$-CH_{c}CH = CCI_{s}$	1.1.3-Trichloro-1-propene	50 - 60	4	81.4	$187 - 188^{a}$	$C_{17}H_{17}Cl_2N_3S_3$	9.76	9.74	:	:	:	
XI	$-CH_{*}CCI = CH_{*}$	2.3-Dichloro-1-propene	50 - 60	4	93.5	$202-203^{c}$	C ₁₇ H ₁₈ CIN ₃ S ₃	10.61	10.32	:	:	:	:
	$-CH_{0}CH = CCICH_{0}$	1.3-Dichloro-2-butene	50 - 60	4	92.5	$159 - 161^{a}$	C ₁₈ H ₂₀ CIN ₃ S ₃	10.25	10.33	:	:	8.64	8.69
XIX		3-Chloro-2.4-pentanedione	50 - 56	2	88.5	$194 - 196^{d}$	$C_{19}H_{21}N_3O_2S_3$	10.02	9.66	:	:	:	:
XII		Ethyl α -chloroacetoacetate	50 - 56	5	51.3	172-173'	C ₂₀ H ₂₃ N ₃ O ₃ S ₃	9.35	9.55	21.40	21.04	:	÷
XIIIX	COOC2H5 CH(COOC3H4);	Diethvlchloromalonate	50 - 56	æ	83.6	$168 - 170^{6}$	C ₂₁ H ₂₅ N ₃ O ₄ S ₃	8.76	8.91	20.05	20.59	:	:
VIX	-C.H.	Ethyl bromide	50 - 56	5	74.0	202-204'	C ₁₆ H ₁₉ N ₃ S ₃	12.02	11.93	:	:	:	:
XV		Methyl iodide	50 - 56	5	83.4	216-218'	$C_{15}H_{17}N_3S_3$	12.53	12.10	28.67	28.14	:	:
	CH3 -												
ΙΛΧ	$-CH_{2}CH = CHCH_{2}\dot{C} - CH_{2}C(CH_{3})_{3}$	5,5,7,7-Tetramethyl-2- octenyl chloride	50-56	5	86.5	168-170'	$C_{36}H_{37}N_{3}S_{3}$	8.62	8.43	19.72	19.13	:	:
	ĊH,			-		101		0001	00.01				
IIVX	2-Oxocyclohexyl	2-Chlorocyclohexanone	50-56 50-56	4 9	83.7 98.6	178-195	CartaNaO3a CartaClaNaOSa	00.01 7.98	10.03 7.66	: :	: :	20.19	19.50
TI V	1 2,4,0-1 richlorophenoxyacetyi	2,4,0-1 IIUUUUUUUUUUA9- acetyl chloride	200	>									
XIX	3-Cyclohexenyl	3-Bromocyclohexene	50 - 56	4	89.5	217-219	C ₃₀ H ₂₃ N ₄ S ₄	10.46	10.16	:	÷	;	÷

[•] Recrystallization from ethyl acetate and chloroform. [•] Recrystallization from chloroform. [•] Recrystallization from benzene and chloroform. [•] Recrystallization from benzene. [•] Recrystallization from ethyl acetate. [•] Recrystallization from acetone.

The reaction of the potassium salt of I with cyanuric chloride or N-phenothiazinyl'dichlorotriazine in an acetone medium gave 2,4, 6-tris-[6-(1,4-dihydro-2-thioxo-4, 4, 6trimethylpyrimidin-1-yl) benzothiazol-2-ylthio]-S-triazine and 10-[2, 6-bis[6-(1,4-dihydro-2-thioxo-4, 4, 6-trimethylpyrimidin-1-yl) benzothiazol-2-ylthio]-S-triazin-4-yl]phenothiazine in yields of 98 and 94.5%, respectively. The melting points of both products was greater than 300° C.

The reaction of an aqueous solution of the sodium salt of I with zinc chloride furnished the zinc salt of I in 99%yield. The hexamethylenimine salt of I, m.p. $185-187^{\circ}$ C. was prepared in 79.2% yield by stirring an ether slurry of I with hexamethylenimine.

The 1-(2-substituted-thiobenzothiazol-6-yl)-1, 4-dihydro-2-thioxo-4, 4, 6-trimethylpyrimidines (IV-XIX) were prepared by the reaction of the sodium or potassium salt of I in either an aqueous or acetone medium with the appropriate halogen compounds which are listed in Table I. The use of 1,4-dichloro-2-butene in this reaction furnished 2,2'-(2-butenylenedithio) bis [6-(1, 4-dihydro-2-thioxo-4, 4, 6trimethylpyrimidin-1-yl)benzothiazole], m.p. 158-160°C., in 98% yield.

The sodium salt of I in an aqueous solution reacted with β -diethyl or dimethylaminoethyl chloride hydrochloride to form 1, 4-dihydro-1-[2-(diethylaminoethylthio) benzothiazol-6-yl]-2-thioxo-4, 4, 6-trimethylpyrimidine and the corresponding dimethyl derivative. The former compound, m.p. 160–162° C. after recrystallization from ethyl alcohol and the latter compound, m.p. 185–187° C. after recrystallization from ethyl alcohol, were obtained in yields of 97.5 and 94.5%, respectively.

The 6-(1, 4-dihydro-2-thioxo-4, 4, 6-trimethylpyrimidin-1-yl)benzothiazol-2-yl ester of N,N-dialkylthiol (or dithio) carbamic acids (XX-XXXII) were prepared by the reaction of the potassium salt of I with the appropriate N,N-disubstituted thiocarbamoyl or carbamoyl chloride which are listed in Table II.

The substitution of alkyl chloroformate or alkyl chlorothioformate for the N,N-disubstituted thiocarbamoyl or carbamoyl chlorides in the above reaction furnished the S-[6-(1, 4-dihydro-2-thioxo-4, 4, 6-trimethylpyrimidin-1-yl) benzothiazol-2-yl] O (or S')-alkyl thiol (or dithiol)carbonates (XXXIII-XXXIX) which are listed in Table III.

The oxidative condensation of I with hexamethylenimine, morpholine or cis- and trans-2,6-dimethylmorpholine furnished the thiazolesulfenamides in yields of 77 to 98% (Table IV).

The reaction of the alkali salt of I with the sodium salt of chloroacetic acid followed by neutralization of the reaction mixture with concentrated hydrochloric acid gave 6-(1, 2, 3, 4-tetrahydro-2-thioxo-4, 4, 6-trimethylpyrimidin-1-yl)benzothiazol-2-yl thioacetic acid, m.p. 196–198°C: with decomposition, in 79% yield.

ACKNOWLEDGMENT

The writers wish to acknowledge their indebtedness to M. Steele, E.E. Null, and C. Raynes for analyses performed.

Table II. 6-(1	,4-Dihydro-2-Thiox	o-4,4,6-Trimethyl	pyrimidin-1-yl)
Benzothiazol-2-	yl Ester of N,N-Dia	lkylthiol (or Dithic) Carbamic Acids

H

(CH ₃) ₂ C ^{(T} CH ₂ C ^(T) CH ₂ C ^(T) CH ₃ C ^(T) CH ₃ C ^(T) C										
			Disubstituted Carbamoyl or	Yield Crude,	М.Р.,	Empirical	N	%	S,	%
No.	Х	R	Thiocarbamoyl Chloride	%	°C.	Formula	Calcd.	Found	Calcd.	Found
XX XXI	$O \\ S$	$(CH_3)_2N-C_6H_5N-$	$(CH_3)_2NCOCl$ C_6H_5NCSCl	$61.4 \\ 97.5$	196–198° 173–175°	$C_{17}H_{20}N_4OS_3 C_{23}H_{24}N_4S_4$	$14.27 \\ 11.56$	$13.70 \\ 11.82$	24.51	24.99
XXII	0	C₂H₅ Pyrrolidyl	C₂H₅ 1-Pyrrolidinecarbonyl chloride	52.5	181-183°	$C_{19}H_{22}N_4OS_3$	13.39	12.96		
XXIII	S	Pyrrolidyl	1-Pyrrolidinethio- carbonyl chloride	11.5	218-220	$C_{19}H_{22}N_4S_4$	12.89	12.16		
XXIV	s	Piperidyl	1-Piperidinethio- carbonyl chloride	89.4	151–153°	$C_{20}H_{24}N_4S_4$	12.49	11.93	28.59	28.44
XXV	S	2,6-Dimethyl- morpholinyl	4-(2,6-Dimethylmor- pholinethiocarbonyl)- chloride	41.9	173-174°	$C_{21}H_{26}N_4OS_4$	11.70	11.89	26.79	26.25
XXVI	S	$(C_2H_5)_2N-$	$(C_2H_5)_2NCSC1$	96.5	227ª	$C_{19}H_{24}N_4S_4$	12.83	12.30		
XXVII	S	$(CH_3)_2N_2$	$(CH_3)_2NCSCl$	61.3	213-215	$C_{17}H_{\infty}N_{4}S_{4}$	13.71	13.98		
XXVIII	S	Morpholinyl	4-Morpholinethio- carbonyl chloride	97.5	199–201°	$C_{19}H_{22}N_4OS_4$	12.43	12.25	•••	
XXIX	S	$[(CH_3)_2CH]_2N$	$[(CH_3)_2CH]_2NCSCl$	88.2	197–199°	$C_{21}H_{28}N_4S_4$	12.06	12.27	27.60	27.36
XXX	S	$(C_4H_9)_2N_2$	(C ₄ H ₉) ₂ NCSCl	99.5	180 - 182''	$C_{23}H_{32}N_4S_4$			26.03	25.82
XXXI	0	$(C_2H_5)_2N_2$	$(C_2H_5)_2NCOCl$	76.0	144 - 146	$C_{19}H_{24}N_4OS_3$	13.32	13.39	22.87	23.08
XXXII	S	$(C_{3}H_{7})_{2}N_{-}$	$(C_3H_7)_2NCSCl$	54.0	$185 - 187^{e}$	$C_{21}H_{28}N_4S_4$	12.06	12.12	27.60	26.95

^a Recrystallization from ethyl alcohol and acetone. ^bRecrystallization from acetone. ^cRecrystallization from ethyl alcohol and chloroform. ^dRecrystallization from chloroform and ethyl acetate. ^cRecrystallization from chloroform and ethyl ether.

			Chloroformate	Yield Crude	M.P.,	Empirical	N, %		S, %	
No.	X	R	Chlorothioformate	%	° C.	Formula	Calcd.	Found	Calcd.	Found
XXXIII	0	C_2H_5 -	$ClC(0)OC_2H_5$	86.2	127–129°	$C_{17}H_{19}N_3O_2S_3$	10.68	10.02	24.44	24.49
XXXIV	0	CH ₃ -	$ClC(O)OCH_3$	79.2	120-122ª	$C_{16}H_{17}N_{3}O_{2}S_{3}$	11.07	11.26	25.35	25.00
XXXV	0	$(CH_3)_2CH$ -	$ClC(O)OCH(CH_3)_2$	83.8	156–158°	$C_{18}H_{21}N_3O_2S_3$	10.31	9.78		
XXXVI	0	C_5H_{11} -	$ClC(0)OC_5H_{11}$	45.9	142-144°	$C_{20}H_{25}N_{3}O_{2}S_{3}$	9.65	9.95	22.08	21.79
XXXVII	0	$CH_2 = CHCH_2$ -	$ClC(0)OCH_2CH = CH_2$	14.9	133	$C_{18}H_{19}N_3O_2S_3$	10.36	10.58	•••	•••
XXXVIII	S	CH ₃ -	$ClC(O)SCH_3$	93.0	146–148	$C_{16}H_{17}N_{3}OS_{4}$	10.62	10.67		•••
XXXIX	S	C ₂ H ₅ -	$ClC(O)SC_2H_5$	90.5	135–137ª	$C_{17}H_{19}N_3OS_4$	10.26	10.63	31.31	30.75

 $\ ^{a}$ Recrystallization from ethyl alcohol.

Table IV. Sulfenamides

			Mole Ratio Amine to	Yield Crude.	M.P.,	Empirical	N, %		S,	%
No.	R	Amine]	%	° C.	Formula	Calcd.	Found	Calcd.	Found
XL	Hexamethylen- imino	Hexamethylen- imine	1.5:1	93.5	170–173°	$C_{20}H_{26}N_4S_3$	13.38	13.56	22.98	22.66
$\mathbf{X}\mathbf{L}\mathbf{I}$	Morpholinyl	Morpholine	3:1	77.0	$168 - 170^{\circ}$	$C_{18}H_{22}N_4OS_3$	13.78	13.70	23.60	23.75
XLII	2,6-Dimethyl- morpholinyl	cis- and trans- 2,6-Dimethyl- morpholine	3:1	98.0	123–125°	$C_{20}H_{26}N_4OS_3$	12.89	12.59		

^e Melting point with decomposition. Recrystallization from ethyl alcohol.

LITERATURE CITED

- (1) Bedford, C.W., Sebrell, L.B., Ind. Eng. Chem. 13, 1034 (1921).
- (2) Bruni, G., Romani, B., Giorn. chem. ind. applicata 3, 196 (1921).
- (3) Cooper, R.H., D'Amico, J.J. (to Monsanto Chemical Co.) U.S. Patent 2,807,620 (September 24, 1956).
- (4) D'Amico, J.J., Harman, M.W., Cooper, R.H., J. Am. Chem. Soc. 79, 5270 (1957). (To Monsanto Chemical Co.) U.S. Patent 2,871,239 (January 27, 1959).
- (5) Harman, M.W., Ind. Eng. Chem. 29, 205 (1937). (To Monsanto Chemical Co.) U.S. Patent 2,191,656 (February 27, 1940).
- (6) Hofman, A.W., Ber. 20, 1788 (1887).
 (7) Horstter, W.P., (to United States Rubber Co.) U.S. Patent 2,234,848 (March 11, 1941).
- (8) Mathes, R.A., Stewart, F.D., Swedish, F., J. Am. Chem. Soc. 70, 1452 (1948).
- (9) Sayre, R., J. Am. Chem. Soc. 77, 6689 (1955).

RECEIVED for review May 31, 1962. Accepted March 22, 1963.