Isothermal equilibrium constants for helium are shown as functions of pressure in Figure 6. For a given pressure, the K value for helium is greatest at the lowest temperature. For any given isotherm, the K values increase with decreasing pressure.
This study represents a more thorough investigation than previously reported ($3,5,7,8,10$) on the helium-nitrogen system at temperatures from 76.5° to $120^{\circ} \mathrm{K}$. and pressures up to 2000 p.s.i.a. The average reproducibility of all vapor phase data was within ± 0.13 mole $\%$. The corresponding value for the liquid phase was within $\pm 0.07 \mathrm{~mole} \%$.

LITERATURE CITED

(1) Armstrong, G.T., J. Res. Natl. Bur. Std. 53, 263 (1954).
(2) Brandt, L.W., Stround, L., Ind. Eng. Chem. 50, 849 (1958).
(3) Buzyna, G., Macriss, R.A., Ellington, R.T., Chem. Eng. Progr Symposium Series, No. 44, 101 (1963).
(4) Dodge, B.F., Davis, H.N., J. Am. Chem. Soc. 49, 610 (1927)
(5) Fedoritenko, A., Ruhemann, M., Tech. Phys. (U.S.S.R.) 4, 36 (1937).
(6) Frost, E.M., Jr., U. S., Bur. Mines, Rept. Invest. 3899, 1946
(7) Gonikberg, M.G., Fastowsky, W.G., Acta Physicochimica (U.S.S.R.) 12, 67 (1940).
(8) Kharakhorin, F.F., Zhur. Tekh. Fiz. 10, No. 18, 1533 (1940).
(9) Kirkland, C.G., Brandt, L.W., Deaton, W.M., U. S., Bur Mines, Rept. Invest. 5644, 1960.
(10) Ruhemann, M., "The Separation of Gases," 2nd ed., pp. 62. Oxford Univ. Press, London, 1949.
(11) Wiebe, R., Brevoort, M.J., U. S., Bur. Mines, Rept. Invest 3077, 1931.

Received for review December 18, 1962. Accepted May 13, 1963.

Vapor-Liquid Equilibria in a Natural Gas-Condensate-Nitrogen System

L. R. ROBERTS ${ }^{1}$ and J. J. McKETTA
Department of Chemical Engineering, University of Texas, Austin, Tex.

Abstract

This paper describes an experimental investigation on the effect of nitrogen on the vapor-liquid equilibrium ratios of hydrocarbons in the natural gas-condensate system. Experimental work was carried out under constant temperature conditions at $100^{\circ} \mathrm{F}$. and $220^{\circ} \mathrm{F}$. At each temperature, experiments were conducted at pressures of 500 , $1000,1500,2000$, and 3000 p.s.i.a. Nitrogen concentration in the vapor phase was varied from 10% to 50% at each percentage. The equilibrium constants for hydrocarbons and for nitrogen are shown.

Tthe effect of nitrogen on the vapor-liquid equilibrium ratios of the hydrocarbons in a natural gas-condensate system. Nitrogen is often found in appreciable concentrations in petroleum fluids, either as a natural occurrence or as a result of the application of secondary recovery techniques.
K-values for complex hydrocarbon systems have been reported in the literature (7,16). Poettman (11), and Poettman and Katz (12) have reported K-values for CO_{2} in similar hydrocarbon systems. Jacoby and Rzasa (6) list K -values for nitrogen, methane, CO_{2}, ethane and hydrogen sulfide in mixtures of all these components in heavier hydrocarbons. Eilerts and coworkers (3) have published a report on the effect of nitrogen and other gases and light hydrocarbons on the phase-boundary pressures of complex systems. In addition several binary systems of various hydrocarbons with nitrogen have been investigated (1, 2, 14) as well as the ternary system n-butane-methanenitrogen (15).

[^0]
EXPERIMENTAL

The experimental work was carried out under constant temperature conditions at $100^{\circ} \mathrm{F}$. and at $220^{\circ} \mathrm{F}$. At each temperature, experiments were conducted at pressures of $500,1000,1500,2000$ and 3000 p.s.i.a. The nitrogen concentration in the vapor phase was varied from 10% to 50% at each pressure.
The fluids were brought to equilibrium in a $35 \cdot \mathrm{ml}$. windowed stainless steel cell. In order to attain equilibrium the vapor was circulated from the top of the cell through a magnetic-piston pump and into the bottom of the cell so that it bubbled up through the liquid layer.

The equilibrium phases at each different set of conditions of temperature, pressure and composition were sampled and analyzed in a Beckman Thermotrac temperature programmer. The samples were withdrawn from the equilibrium cell into stainless steel high pressure tubing which was connected to the cell. Pressure in the equilibrium cell was maintained constant by injecting mercury into the bottom of the cell during the sampling procedure.

Finally each sample was allowed to expand into a glass flask. The size of each sample was regulated so that the pressure in the flask was 10 to 20 cm . of Hg . In addition
the entire sampling apparatus was maintained at elevated temperatures. The sample introduction system of the temperature programmer was also kept at elevated temperatures. The chromatographic columns were 12 foot lenghts of $1 / 4$-inch aluminum tubing packed with Silicone SE-30 impregnated fire brick.
A detailed description of the equilibrium, sampling and analytical apparatus, the experimental procedures and the analytical calculations are available (13).

RESULTS

The experimental and analytical data are shown in Tables I and II. The K-values calculated directly from the analytical data are presented in Table III.

Figures 1 and 2 show the variation of the equilibrium ratio of methane with pressure and increasing concentration of nitrogen for the different temperatures. Figures 3, 4, 5, and 6 show the K-values for iso- and n-butane plotted us.

Table I. Experimental Data for the Complex System at $100^{\circ} \mathrm{F}$.

Sample	Pressure,	Mole Per Cent of Components											
No.	P.S.I.A.	N_{2}	C_{1}	C_{2}	C_{4}	iso-C.	$n-\mathrm{C}_{4}$	iso- C_{5}	$n-\mathrm{C}_{5}$	C_{6}	C-	C_{8}	$\mathrm{C}_{9}+$
37 V	539	63.30	32.11	3.41	0.72	0.16	0.17	0.08	0.05				
37 L		13.31	5.07	1.87	2.25	0.70	1.48	1.45	1.73	4.45	10.06	14.27	43.36
38 V	507	47.04	47.31	4.38	0.81	0.16	0.14	0.10	0.06				
38 L		8.15	9.74	2.48	2.35	0.68	1.45	1.57	1.61	4.46	10.41	14.09	42.83
39 V	1040	40.13	54.30	4.36	0.80	0.11	0.15	0.08	0.07				
39L		22.30	16.39	3.32	2.82	0.71	1.50	1.02	1.22	3.39	7.11	10.02	30.47
40 V	509	14.40	81.21	2.66	1.17	0.21	0.26	0.09					
40 L		5.72	13.74	2.89	2.65	0.88	1.53	1.58	1.59	4.59	9.59	13.68	41.56
41 V	1038	13.94	79.89	4.73	0.98	0.18	0.15	0.06	0.07				
41 L		16.32	24.02	4.38	3.24	0.76	1.56	1.20	1.39	3.34	6.93	9.12	27.74
43 V	1555	19.09	74.10	5.23	0.95	0.22	0.23	0.11	0.06				
43L		19.06	29.78	4.60	3.34	0.74	1.44	1.12	1.21	2.85	5.60	7.49	22.77
45 V	1487	24.66	69.19	4.53	1.04	0.17	0.26	0.05	0.10				
45 L		19.16	21.15	4.58	4.15	0.66	2.23	1.11	1.39	3.03	6.39	8.95	27.20
46 V	1050	24.15	69.54	4.86	0.94	0.19	0.21	0.08	0.03				
46 L		16.66	18.46	4.09	3.13	0.74	1.66	0.95	1.11	3.16	7.00	10.65	32.39
48 V	1507	48.03	46.69	4.30	0.77	0.11	0.06	0.03	0.01				
48 L		7.64	16.66	4.22	2.63	0.88	1.74	1.66	1.44	4.46	9.01	12.29	37.36
49 V	1996	16.62	76.88	5.05	0.89	0.20	0.23	0.09	0.04				
49L		2.76	34.11	4.46	2.33	0.72	1.05	1.02	1.03	2.63	6.57	10.72	32.60
50 V	2055	31.80	62.43	4.53	0.84	0.11	0.16	0.08	0.05				
50 L		4.95	30.95	4.87	2.60	0.90	1.26	1.19	1.17	3.37	6.60	10.43	31.71
51 V	2027	41.16	53.25	4.36	0.81	0.14	0.14	0.07	0.04	0.03			
51 L		15.62	25.00	5.90	3.13	0.75	1.63	1.28	1.49	2.84	6.09	8.98	27.29
52 V	2542	22.51	70.36	4.81	1.01	0.21	0.21	0.11	0.09	0.16	0.19	0.08	0.26
52 L		31.81	30.65	6.38	3.18	0.44	1.60	0.60	1.02	1.25	3.28	4.90	14.89
53 V	2910	44.98	48.76	4.68	0.99	0.16	0.17	0.11	0.15				
53 L		10.14	26.12	4.68	2.37	0.76	1.12	0.92	0.95	1.95	5.95	11.14	33.90

Table II. Experimental Data for the Complex System at $220^{\circ} \mathrm{F}$.

Sample No.	Pressure, P.S.I.A.	Mole Per Cent Components											
		N2	C_{1}	C_{2}	C3	iso- C_{4}	n-C;	iso- C_{5}	$n-\mathrm{C}$;	C_{6}	C-	$\mathrm{C}_{\dot{*}}$	$\mathrm{C}_{9}+$
18 V	2516	11.50	79.14	4.92	0.96	0.18	0.27	0.22	0.12	0.45	0.47	0.44	1.33
18L		28.27	35.26	6.95	3.10	0.30	1.56	0.46	0.78	1.55	3.34	4.56	13.87
19 V	1993	10.81	81.00	4.25	1.05	0.19	0.23	0.22	0.20	0.12	0.35	0.39	1.19
19L		34.29	31.39	6.24	2.95	0.41	1.35	0.51	0.77	1.31	3.24	4.34	13.19
21 V	1023	18.86	73.11	4.40	1.12	0.22	0.39	0.27	0.16	0.18	0.21	0.27	0.81
21 L		8.07	23.32	3.54	2.36	0.59	1.32	1.22	1.34	3.54	7.99	11.56	35.15
22 V	505	9.09	80.06	4.98	1.22	0.28	0.44	0.29	0.27	0.54	0.72	0.52	1.59
22 L		3.14	14.35	2.79	1.51	0.50	1.22	1.36	1.42	3.89	9.46	14.94	45.42
24 V	985	8.07	84.80	3.90	1.03	0.29	0.45	0.24	0.10	0.12	0.20	0.20	0.60
24 L		13.77	27.60	4.61	2.45	0.61	1.56	1.25	1.31	3.32	6.83	9.08	27.61
26 V	1033	48.89	43.88	4.20	0.73	0.12	0.21	0.17	0.14	0.16	0.35	0.28	0.87
26 L		54.34	11.69	3.80	2.69	0.23	1.62	0.41	0.89	1.30	3.04	4.95	15.04
27 V	1532	32.98	58.67	4.15	0.89	0.21	0.26	0.21	0.13	0.26	0.52	0.43	1.29
27 L		5.99	25.51	2.78	1.93	0.73	1.45	1.60	1.47	3.92	8.32	11.46	34.84
28 V	1527	49.68	43.80	3.85	0.62	0.14	0.19	0.16	0.14	0.16	0.36	0.22	0.68
28L		8.02	17.14	1.79	1.40	0.53	1.04	1.37	1.37	4.07	9.31	13.36	40.60
29 V	1510	11.07	79.26	4.70	0.95	0.09	0.18	0.20	0.16	0.39	0.70	0.57	1.73
29L		13.81	29.60	4.88	2.17	0.48	1.09	0.99	1.05	3.02	6.42	9.03	27.46
30 V	2016	23.40	67.27	4.65	0.87	0.11	0.17	0.19	0.12	0.32	0.54	0.58	1.78
30 L		6.37	33.54	3.29	1.90	0.47	0.92	0.96	0.97	2.90	7.10	10.29	31.29
31 V	2062	46.17	44.80	4.23	0.75	0.16	0.26	0.18	0.11	0.31	0.55	0.61	1.87
31L		43.79	18.99	4.53	2.77	0.25	1.46	0.46	0.83	1.68	3.24	5.45	16.55
32 V	3079	31.71	57.63	4.38	0.77	0.07	0.13	0.25	0.18	0.34	0.73	0.94	2.87
32L		12.41	41.27	5.11	1.80	0.44	0.81	0.85	0.80	2.38	5.32	7.13	21.68
33 V	3015	12.04	75.46	5.08	1.01	0.14	0.20	0.16	0.10	0.39	0.81	1.14	3.47
33L		4.19	54.55	4.67	2.13	0.39	0.56	0.75	0.60	1.64	4.38	6.47	19.67
35 V	499	32.41	55.44	5.81	1.39	0.32	0.41	0.22	0.19	0.36	0.64	0.68	2.05
35 L		1.87	8.06	1.38	1.15	0.34	0.74	0.98	0.88	3.33	9.88	17.67	53.72
36 V	503	61.32	28.62	3.60	0.09	0.23	0.22	0.24	0.19	0.46	0.78	0.83	2.25
36L		5.47	6.48	1.55	1.42	0.54	0.75	1.19	1.19	4.60	11.36	16.20	49.25

Figure 2. Effect of N_{2} on K-values

ISOBUTANE, $100^{\circ} \mathrm{F}$

Figure 3. Experimental K-values compared to NGAA charts

Table III. Experimental Equilibrium Ratios for the Complex System

Sample No.	$\begin{gathered} \text { E.P. } \\ \text { P.S.I.A. }{ }^{2} \end{gathered}$	K-Values at $220^{\circ} \mathrm{F}$.											$\begin{gathered} \text { C.P. } \\ \text { P.S.I.A. } \end{gathered}$
		N_{2}	C ${ }_{1}$	C_{2}	C_{3}	iso- C_{4}	$n-\mathrm{C}_{4}$	iso- C_{5}	$n-\mathrm{C}_{5}$	C_{6}	C_{7}	C_{8}	
18	2516	0.407	2.24	0.708	0.310	0.600	0.173	0.478	0.154	0.290	0.141	0.096	3510
19	1993	0.315	2.58	0.681	0.356	0.463	0.170	0.431	0.260	0.092	0.108	0.090	3260
21	1023	2.34	3.14	1.24	0.475	0.373	0.295	0.221	0.119	0.051	0.026	0.023	4170
22	505	2.89	5.58	1.78	0.808	0.560	0.360	0.213	0.190	0.139	0.076	0.035	3920
24	985	0.586	3.07	0.846	0.420	0.475	0.288	0.192	0.076	0.036	0.029	0.022	3950
26	1033	0.900	3.75	1.11	0.271	0.522	0.130	0.415	0.157	0.123	0.115	0.057	3700
27	1532	5.51	2.30	1.49	0.461	0.288	0.179	0.131	0.088	0.066	0.063	0.038	4550
28	1527	6.19	2.56	2.15	0.443	0.264	0.183	0.117	0.102	0.039	0.039	0.016	5900
29	1510	0.802	2.68	0.963	0.438	0.188	0.165	0.202	0.152	0.129	0.109	0.063	3570
30	2016	3.67	2.01	1.41	0.458	0.234	0.185	0.198	0.124	0.110	0.076	0.056	4075
31	2062	1.05	2.36	0.934	0.271	0.640	0.178	0.391	0.133	0.185	0.170	0.112	4400
32	3079	2.56	1.40	0.857	0.428	0.160	0.160	0.294	0.225	0.143	0.137	0.132	4175
33	3015	2.87	1.38	1.09	0.474	0.359	0.357	0.213	0.167	0.238	0.185	0.176	3825
35	499	17.33	6.88	4.21	1.21	0.941	0.554	0.224	0.216	0.108	0.065	0.038	4200
36	503	11.21	4.42	2.32	0.697	0.426	0.293	0.202	0.160	0.100	0.069	0.051	4950
							lues at	$0^{\circ} \mathrm{F}$.					
37	539	- 4.76	6.33	1.82	0.320	0.229	0.115	0.055	0.029				6000
38	507	5.77	4.86	1.77	0.345	0.235	0.097	0.064	0.037		5170
39	1040	1.82	3.31	1.31	0.284	0.151	0.100	0.078	0.057	.			4850
40	509	2.52	5.91	0.920	0.442	0.239	0.170	0.057					4530
41	1038	0.854	3.33	1.08	0.302	0.237	0.096	0.050	0.050		. .		4190
43	1555	1.00	2.49	1.14	0.284	0.297	0.160	0.098	0.050		4340
45	1487	1.29	3.27	0.989	0.251	0.258	0.117	0.045	0.072	...			5070
46	1050	1.45	3.77	1.19	0.300	0.257	0.127	0.084	0.027	\ldots	. . .		4775
48	1507	6.29	2.80	1.02	0.293	0.125	0.034	0.018	0.007				5500
49	1996	6.02	2.25	1.13	0.382	0.278	0.219	0.088	0.039				4965
50	2055	6.42	2.02	0.930	0.323	0.122	0.127	0.067	0.043				5960
51	2027	2.64	2.13	0.739	0.259	0.187	0.086	0.055	0.027	0.011			6200
52	2542	0.708	2.30	0.754	0.318	0.477	0.131	0.183	0.088	0.128	0.058	0.016	4500
53	2910	4.44	1.87	1.00	0.418	0.211	0.152	0.120	0.158	...			6000

${ }^{a}$ Equilibrium Pressure, P.S.I.A. $\quad{ }^{b}$ Convergence Pressure, P.S.I.A.

Figure 4. Experimental K-values compared to NGAA charts
convergence pressure at the varying pressure and temperature levels. Figures 7, 8, and 9 represent still another method, after Katz and Rzasa (8), for presenting K-value data of this type. Figure 7 and 8 show the effect of temperature upon the K-values of the hydrocarbon components, and Figure 9 shows the effect of increasing nitrogen concentration. Figures 10 and 11 are included to show the effect of pressure at constant nitrogen content.

DISCUSSION

At the outset of the investigation it was necessary to establish a basis for comparison in order to demonstrate the effect of the different variables upon the K-values. The NGAA Charts (4) were a logical choice for this basis. Equilibrium data of the nitrogen-free hydrocarbon system were obtained in order to establish that the experimental data could be compared logically to the NGAA Charts. These experimental K-values are given in Table IV along with the values taken from the NGAA Charts. With the exception of two or three isolated discrepancies in the K-values of the hydrocarbons the comparisons were considered satisfactory.

The use of the NGAA Charts necessitated calculating the convergence pressure for every set of equilibrium fluids. These calculations imposed a problem, since the convergence pressure of a system containing large amounts

Figure 5. Experimental K-values compared to NGAA charts

Table IV. Comparison of Experimental and NGAA Data

Component	K-Values at $100^{\circ} \mathrm{F}$.		K-Values at $220^{\circ} \mathrm{F}$.	
	NGAA	Experimental	NGAA	Experimental
C_{1}	3.45	3.36	4.17	2.16
C_{2}	0.875	1.49	1.61	1.58
C_{3}	0.364	0.369	0.840	0.712
iso-C ${ }_{4}$	0.208	0.194	0.535	0.612
$n-\mathrm{C}_{4}$	0.165	0.167	0.443	0.511
iso- C_{5}	0.088	0.042	0.277	0.275
n - C_{5}	0.070	0.070	0.240	0.144
C_{6}	0.126	0.087
C_{7}			0.066	0.052
$\mathrm{C}_{8}{ }^{\text {a }}$			0.033	0.024
C.P. ${ }^{\text {a }}$		3500		3695

${ }^{\circ}$ Convergence pressure.

Table V. Analyses of Natural Gas and Condensate

Component	Gas Sample Mole $\%$	Liquid Sample Mole $\%$
$\mathrm{~N}_{2}$	0.08	
CO_{2}	0.61	
C_{1}	91.26	8.79
C_{2}	4.88	3.43
C_{3}	2.21	3.97
iso $^{2}-\mathrm{C}_{4}$	0.36	1.68
$n-\mathrm{C}_{4}$	0.42	2.39
$\mathrm{C}_{5}+$	0.18	7.74
C_{5}	\cdots	5.70
C_{6}	\cdots	7.10
$\mathrm{C}_{7}+{ }^{\circ}$	\cdots	67.40

${ }^{9}$ Molecular weight, heptanes and heavier $=130$, specific gravity, heptanes and heavies $=0.723$.

Figure 6. Experimental K-values compared to NGAA charts
of nitrogen and also large amounts of hydrocarbons heavier than decane is difficult to determine. The method of Organick and Brown (10) was used, although its use was not recommended for systems such as these. However, other methods which have been proposed (5,9) did not seem to offer any advantages. Fortunately the NGAA K-values were relatively constant with respect to the convergence pressure for most of the samples.

Although the puzzling discrepancies present a disappointing feature of the data, several very interesting phenomena were observed. Generally speaking, the K-values of the hydrocarbons were lowered by the addition of nitrogen. This effect is more pronounced at $220^{\circ} \mathrm{F}$. than at $100^{\circ} \mathrm{F}$. Indeed it can be said in general that the effect upon the K-values of the other variables is more pronounced at the higher temperature. This effect can be observed in Figures 7 and 8 . A nitrogen concentration of 8 mole per cent in the vapor at $220^{\circ} \mathrm{F}$. causes a greater shift in the K-values than 40 per cent nitrogen does at $100^{\circ} \mathrm{F}$.
Figure 9 shows the effect of increasing nitrogen concentration at constant temperature and pressure. The effect is much more pronounced for the heavier components. This difference of behavior of the different components is probably the same effect as observed in the ternary n-butane-methane-nitrogen system (15). The interactions, however, are without doubt much more complicated in the complex system.
Figure 10 shows the effect of pressure, and reflects the familiar pattern of the $\log K v s . \log P$ graphs. The K-values for methane decreases steadily with pressure until it reaches unity at the convergence pressure. K-values for the other hydrocarbons decrease at the lower pressure levels but reverse this trend and also approach unity as the convergence pressure is approached. The actual behavior in the convergence pressure region is outside the scope of this work. Figure 11 presents this familiar method of plotting equilibrium ratio data.
In considering the data as shown in Figure 11, it must be kept in mind that each sample was from a system of a different composition. Thus each system had a different convergence pressure. Although many samples were from systems having similar convergence pressures, it is certain that some of the samples represent systems having widely different total compositions.
One very interesting phenomenon observed is that the addition of the nitrogen causes the butane isomers, and to a lesser extent the pentane isomers, to be preferentially separated between the two phases. It can be noticed in Figures 3, 4, 5, 6, and 9 and also in Table III that the K-values for the normal isomers decrease much more sharply in the presence of nitrogen than do the K-values of the iso-isomers. This effect seems to be influenced by temperature and pressure.
In conclusion it must be pointed out that these data should be regarded as preliminary. The general agreement

Figure 10 . K-values at $220^{\circ} \mathrm{F}$.

Figure 11. n-Butane K-values at $220^{\circ} \mathrm{F}$.
(3) Burman, L.M., Baker, B.A., Eilerts, C.K., U. S. Bur. Mines Report of Investigations 5920 (1962).
(4) "Equilibrium Ratio Data Book," Natural Gasoline Association of American, Tulsa, Oklahoma (1960).
(5) Hadden, S.T., Chem. Eng. Prog. Symposium Series 49, No. 7, 53-66 (1953)
(6) Jacoby, R.H., Rzasa, M.J., Trans. Am. Inst. Mining and Met. Engrs., Petroleum Division 198, 225-30 (1953).
(7) Katz, D.L., Hachmuth, K.H., Indi. Eng. Chem. 29, 1072-7 (1937).
(8) Katz, D.L., Rzasa, M.J., "The Science of Petroleum," V, Part I, 182-92, 1950.
(9) Lenoir, J.M., White, G.A., Petr. Ref. 37, 173-81, March 1958.
(10) Organick, E.I., Brown, G.G., Chem. Eng. Prog. Symposium Series 48, No. 2, 97-111 (1952).
(11) Poettman, F.H., Trans. Am. Inst. Mining and Met. Engrs. Petroleum Division 192, 141-4 (1951).
(12) Poettman, F.H., Katz, D.L., Ind. Eng. Chem. 38, 530-4 (1946).
(13) Roberts, L.R., Ph. D. Dissertation, The University of Texas, Austin, Texas, (Jan., 1963).
(14) Roberts, L.R., McKetta, J.J., A.I.Ch.E. Journal 7, No. 1, 173 (1961).
(15) Roberts, L.R., McKetta, J.J., J. Chem. Eng. Data 8, 161 (1963).
(16) Roland, C.H., Smith, D.E., Kaveler, H.H., Oil Gas J. 39, No. 46, 128-32 (1941).

Received for review December 11, 1962. Accepted July 8, 1963. This project is sponsored by the National Science Foundation.

[^0]: ${ }^{1}$ Present address: Union Texas Petroleum Company, Houston, Tex

