Reductive Cyclization of Hydrazones

DANIEL KAMINSKY and FLOYD E. ANDERSON¹ Warner-Lambert Research Institute, Morris Plains, N. J.

DURING investigation of the preparation of substituted hydrazines (1), as potential monoamine oxidase (MAO) inhibitors, we noted the facile reductive cyclizations of the hydrazones of several aliphatic γ - and ζ -keto-carboxylic acids.

The compounds, listed in Table I, were prepared by the condensation of the appropriate keto-carboxylic acid with either ethyl carbazate (2), acetylhydrazine (3) or semicarbazide in a suitable solvent. The resultant hydrazones (I) were reduced catalytically to give excellent yields (71-95%) of the corresponding cyclized hydrazines (II). In general, the reaction conditions were similar, and a representative preparation is given in the experimental section.

Pharmacological testing of these cyclized hydrazines (II A-C) indicated $LD_{50\,\text{s}}$, p.o., in mice of greater than 1000 mg./kg. They exhibited no evidence of MAO inhibition, by the "reserpine-challenge" test (4), at doses up to 100 mg./kg.

EXPERIMENTAL

Ethyl 2-oxo-5-methyl-1-pyrrolidinecarbamate (IIC). A mixture of ethyl carbazate, levulinic acid and isopropyl alcohol

 $^{1}\mbox{Present}$ address: College of Pharmacy, Northeastern Univ., Boston, Mass.

was refluxed for 6 hours. A yield of 183 grams (90%) of colorless crystals of IC, m.p. $108-110^{\circ}$ was obtained. A sample was recrystallized for analyses, m.p. $109-110^{\circ}$. Anal. Calcd. for $C_8H_{14}N_2O_4$: C, 47.52; H, 6.98; N, 13.86. Found: C, 47.62; H, 7.10; N, 13.69.

A mixture of IC, isopropyl alcohol and PtO_2 (palladium on charcoal, 5%, has also been used successfully) was hydrogenated in a Paar apparatus until the theoretical amount of hydrogen was absorbed (2 hours; initial pressure, 3.5 atm.). The mixture yielded 18.6 grams (81%) of colorless crystals (IIC), m.p. 56-58°. Recrystallization yielded the analytical sample (see Table I).

LITERATURE CITED

- Anderson, F.E., Kaminsky, D., Dubnick, B., Klutcko, S.R., Cetenko, W.A., Gylys, J., Hart, J.A., J. Med. Pharm. Chem. 5, 221 (1962).
- (2) Diels, O., Ber. 2183 (1914).
- (3) Curtius, T., Hofmann, T.S., J. Prakt. Chem. 53, 513 (1896).
- (4) Chessin, M., Dubnick, B., Leeson, G., Scott, C.C., Ann. N. Y. Acad. Sci. 80, 597 (1959).
- (5) Goss, F.R., Ingold, C.K., Thorpe, J.F., J. Chem. Soc. 1925, p. 468.

RECEIVED for review February 25, 1963. Accepted April 10, 1963.

Table I. Properties of Hydrazones

RC(CH ₂) _n	-C = C)
	 ОН	$\frac{H_2/PtO_2}{HRC(CH_2)} = O(NHC = O)$
N - N - C = 0		R'
H \mathbf{R}'		

	Hydrazone				Hydrazine		Carbon		Hydrogen		Nitrogen	
	M.P. ^a ° C.	R	R	n	M.P. ^a ° C.	Formula	Calcd.	Found	Calcd.	Found	Calcd.	Found
A	$188 - 189^{b}$	CH_3	\mathbf{NH}_2	2	181-183	$C_6H_{11}N_3O_2$	45.85	45.92	7.05	7.11	26.74	26.79
В	143 - 144	CH_3	\mathbf{CH}_2	2	54 - 56	$C_{7}H_{12}N_{2}O_{2}$	53.83	53.59	7.74	7.84	17.94	17.66
С	111 - 113	CH	OC_2H_5	2	59-60	$C_8H_{14}N_2O_3$	51.60	51.68	7.58	7.49	15.04	15.02
D	_°	CHa	OC_2H_5	3	$48-50^{d}$	$C_{9}H_{16}N_{2}O_{3}$	53.98	54.08	8.06	8.07	13.99	14.16
Е	153 - 155	C_6H_5	OC_2H_5	2	_ ^e	$C_{13}H_{16}N_2O_3$	62.89	63.15	6.50	6.56	11.28	11.45

° Melting points taken on Hoover-Thomas apparatus and are corrected. [°]Reported (5) m.p. 191-2°. [°]Not isolated. ^dB.P. 105-7°/0.1 mm. [°]B.P. 192-5°/1.0 mm.; after standing for 1 year it did not crystallize.