Phosphorus-31 Nuclear Magnetic Resonance Chemical Shifts of Phosphorus Compounds

MORRIS L. NIELSEN, J. V. PUSTINGER, Jr., and JOHN STROBEL Dayton Laboratory, Monsanto Research Corp., Dayton, Ohio

T HE NUCLEAR MAGNETIC resonance (NMR) chemical shifts of 140 phosphorus compounds are reported. These are listed (Table I) by classes of compounds so that relationships between chemical shifts and the substituent groups on phosphorus can be recognized. These data are useful for qualitative identification of these specific compounds and, to some extent, related compounds by extrapolation.

EXPERIMENTAL

The NMR spectra were obtained on a Varian Model V-4300-2 high-resolution spectrometer with a radio frequency of 16.2 Mc. and a magnetic field of approximately 9400 gauss, using a Varian magnet, Model V-4012-A. Chemical shifts are reported in parts per million (p.p.m.) of the applied field using 85% H₃PO₄ as the reference standard (zero shift). Upfield shifts are denoted by a plus sign , downfield shifts by a minus sign. The samples were contained in a 15-mm. O.D. Pyrex glass tube with a narrow (1-2 mm.) tube containing the H₃PO₄ inserted concentrically through the stopper. Accuracy is approximately \pm 0.5 p.p.m. The data were obtained with pure samples of isolated compounds, identified independently by physical constants or elemental analyses. The solvents used are reported, since, for some of the compounds, the chemical shifts varied for different solvents.

Spin-spin splitting is reported where observed under the instrument conditions described, with the number of peaks and the coupling constant in c.p.s. Chemical shifts for nonequivalent phosphorus nuclei in the same molecule are shown, with assignments to the respective P_{α} , P_{β} , etc.

Correlations between structure and chemical shifts of the P-N compounds are discussed in a separate paper elsewhere (7).

	Physical State	Chemical Shift, p.p.m.	Spin-Spin Splitting	
Compound			No. Peaks	Coupling Constant, c.p.s.
Phosphines $[C_{e}H_{b}P] n = 2 \text{ or } 4$	In benzene	+4.6		• • • •
Aminophosphines, substituted $(C_6H_3)_2NPCl_2$	In toluene	-151.3		
Phosphites $(C_6H_3CH_2O)_2P(O)H$	Liquid	-7.9	2	713
$\begin{array}{l} Halophosphate esters \\ C_{4}H_{3}OP(O)Cl_{2} \\ (C_{4}H_{5}O)_{2}P(O)Cl \\ (C_{6}H_{5}CH_{2}O)_{2}P(O)Cl \\ (C_{6}H_{5}CH_{2}O)_{2}P(O)Cl \\ (4-NO_{2}C_{6}H_{4}CH_{2}O)_{2}P(O)Cl \end{array}$	Liquid Liquid Liquid In CHCl ₃	-1.8 +6.1 -4.7 -5.2	· · · · · · ·	· · · · · · ·
$\begin{array}{l} Phosphoramidic chlorides\\ [(CH_3)_2N]_2P(O)Cl\\ C_6H_5NHP(O)Cl_2\\ C_8H_5N(CH_3)P(O)Cl_2\\ (C_8H_6)_2NP(O)Cl_2\\ (C_8H_6)_2NP(O)Cl_2\\ (C_8H_6NH)_2P(O)Cl\\ [(C_6H_5)_2N]_2P(O)Cl \end{array}$	Liquid Liquid Liquid In dioxane In dioxane In DME"	-29.6 -7.6 -13.6 -8.2 -4.1 -8.1	···· ···· ····	···· ···· ····
Miscellaneous chlorides $C_6H_5(C_6H_5O)P(O)Cl$ $C_6H_5(CH_3)NP(O)(C_6H_5)Cl$ $C_6H_5(CH_3)NP(O)(NHC_6H_5)Cl$ $(C_6H_5O)_2P(O)N = PCl_3$ Miscellaneous pseudohalides	Liquid Liquid In THF [®] Liquid	-25.1 -36.7 -10.0 +12.0	· · · · · · · · · ·	···· ···· ···
$(C_6H_5O)_2P(O)NCS$	Liquid	+29.3	•••	
Phosphates $(C_2H_3O)_2P(O)OH$ $(C_2H_3O)_2P(O)ONH_4$ $(C_2H_5O)_2P(O)ONa$ $C_8H_5OP(O)(OH)_2$ $C_8H_5OP(O)(ONa)_2$	In water In water In water In water	0.0 +0.5 -3.8 +4.8	•••• ••• •••	···· ··· ···
$\begin{array}{l} C_{6}H_{5}OP(O)(OH)_{2} \cdot C_{6}H_{5}NH_{2} \\ C_{6}H_{5}OP(O)(OH)_{2} \cdot C_{6}H_{4}(NH_{2})_{2} - 2 \\ (C_{6}H_{5}O)_{2}P(O)OH \end{array}$	In water In pyridine In DMF ^c In CH ₃ OH	0.0 +4.6 +6.2 +12.7	•••• ••• •••	· · · · · · · · · ·
$(C_{6}H_{5}O)_{2}P(O)ONH_{4}$ $(C_{6}H_{5}O)_{2}P(O)ONa$ $(C_{6}H_{5}CH_{2}O)_{2}P(O)OH$	In water In water In dioxane	+9.8 +9.0 +1.1	• • • • • • •	• • • • • • •

(Continued on page 168)

 Table I. Nuclear Magnetic Resonance Spectra of Phosphorus Compounds (Continued).

			Spin-Sp	oin Splitting
Compound	Physical State	Chemical Shift, p.p.m.	No. Peaks	Coupling Constant, c.p.s.
$(4-NO_2C_6H_4O)_2P(O)OH$	In acetone	+15.4		
$(4-NO_2C_6H_4CH_2O)_2P(O)OH$	In DMF	+1.7		
$(4-NO_2C_6H_4CH_2O)_2P(O)ONa$	In water	+1.0	• • •	
$(4-NO_2C_6H_4CH_2O)_3PO$	In DMF	+0.7	•••	• • •
Phosphoric acid anhydrides	Timeta	10.4		
$(C_2H_5O)_2P(O)OP(O)(OC_2H_5)_2$ $(C_8H_5O)_2P(O)OP(O)(OC_6H_5)_2$	Liquid Liquid	$^{+13.4}_{+23.9}$		• • •
$(C_{6}H_{5}CH_{2}O)_{2}P(O)OP(O)(OCH_{2}C_{6}H_{5})_{2}$	In benzene	+12.6		
$(4-NO_2C_6H_4CH_2O)_2P(O)OP(O)(OCH_2C_6H_4NO_2)_2$	In DMF	+14.5		
$(C_{6}H_{5}O)_{2}P_{\alpha}(O)OP_{\beta}(O)(OC_{6}H_{5})OP(O)(OC_{6}H_{5})_{2}$	Liquid	$\{P_{\alpha} = +26.6\}$	2	16
	Diquia	$\{\mathbf{P}_{\beta}^{*} = +35.6$	3	16
Phosphonic acids, salts and esters	. .	10.0		
$CH_{3}P(O) (ONH_{4})_{2}$ $CH_{3}P(O) (OC_{3}H_{7})_{2}$	In water Liquid	-19.3 -27.4	4	11
$CH_{3}P(O)(OC_{6}H_{5})_{2}$	Liquid	-24.1		
$C_6H_5P(O)(ONH_4)_2$	In water	-10.8		
$C_6H_5P(O)(ONa)_2$	In water	-13.8		
$C_6H_5P(O)(OCH_3)_2$	Liquid	-21.4	•••	• • •
$C_6H_5P(O)(OC_6H_5)_2$	In ethanol	-11.8	•••	• • •
$(C_6H_5O)_2P(O)N-CH = N-CH = CH$	In THF	+15.7		•••
Phosphoramidic acids, salts and esters				
$(NaO)_2P(O)NH_2$	In water	-8.9		
$(CH_3O)_2P(O)NH_2$	In methanol	-15.2	• • •	
$(C_2H_5O)_2P(O)NH_2$ $(C_4H_9O)_2P(O)NH_2$	In CH3COOC2H5 Liquid	-11.1 -12.1		• • •
$C_{s}H_{5}O(NH_{4}O)P(O)NH_{2}$	In water	-12.1 -0.5	• • •	
$(C_6H_5O)_2P(O)NH_2$	In DMSO ⁴	-2.8		
$(C_6H_5CH_2O)_2P(O)NH_2$	In ethanol	-12.0		
$HOP(O)(NH_2)_2$	In water	+0.2	• • • •	
$NaOP(O)(NH_2)_2$ $NaOP(S)(NH_2)_2$	In water In water	-14.5 -54.2	• • •	• • •
$C_{6}H_{5}OP(O)(NH_{2})_{2}$	In DMSO	-15.2		
$C_6H_5OP(S)(NH_2)_2$	In methanol	-68.6		
N-substituted phosphoramidic acids, salts and esters				
$(HO)_2P(O)NHC_6H_5$	In DMF	+12.0	• • •	
$C_6H_5O(HO)P(O)NHC_6H_5$ (C_6H_5O) ₂ $P(O)NHCH_3$	In DMF In DMF	$^{+4.1}_{+1.2}$	•••	• • •
$(C_6H_5O)_2P(O)NHC_6H_5$	In DMF In DMF	+1.2 +7.1	• • •	
$(C_6H_5O)_2P(O)NHC_6H_{11}$	In CHCl ₃	+0.4		
$C_6H_5O(HO)P(O)(o-NHC_6H_4NH_2)$	In 1-M-2-P ^e	+6.0		
$C_6H_5OP(O)NHC_6H_4NH-2$	In ethanol	-18.1	3	15
$C_6H_5OP(O)NHC_6H_4NH \cdot C_5H_5N$	In pyridine	-17.8	3	13
$C_6H_5OP(O)(NHC_6H_{11})_2$ NaOP(O)[N(C_6H_5)_2]_2	In ethanol In DME	-10.7 + 3.8	•••	• • •
$C_6H_5OP(O)(NHCH_3)_2$	In ethanol	-16.0		• • •
$C_6H_5OP(O)(NHC_6H_5)_2$	In DMF	+2.3		
	-	21.2		
NaOP(O)NHC ₆ H ₄ NH-2	In water	-21.2	•••	•••
Phosphoric amides PO(NH ₂) ₃	In water	-22.0		
$PS(NH_2)_3$	In water	-61.1		
$(CH_3)_2 NP(O) (NHC_8H_5)_2$	In dioxane	-6.4		
$(\mathbf{CH}_3)_2 \mathbf{NP}(\mathbf{O}) (\mathbf{NHC}_6 \mathbf{H}_{11})_2$	In.benzene	-15.7		• • •
$(CH_3)_2 NP(O) [N(CH_3)C_6H_5]_2$	Liquid In CHCl₃	$-25.5 \\ -8.9$	• • •	•••
$\frac{(CH_3)_2NP(O)[N(C_6H_5)_2]_2}{PO(NHC_6H_5)_3}$	$In OHOI_3$ In DME	-8.9 +4.8		10
$PO(NCH_3C_6H_5)_3$	In DME	-13.0		
$PO[N(C_6H_5)_2]_3$	In CH ₂ Cl ₂	-1.7		
$C_6H_5NHP(O)(NHC_6H_{11})_2$	In ethanol	-8.0	• • •	
$C_6H_5N(CH_3)P(O)(NHC_6H_{11})_2$ ($C_6H_6)_2NP(O)(NHC_6H_{11})_2$	In benzene In 1-M-2-P	-11.0 -6.8	•••	• • •
	111 1-141-7+1	-0.0	• • •	••:
Phosphonic amides $CH_3P(S)(NHC_6H_{11})_2$	In DMF	-65.4		
$C_6H_5P(O)(NH_2)_2$	In <i>m</i> -cresol	-25.4		
$C_6H_5P(S)(NH_2)_2$	In ethanol	-64.5		• • •
$C_6H_5P(O)(NHC_6H_5)_2$	In DMF	-8.4	• • •	• • •

Table I. Nuclear Magnetic Resonance Spectra of Phosphorus Compounds (Continued).

Physical		·	C 1:
Physical	<u> </u>		Coupling
<u>a</u> .	Chemical	No.	constant,
State	Shift, p.p.m.	peaks	c.p.s.
			• • •
		• • •	•••
			• • •
In methanol	-22.0		
In water	-18.2	• • •	
In water	-18.7		•••
Liquid	-24.0		
In DMF	-23.0		•••
In benzene	-26.6		
In 1-M-2-P	+16.3		
In DMF	-11.4		••••
In DME	-6.0		
In CHCl ₃	-16.6	•••	•••
$In CHCl_3$	-13.0		•••
In methanol	- 25 5		
In methanol + DMF	-18.8		
In CHCl ₃	-25.8	• • •	• • •
In DMF	+7.6		
	10.1		
In CHCl ₃ In aniline	-43.4 -14.5		
In water	-2.7		
Liquid	0.0		• • • •
In CHCl ₃	-2.5		
In water		• • •	• • •
In methanol	$\begin{cases} P_{\alpha} = +8.1 \\ P_{\alpha} = +8.5 \end{cases}$	4	14
	$(P_{\beta} = +2.5)$		
In methanol	$P_{\rm ff} = +2.1$	4	8
In CHCl ₃	$\begin{cases} P_{\alpha} = +8.6 \\ P_{\alpha} = +1.1 \end{cases}$	•••	
In methanol			
In benzene	+10.7		
In benzene	+8.0		
In benzene	+7.3	• • •	
In benzene	+11.6		
Liquid	+11.0	••••	
In DMSO	$\begin{cases} P_{\alpha} = +8.4 \\ P_{\alpha} = -8.4 \end{cases}$		12
	$(P_{\beta} = -3.8)$		12 13
In dio xan e	$P_{a} = +5.9$		13
	$P_{2} = +8.4$	4	14
In DMSO	$\begin{cases} \mathbf{P}_{\beta}^{\alpha} = +6.3 \\ \mathbf{P}_{\beta} = -0.8 \end{cases}$	Multiple 4	8
In water	-1.6		
In water	$\begin{cases} \mathbf{P}_{\alpha} = +4.2\\ \mathbf{P}_{\beta} = +7.9 \end{cases}$	3 2	7 7
	In water In water Liquid In DMF In DMF In benzene In 1-M-2-P In DMF In OME In CHCl ₃ In CHCl ₃ In CHCl ₃ In CHCl ₃ In DMF In CHCl ₃ In DMF In CHCl ₃ In DMF In CHCl ₃ In methanol + DMF In CHCl ₃ In methanol In nothcl ₁ In methanol In methanol In methanol In methanol In CHCl ₃ In methanol In DMSO In dioxane	In benzene -28.1 Liquid -38.3 In benzene -21.0 In DME -14.8 In methanol -22.0 In water -18.2 In water -18.2 In water -18.7 Liquid -24.0 In banzene -18.7 Liquid -24.0 In DMF -23.0 In benzene -26.6 In 1-M-2-P +16.3 In DMF -11.4 In DME -6.0 In CHCl ₃ -16.6 In CHCl ₃ -16.6 In CHCl ₃ -16.6 In CHCl ₃ -16.6 In CHCl ₃ -13.0 In methanol -25.5 In DMF +7.6 In CHCl ₃ -25.8 In DMF +7.6 In CHCl ₃ -25.7 In water -0.0 In methanol $P_{\alpha} = +8.1$ P_{\beta} = +2.5 In water 0.0 In methanol $P_{\alpha} = +8.4$ P_{\beta} = +2.5 In metha	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

(Continued on page 170)

Table I. Nuclear Magnetic Resonance Spectra of Phosphorus Compounds (Continued)

			Spin-Spin Splitting	
Compound		Chemical Shift, p.p.m.	No. peaks	Coupling constant, c.p.s.
$(NaO)_{3}[PONH]_{3}$	In water	+1.5	• • •	
$(\mathbf{C}_{2}\mathbf{H}_{5}\mathbf{O})_{3}[\mathbf{PONC}_{2}\mathbf{H}_{5}]_{3}$	In CCl₄	-5.3		• • •
(KO) ₄ [PONH] ₄	In water	+3.7		• • •
Phosphonitrilic derivatives				
$[\mathbf{PN}(\mathbf{OC}_2\mathbf{H}_5)_2]_3$	$\ln \mathrm{CHCl}_3$	-17.9		
$[\mathbf{PN}(\mathbf{OC}_2\mathbf{H}_5)_2]_4$	Liquid	+0.6	• • •	
$[\mathbf{PN}(\mathbf{NCS})_2]_3$	In CCl ₄	+26.8	• • •	• • •
$[PN(NCS)_2]_4$	In CCl ₄	+49.1	• • •	• • •
$\{ PN[NHC(S)NH_2]_2 \}_3$	In methanol	+10.8	•••	• • •
$\{ PN[NHC(S)NH_2]_2 \}_4$	In methanol	+21.2		
$\{ PN[NHC(S)NHC_6H_5]_2 \}_3$	In DMF	+2.2		
$\{ PN[NHC(S)NHC_6H_5]_2 \}_4$	In DMF	+23.2	• • •	
Miscellaneous P-N compounds				
$[\mathbf{C}_{6}\mathbf{H}_{5}\mathbf{N}\mathbf{H}\mathbf{P}\mathbf{N}\mathbf{C}_{6}\mathbf{H}_{5}]_{2}$	In CHCl ₃	(−113.6		
		{-109.2		•••
$\begin{bmatrix} \mathbf{C}_{6}\mathbf{H}_{5}\mathbf{N}\mathbf{H}\mathbf{P}(\mathbf{O})\mathbf{N}\mathbf{C}_{6}\mathbf{H}_{5} \end{bmatrix}_{2}$	In 1-M-2-P	+12		••••

 $^{\circ}$ DME = dimethoxyethane. $^{\circ}$ THF = tetrahydrofuran. $^{\circ}$ DMF = dimethylformamide. $^{\circ}$ DMSO = dimethylsulfoxide. $^{\circ}$ 1-M-2-P = 1-methyl-2-pyrrolidinone.

ACKNOWLEDGMENT

This work was supported in part by the Aeronautical Systems Division, Air Force Systems Command, United States Air Force, under Contract AF 33(616)-7853, monitored by the Materials Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio.

Some of the samples were prepared by T.J. Morrow,

L. Parts, and A.Y. Garner, and a number of the spectra were recorded by $R.R.\ Eckstein.$

LITERATURE CITED

(1) Nielsen, M.L., Pustinger, Jr., J.V., J. Phys. Chem. 68, 152 (1964).

RECEIVED for review August 16, 1963. Accepted January 20, 1964.

Solid State Reaction Study of Hydrated Iron Oxide with Hydrated Nitrates of Nickel and Cobalt

W. M. KEELY and HARRY W. MAYNOR Girdler Catalysts, Chemetron Corp., Louisville, Ky.

Pure Ni(NO₃)₂·6H₂O and pure Co(NO₃)₂·6H₂O were heated with hydrated iron oxide at 315–1200° C. Dehydration was complete at 315° C. In the Ni experiments, NiFe₂O₄ was formed at 480° C. At 650° C., NiFe₂O₄ was the major constituent. In the Co experiments, CoFe₂O₄ did not form at 480° C., but appeared as the major constituent at 650° C. Both reactions were complete at 1200° C.

 $T_{\rm HE}$ NEED CONTINUES for a better understanding of the transformation and reactions that occur in the preparation and application of catalysts and catalyst carriers. Chemical and physical changes occurring in mixtures of hydrated iron oxide with hydrated nitrates of nickel and cobalt are of both academic and industrial importance.

Similar information of the solid state reaction study of hydrated and α -aluminas with the hydrated nitrates of nickel and cobalt has been reported (4). In the nickel experiments, nickel aluminate was formed at 870° C. with hydrated alumina but not with α -alumina. At 1200° C. nickel aluminate was formed in each case, but to a lesser extent with α -alumina. In the cobalt experiments, cobalt