Nitrogen-n-Decane System in the Two-Phase Region

A. AZARNOOSH 1 and J. J. McKETTA The University of Texas, Austin, Tex.

The vapor-liquid equilibrium in the nitrogen-n-decane system has been investigated. The experimental concentrations of the conjugate phases are present at isotherms of 100, 160, 220, 280° F. and pressures up to 5000 p.s.i.a.

T HERE are not many reported data on systems involving nitrogen and hydrocarbons at elevated pressures and temperatures. The heaviest binary nitrogen-hydrocarbon system presented so far involves heptane (1).

In this work the nitrogen-*n*-decane system was studied. Isotherms were established for temperatures of 100, 160, 220 and 280° F. at pressures up to 5000 p.s.i.a.

EXPERIMENTAL

The equilibrium cell used in this work was a high pressure Sloan-type equilibrium variable volume cell equipped with an internal mixer.

The cell was mounted in an oil bath, equipped with observation windows which were in line with the windows in the cell. A temperature regulator in the oil bath, main-

¹Present address, National Iranian Oil Co., Teheran, Iran.

MOLE FRACTION OF NITROGEN IN THE VAPOR PHASE .992 .994 .996 .998 986 988 .990 10 984 500 4500 4000 3500 PRESSURE, PSIA 3000 2500 2000 1500 1000 500 ol 05 .15 .2 .25 3 35 MOLE FRACTION OF NITROGEN IN THE LIQUID PHASE Figure 1. Pressure composition diagram for

n-decane—nitrogen system at 220° F.

tained the bath temperature within $\pm \frac{1}{2}{}^\circ F.$ Pressure inside the cell was measured using three Bourdon-type gages, calibrated against a dead weight tester.

Equilibrium was attained by driving the mixing motor for a period of two hours. At the end of this period the motor was turned off, the cell contents were allowed to stand for one hour before samples were taken of the coexisting phases.

ANALYTICAL

The samples were withdrawn from the cell and were trapped between two high pressure valves. These samples were then expanded into a 500 cc. sampling flask. The whole sampling assembly was placed in a high temperature air bath in order to secure complete evaporation of the trapped sample into the flask. The samples were analyzed in a Beckman GC-2 chromatograph. A pair of 12 ft.

Table I. Experimental Data Binary System

Mole Fraction Nitrogen				Mole Fraction Nitrogen		
Pressure P.S.I.A.	Liquid Phase	Vapor Phase	Pressure P.S.I.A.	Liquid Phase	Vapor Phase	
	100° F.			220° F.		
80		0.99676	80		0.9797	
100		0.99776	100		0.9847	
150		0.99756	200	0.0050	0.9943	
200		0.99940	300	0.0350	0.9962	
400	0.0385	0.33304	750	0.0682	0.9903	
500	0.0482	0.9977	800	0.0804	010010	
680	0.0665	0.9993	900	0.0925	0.9970	
750	0.0710	0.99976	1000	0.1070	0.9967	
800	0.0735	0 99972	1400	0.1075	0.99617	
1000	0.0930	0.9997	1500	0.1520	0.99679	
1050	0.1000		1600	0.1590	0.99788	
1350	0.1242	0.99971	1900	0.1860		
1400	0.1268	0.99940	2000	0.1990	0.99614	
1900	0.1715	0.99920	2300	0.2030	0.99612	
2100	0.1875	0.99974	2300	0.2170	0.9870	
2400	0.2130	0.99840	2300	0.2170	0.99590	
2400	0.2110	0.99959	2500	0.2350	0.99550	
2500	0.2130	0.99920	2700	0.2410	0.99330	
3400	0.2280	0.99870	3000	0.2410	0.9956	
3400	0.2690	0.99950	3300	0.2760	0.0000	
3600	0.2822	0.99930	3400	0.2850	0.9951	
4000	0.2990	0.99850	3750	0.3070	0.9950	
4000	0.3030	0.99960	4000	0.3130	0.9945	
4250	0.3180	0.99860	4250	0.3330	0.99312	
4700	0.3380		4500	0.3420	0.9942	
5000	0.3550	0.99680	4750	0.3650	0.9932	
	160° F.		4950	0.370	0.9923	
100		0.9928				
150		0.9970				
200		0.99923				
420	0.0422	0.00020				
500	0.0513	0.9990				
700	0.0602	0.9993		280° F		
800	0.0780		40	200 1,	0.6640	
950	0.0912	0.99775	60		0.8140	
1200	0.1130	0.99910	80		0.8536	
1250	0.1186	0.9970	100		0.9030	
1330	0 1719	0.9987	150	0.0000	0.9506	
1700	0.1713	0.99896	500	0.0329	0.9268	
1750	0.1700	0.00000	800	0.0825	0.99365	
2000	0.1980	0.99871	900	0.0966		
2100	0.1935	0.99841	1000	1.1064	0.9938	
2500	0.2190	0 99817	1500	0.1365	0.9910	
2600	0.2270	0.99819	1950	0.1930	0.99302	
2800	0.2440	0.99844	2150	0.2150		
3000	0.2590	0.99824	2500	0.2380	0.9932	
3250	0.2510	0.99850	2000 2950	0.2420	0.9924	
3400	0.2780	0.00000	3100	0.2770	0.9940	
3500	0.2910	0.99802	3250	0.2800	0.9924	
3750	0.3010	0.99757	3500	0.297	0.9920	
4100	0.3270	0.99744	3800	0.3245	0.9914	
4300	0.3350	0.99846	4000	0.3510	0.9906	
4500	0.3500	0.99660	4450	0.3600	0.0002	
4700	0.3590	0.99734	4700	0.3820	0.9883	
4900 5000	0.3730	0.99660	4700	0.3770	0.0000	
5000	0.0000	0.99900	0000	0.3980	0.9860	

brations using a known composition mixture of the methane-decane system (3).

MATERIAL USED

The normal decane used was Phillips Petroleum Co. research grade with a minimum purity of 99.43%. The

length columns of $\frac{1}{2}$ inch aluminum tubing packed with silicone SE-30 impregnated fire brick, which was placed in a thermotrac, was used to separate nitrogen and decane. A full description of the equipment, sampling procedure and analytical calculations are available (2). Since the calibration for methane and nitrogen on the thermotrac was the same, occasional checks were made on the cali-

Table II. Smoothed Data for Binary Systems

	100° F. Mole Fraction Nitrogen		160° F. Mole Fraction Nitrogen			100° F. Mole Fraction Nitrogen		160° F. Mole Fraction Nitrogen	
Pressure P.S.I.A.	Liquid Phase	Vapor Phase	Liquid Phase	Vapor Phase	Pressure P.S.I.A.	Liquid Phase	Vapor Phase	Liquid Phase	Vapor Phase
$\begin{array}{c} 80\\ 100\\ 150\\ 250\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 1750\\ 2000\\ 2250\\ 2500\\ 2750\\ 3000\\ 3250\\ 3500\\ 3750\\ 4000\\ 4250\\ 4500\\ 4750\end{array}$	$\begin{array}{c} 0.0090\\ 0.0106\\ 0.0158\\ 0.0261\\ 0.0502\\ 0.0730\\ 0.0950\\ 0.1180\\ 0.1400\\ 0.1600\\ 0.1810\\ 0.2000\\ 0.2180\\ 0.2340\\ 0.2500\\ 0.2640\\ 0.2780\\ 0.2910\\ 0.3040\\ 0.3170\\ 0.3300\\ 0.3410 \end{array}$	0.9977 0.9982 0.9995 0.9998 0.9998 0.9998 0.9998 0.9997 0.9987 0.9980 0.9975 0.97	$\begin{array}{c} 0.0090\\ 0.0106\\ 0.0157\\ 0.0261\\ 0.0510\\ 0.0750\\ 0.0980\\ 0.1210\\ 0.1430\\ 0.1650\\ 0.2050\\ 0.2230\\ 0.2400\\ 0.2560\\ 0.2710\\ 0.2860\\ 0.2710\\ 0.2860\\ 0.3160\\ 0.3160\\ 0.3310\\ 0.3460\\ 0.3620 \end{array}$	0.9910 0.9935 0.9960 0.9989 0.9992 0.9992 0.9991 0.9990 0.9989 0.9989 0.9988 0.9987 0.9986 0.9984 0.9982 0.9982 0.9982 0.9982 0.9982 0.9982 0.9982 0.9984 0.9982 0.9982 0.9982 0.9984 0.9982 0.9982 0.9982 0.9982 0.9982 0.9984 0.9982 0.9982 0.9985 0.9984 0.9982 0.9984 0.9985 0.9985 0.9985 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 0.9987 0.9986 0.99975 0.9960	$\begin{array}{r} 80\\ 100\\ 150\\ 250\\ 500\\ 750\\ 1000\\ 1250\\ 1500\\ 1750\\ 2000\\ 2250\\ 2500\\ 2500\\ 2500\\ 2550\\ 3000\\ 3250\\ 3500\\ 3500\\ 3500\\ 3500\\ 4000\\ 4250\\ 4500\\ 4500\\ 4500\\ 4500\\ 4500\\ 4500\\ 4500\\ 4500\\ 4500\\ 500\\ $	$\begin{array}{c} 0.0085\\ 0.0105\\ 0.0156\\ 0.0260\\ 0.0510\\ 0.0770\\ 0.1030\\ 0.1260\\ 0.1490\\ 0.1720\\ 0.2110\\ 0.2280\\ 0.2450\\ 0.2610\\ 0.2770\\ 0.2920\\ 0.3080\\ 0.3230\\ 0.3380\\ 0.3540\\ 0.3700 \end{array}$	0.9801 0.9850 0.9915 0.9965 0.9969 0.9969 0.9969 0.9968 0.9964 0.9964 0.9964 0.9964 0.9961 0.9959 0.9956 0.9956 0.9954 0.9954 0.9954 0.9948 0.9944 0.9940 0.9929	$\begin{array}{c} 0.0085\\ 0.0104\\ 0.0156\\ 0.0260\\ 0.0522\\ 0.0790\\ 0.1050\\ 0.1300\\ 0.1530\\ 0.1760\\ 0.1970\\ 0.2170\\ 0.2170\\ 0.2360\\ 0.2540\\ 0.2700\\ 0.2860\\ 0.301\\ 0.317\\ 0.3320\\ 0.3490\\ 0.3640\\ 0.3820 \end{array}$	$\begin{array}{c} 0.8500\\ 0.8840\\ 0.9500\\ 0.9651\\ 0.9894\\ 0.9912\\ 0.9939\\ 0.9938\\ 0.9937\\ 0.9936\\ 0.9935\\ 0.9935\\ 0.9933\\ 0.9931\\ 0.9929\\ 0.9926\\ 0.9924\\ 0.9920\\ 0.9915\\ 0.9910\\ 0.9902\\ 0.9894\\ 0.9894\\ 0.9882\end{array}$
5000	0.3520	0.9968	0.3800	0.9950	5000	0.3860	0.9921	0.4000	0.9860

nitrogen used was OP grade with a minimum purity of 99.9 mole %.

RESULTS

The results of analysis are tabulated in Table I, A P-X diagram for each isotherm was prepared similar to that shown in Figure 1. In Figure 2 the four isotherms are shown. It can be seen that the solubility of nitrogen in normal decane increases with temperature. This fact is in agreement with findings of other investigators (1, 4).

Smoothed data for each isotherm were obtained by plotting the best curve passing through experimental data points on a P-X diagram. These are tabulated in Table II.

LITERATURE CITED

- Akers, W.W., Kehn, D.M., Kilgore, C.H., Ind. Eng. Chem. 46, 2536-9 (1954).
- (2) Azarnoosh, A., "Phase Equilibrium in Nitrogen-Methane-Decane System" Ph.D. Dissertation, University of Texas, Austin, Tex. (June, 1963).
- (3) Reamer, H.H., Olds, R.H., Sage, B.H., Lacey, W.N., Ind. Eng. Chem. 34, 1526-1531 (1942).
- (4) Roberts, L.R., "Phase Behavior in Nitrogen-Hydrocarbon Systems," Ph.D. Dissertation, University of Texas, Austin, Tex. (1963).

RECEIVED for review April 4, 1963. Accepted July 19, 1963. This work was carried out under a National Science Foundation Grant for which the authors are grateful.

Densities, Refractive Indices, Molar Refractions, and Viscosities of Ethylene Glycol Dimethyl Ether-Water Solutions at 25°

WILLIAM J. WALLACE¹ and A. L. MATHEWS

Department of Chemistry, The University of Mississippi, University, Miss.

DENSITIES, refractive indices, and viscosities of mixtures of water and ethylene glycol dimethyl ether have been determined at 25° C. as part of a study of polyether and polyether-water solvent systems. These data as well as the molar refractions of these solutions are presented.

EXPERIMENTAL

Technical ethylene glycol dimethyl ether (Ansul Chemical Co., Ansul E-121) was treated with lithium aluminum

¹ Present address, Muskingum College, New Concord, Ohio.

hydride and then fractionated immediately before use. The ether had a boiling point of 85.2° (uncorr.), gave a negative peroxide test (2), and analysis by gas chromatography indicated a purity of 99.9+ per cent. Water used for the solutions was distilled from dilute potassium permanganate solution in a seasoned all Pyrex assembly.

The mixtures were prepared in 100 ml. batches by weighing out the liquids to the nearest tenth of a milligram. Refractive indices were measured at $25.00 \pm 0.01^{\circ}$ with a Bausch and Lomb Precision Refractometer (Abbe) using the sodium D line. Readings were reproducible to within ± 0.00003 .