Table II. Novel Azido Compounds

								Anal	ysis"		
	Reaction Temp	Reaction Time.	n Yield.	B.P., °C./mm.	Index of Refraction/	Саг	bon	Hyd	rogen	Nitr	ogen
Compound	°C.	Hrs.	%	(M.P.)	° C.	Calcd.	Found	Calcd.	Found	Calcd.	Found
Bis(2-Azidoethyl)ether Bis(2-Azidoethoxy)ethane	100 95	19 36	92 85	73/3 83/0-3	1.4706/27 1.4672/28.5	36.00	36 54	 6 0	6 19	53.83 41.98	$54.11 \\ 41 48$
2-Azidomethyl-5-hydroxy-		00	00	(100, 100)	1.10.2, 20.0	40.10	40.14	0.00	0.00		
1,4-pyrone Bis(2-Azido-	Ambient	24	63	(126-128)		43.12	43.14	2.99	3.02	25.15	25.15
1-methylethyl)ether 2-Azidoethyl Azidoacetate	$\begin{array}{c} 100 \\ 80 \end{array}$	67.5	44 41	78/2 90/1.1	1.4588/30 1.4798/30	39.23 28.24	$39.07 \\ 28.52$	$6.56 \\ 3.85$	$6.56 \\ 3.61$	45.62 49.40	45.40 49.87

^aThe materials containing high percentages of nitrogen were difficult to analyze as they tended to explode at high temperatures.

pending it in boiling ethanol and adding water until solution occurred. Cooling gave 18 grams crystalline material, m.p. $165-166.5^{\circ}$. Evaporation of the filtrate with subsequent recrystallization as above gave an additional 8 grams material. Total yield 26 grams (37%) m.p. $165-166.5^{\circ}$ (Table I).

REACTION BENZYL AZIDE AND 3-HYDROXYBUTYNE. 1-BENZYL-4(OR 5)-(1-HYDROXYETHYL)-1,2,3-TRIAZOLE. A mixture of 133 grams (1.0 mole) of benzylazide and 70 grams (1.0 mole) 3-hydroxybutyne in 150 ml. toluene was heated at 100° on the steam bath for about 3 days. The volume was then reduced under vacuum to a viscous residue which was subsequently distilled through short (1-2-inch) column. The product possessed the properties indicated in Table I.

LITERATURE CITED

- (1) Boyer, J.H., Cantor, F.C., Chem. Rev. 54, 1 (1954).
- (2) Elderfield, R.C., "Heterocyclic Compounds," Vol. VII, p. 387 ff., Wiley, New York, 1961.
- (3) Lieber, E., Chao, T.S., Rao, C.N.R., J. Org. Chem. 22, 238 (1957).
- (4) Moulin, Fr., Helv. Chim. Acta 35, 167 (1952).
- (5) Rodd, E.H., "Chemistry of Carbon Compounds," Vol. IVA, p. 439 ff., Elsevier, New York, 1957.
- (6) Sommers, A.H., Barnes, J.D., J. Am. Chem. Soc. 79, 3491 (1957).

RECEIVED for review June 6, 1963. Accepted December 5, 1963.

Anilino Hydroquinones: Precursors to Azo Dye-Developers

WARREN E. SOLODAR, SUSANNE LUKAS, and MILTON GREEN Polaroid Corporation, Cambridge, Mass.

Protected hydroquinones, joined by different groups to various anilines, are used in the preparation of photographic dye-developers. In this paper the preparation and properties of these developer functions are described.

THE PREPARATION of azo dye-developers, described in the patent literature (3, 4, 5, 12, 13), makes use of protected hydroquinone functions joined through various structures to an anilino group. These developer-connected anilines are diazotized, coupled into appropriate couplers, and the protecting groups then removed to give the dyedevelopers.

The structures of these compounds were dictated by the following considerations: The redox system had to be sufficiently insulated from the chromophore so that changes in the oxidation state of the developer would not change the color of the dye. The hydroquinone had to be protected during the diazotization step from interaction with the diazonium salt (15) by a group that could be readily removed after coupling. Variations in the groups attached to ring A were made with a view toward modifying the photographic characteristics of the compound, or of changing some general property of the molecule, such as solubility. Substituents on ring B were generally chosen for the purpose of modifying the color of the azo dye.

In general, these compounds were synthesized by first assembling suitably chosen A and B fragments. This was frequently followed by demethylation of any methylated hydroxyl groups and replacing them with the readily removable acetate or carbethoxy functions. The amine precursor, a nitro group, was then reduced.

The reductions usually went readily at room temperature in a standard Parr apparatus. In many cases the free amine was isolated without difficulty. However, the application of heat during the evaporation of solvent following the reduction often led to amine-ester interaction, with attendant loss of product. For this reason, and because the amine was to be diazotized in the next step, we found it convenient to isolate many of our reduction products as their hydrochloride salts. The structures and physical constants of these developer moieties are indicated in the accompanying table.

The first two new intermediates described below, 2,5-dicarbethoxyhomogentisyl chloride and 2,5-dibenzyloxyphenol, were first synthesized in these laboratories by M.S. Simon and J.M. Clegg, respectively.

I. NEW INTERMEDIATES

2,5-Dicarbethoxyhomogentisyl Chloride. Homogentisic lactone was carbethoxylated (method 5) to give dicarbethoxyhomogentisic acid, m.p. 95-97°, white crystals from hexane.

ANAL. Calcd. for $\dot{C}_{14}H_{16}O_8$: C, 53.8; H, 5.1. Found: C, 53.8; H, 5.1. Treatment of the acid with refluxing thionyl chloride gave the acid chloride, m.p. 53–54°, from benzenehexane.

ANAL. Calcd. for $C_{14}H_{15}C10_7$: C, 50.9; H, 4.5; Cl, 10.6. Found: C, 50.9; H, 4.7; Cl, 10.7.

2,5-Dibenzyloxyphenol. Acetylhydroquinone (0.2M) was benzylated by refluxing with benzyl iodide (0.55M) in 450 ml. of acetone over 0.9M of anhydrous potassium carbonate for 36 hours, keeping the reaction mixture blanketed with nitrogen throughout. The acetone was distilled off and the residue crystallized from ethanol, to give a 66% yield of white crystals, m.p. 74-76°.

ANAL. Calcd. for $C_{22}H_{20}O_3$: C, 79.5; H, 6.0. Found: C, 79.2; H, 5.8.

The benzylated ketone was oxidized to the phenol ester by the following procedure (2). To 16.6 grams of 2,5-dibenzyloxyacetophenone (.05M) in 40 ml. of acetic acid was added 11.5 grams of 40% peracetic acid. The mixture was heated at 60° C. with stirring for 0.5 hour, cooled, and the product filtered off. Yield of white, crystalline 2,5-dibenzyloxyphenyl acetate, m.p. 121-124° was 60.5%. Analytical sample was recrystallized from ethanol.

ANAL. Calcd. for $C_{22}H_{20}O_4$: C, 75.8; H, 5.7. Found: C, 75.6; H, 5.6.

A mixture of 17.4 grams of 2,5-dibenzyloxyphenyl acetate (0.05M), 100 ml. of 5N NaOH, and 100 ml. of ethanol was stirred and refluxed three hours. After evaporating the ethanol in vacuo, the precipitated sodium 2,5-dibenzyl-oxyphenolate was filtered off. The product was washed with ether to remove starting material, then slurried with dilute HCl and filtered. The 2,5-dibenzyloxyphenol was recrystallized from ethanol, to give 7.9 grams (51.5%) of pink-white crystals, m.p. 92-95°.

ANAL. Calcd. for $C_{20}H_{18}O_3$: C, 78.5; H, 5.9. Found: C, 78.3; H, 6.1.

p-Carboxyphenylhydroquinone Dicarbethoxy Ester. Carbethoxylation of p-carboxyphenylhydroquinone (14) by method 5 gave a 50% yield of white solid, m.p. $174-175^{\circ}$ (from aqueous ethanol and benzene-hexane).

ANAL. Calcd. for $C_{19}H_{18}O_8$: C, 61.0; H, 4.8. Found: C, 61.2; H, 5.0.

The acid chloride, prepared from the acid and thionyl chloride, was an oil which did not solidify at room temperature. It was based directly in the preparation of compound 43.

2,5-Dimethoxy-4'-nitrostilbene. A mixture of 24.5 grams of *p*-nitrophenylacetic acid (0.135M), 18 grams of 2,5-dimethoxybenzaldehyde (0.108M), and 6 ml. of piperidine was refluxed (130° C.) for 3.5 hrs. The piperidine was distilled off and the temperatures was raised to 160° C. for three hours. The mixture, on cooling, was diluted with 25 ml. of acetic acid, then poured into 125 ml. of water.

A dark red oil separated. The supernatant liquid was decanted and the residual oil solidified on treatment with 25 ml. of ethanol. The solid was filtered off and recrystallized from 300 ml. of ethanol, to give 11.5 grams of yellow needles, m.p. $115-116^{\circ}$ (37%). A sample recrystallized for analysis melted at $116.5-117^{\circ}$.

ANAL. Calcd. for $C_{16}H_{15}NO_4$: C, 67.4; H, 5.3; N, 4.9. Found: C, 67.4; H, 5.5; N, 4.9.

II. SYNTHETIC METHODS

Method 1. Sulfones. Compounds 17 and 20. To a warm, saturated solution of p-benzoquinone in water was added a warm aqueous solution containing one equivalent of the sulfinic acid (8, 6). The sulfone precipitated immediately. After heating briefly on the steambath, the product was filtered off, desiccated, and recrystallized.

Method 2. Diaryl Thioethers. Compounds 11 and 14. To an ethanolic solution of p-nitrothiophenol (16) was slowly added a concentrated solution of one equivalent of the quinone in alcohol. The color of the quinone was discharged immediately on admixture. The ethanol solution was either evaporated to dryness (compound 14) or drowned in water (compound 11) and the precipitated product filtered off. The dried crude product was crystallized.

Method 3. Alkyl-aryl Thioethers. Compounds 5 and 8. A deaerated solution of 4 grams of NaOH (0.1M) in 100 ml. of MeOH was added under nitrogen to a mixture of 0.1Meach of the mercaptohydroquinone (1, 7) and of *p*-nitro phenylethyl bromide (10). The solution was refluxed one hour under nitrogen, chilled and acidified with conc. HCl. Precipitated sodium bromide was filtered off. The methanolic filtrate was evaporated to dryness, and the residue taken up in ether and water. The ether was dried and evaporated, and the residual product recrystallized.

Method 4. Alkyl-aryl Ether. 4'-NITROPHENYLPROPYL-2,5-DIBENZYLOXY PHENYL ETHER. Compound 23. A mixture of 0.03*M* of 2,5-dibenzyloxyphenol, 0.03*M* of *p*-nitrophenylpropyl bromide (9), and a solution of 0.03*M* of NaOH in 100 ml. of ethanol and 50 ml. of water was refluxed eight hours, then allowed to cool overnight. The precipitate that separated was filtered off and crystallized from ethanol, yielding 63% of near-white needles, m.p. $100-102^{\circ}$ C. A sample recrystallized for analysis melted at $106-107^{\circ}$ C.

Method 5. Carbethoxylation. Compound 21. To a deaerated solution of 0.4M of NaOH in water (5%) was added 0.1M of dihydroxy compound under a nitrogen atmosphere. The solution was cooled to 0° C. and 0.3M of ethyl chloroformate was added at a rate slow enough to keep the temperature from rising (ca. 0.5 hour). The mixture was stirred at $0-5^{\circ}$ C. for one hour after the addition, keeping the pH at 8 by addition of 50% NaOH as needed. The product was brought down by acidification with dilute HCl, extracted with ether, and isolated in the usual manner.

Method 6. Demethylations. METHOD A. COMPOUND 28. A mixture of 3.5 grams of 2,5-dimethoxy-4'-nitrophenyl ether, 40 ml. of acetic acid, and 40 ml. of 48% HBr was refluxed under nitrogen. After four hours the condenser was adjusted for downward distillation, and excess reagent was distilled off. After 5.5 hours (total) aspirator suction was applied and the mixture evaporated to dryness. The residual product was desiccated in vacuo over KOH and recrystallized.

METHOD B. COMPOUND 2. A mixture of 8.55 grams of 2,5-dimethoxy-4'-nitrostilbene (0.03M) and 40 grams of pyridine hydrochloride was refluxed 0.5 hour under nitrogen and poured (warm) into ice water. The precipitate that separated was filtered off, dried, and recrystallized.

Method 7. Acetylations. COMPOUNDS 3, 6, 9, 12, 15, 18, 25 AND 29. A mixture of 4 grams of dihydroxy compound, 40 ml. of acetyl chloride, and 4 drops of H_2SO_4 was refluxed 1.5 hours. The solution was either evaporated to dryness Table 1. Anilino Hydroquinone Esters and Intermediates

						Method	M.F. ⁻ Cryst. [*]	ł	Analyses %	
No.	Name	R	A Substituent(s)	X	B Substituent(s)	Yield, $\%$	Solvent		Calcd.	Found
1	2,5-Dimethoxy-4'-nitrostilbene	CH ₃	÷	CH =-CH	4'NO ₂	30	115°-116° A	OHZ	67.4 5.3	67.4 5.5
2	2,5-Dihydroxy-4'-nitrostilbene	H	:	CH=CH	4'NO ₂	6(B) 59	231°-235° B	ZOHZ	65.4 65.4 4.3	65.2 65.2 4.3
e	2,5-Diacetoxy-4'-nitrostilbene	COCH3	:	CH = CH	4′NO2	7 83	192°–194⁰ C	ZUHZ	0.4 63.3 4.4 4.1	0.3 63.1 4.4 4.1
4	α -(2,5-Diacetoxyphenyl)- β -(4'-aminophen) ethane hydrochloride	yl)- COCH3	÷	CH _z -CH _z	4'NH2.HCI	11 88	154° 158° dec. K	UHZ	61.8 5.8 4.0	62.0 5.9 3.6
		Alkyl-Ar	yl Thio Ethers 🔺 🤚	$\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{2} \sum_{k=1}^{n} \sum_{k$						
£	2,5-Dihydroxyphenyl-4'-nitrophenyl- ethylthio ether	H	÷	-S-CH2CH2	4'NO2	3 71	120°-122° D	HC	57.7 4.5	57.7 4.6
9	2,5-Diacetoxyphenyl-4'-nitrophenyl- ethylthio ether	-cocH ₃	÷	S-CH ₂ -CH ₂	4′—NO2	7 84	105°−107° E	ZUHZ	4.8 57.6 4.6 3.7	4.8 57.6 4.6 3.7
7	2,5-Diacetoxyphenyl-4'-amino-phenyl- ethylthio ether	COCH _a	:	S-CH ₂ -CH ₂	$4'-NH_2$	not obta	ined crystalline ^{d}			
x	Z,5-LJIDydroxy-4-metnylpnenyl-4 -mtro- phenylethylthio ether	H—	4-CH ₃	S-CH ₂ -CH ₂	4′NO ₂	е 90	121-123° D	UHU	59.0 4.9 4.6	59.3 5.1 4.5
6	2,5-Diacetoxy-4-methylphenyl-4'-nitro- phenylethylthio ether	COCHa	4-CH ₃	-S-CH ₂ -CH ₂ -	4'NO2	7 87	89°–91° E	UHU	58.6 4.9 3.6	58.7 4.9 3.3
10	2,5-Diacetoxy-4-methylphenyl-4'-amino- phenylethyl thio ether	COCH3	4-CH ₃	S-CH ₂ -CH ₂	$4'-NH_2$	not obtai	ined crystalline ^d			

		Diary	vl Thio Ethers ³ (× × × × × × × × × × × × × ×							
11	<i>p</i> -Nitrophenylthiohydroquinone	H	:	-S- -S-	4′NO₂	2 76	186°-187° F	OHZ	54.8 3.5 5.3	55.0 3.5 5.3	
12	<i>p</i> -Nitro phe nylthiohydroquinone diacetate	- COCH ₃	÷	- S	4'N'O.:	7 96	113°-115° F	С	55.8 3.8	55.5 4.1	
13	<i>p</i> -Aminophenylthiohydroquinone diacetate	- COCH _a	÷		$4'$ NH $_2$	50 11 66	112.5°- 124° ₽	ZOHZ	4.0 4.8 4.4	4.1 60.5 4.7 4.4	
14	4'-Nitrophenyl-2,5-dihydroxy-3,6-di- methylphenylthio ether	H	2,5-(CH ₃) ₂	Ś	4'NO ₂	2 75	168°-172° G	° NH C	57.7 4.5 4.8 11.0	57.8 4.6 10.9	
15	4'-Nitrophenyl-2,5-diacetoxy-3,6-di- methylphenylthio ether		$2,5-(CH_3)_2$	-S-	4'NO ₂	7 85	116°−118° A	0 H Z Ø	57.6 4.5 3.7 8.5	57.7 4.8 3.5 8.8	
16	4'-Aminophenyl-2,5-diacetoxy-3,6-di- methylphenylthio ether		2,5-(CH ₃) ₂	Ś	4'NH2·HCI	11 90	120° dec. K	NHC	56.6 5.3 3.7	56.2 5.3 3.6	
			Sulfones ³								
17	2,5-Dihydroxyphenyl-4'-nitrophenyl sulfone	H−	:	l² SO,	4'NO2	1 98	213°-214° H	OHN	48.8 3.1 4.7	48.9 3.3 4.7	
18	2,5-Diacetoxyphenyl-4'-nitrophenyl sulfone	COCH ₃	÷	SO ₂	4'NO ₂	7 77	169°-171° G	NUHZ	50.7 3.5 3.7	10.8 51.0 3.4 3.7	
19	2,5-Diacetoxyphenyl-4'-aminophenyl sulfone		÷	SO ₂	4' NH ₂	11 73	179°-180° A	NUHZ	55.0 4.3 4.3	8.6 55.1 4.0	
20	2,5-Dihydroxyphenyl-2′,5′-dimethoxy- 3'-nitrophenyl sulfone	H	÷	S0,	2',5'-(OCH _a) ₂ 3'NO ₂	1 A	212°213° E	ZOHZ	47.3 3.7 3.9	47.5 3.9 4.0	
21	2,5-Bis(ethoxycarbonyloxy)- phenyl-2,5'-dimethoxy- 3'-nitrophenyl sulfone	CO ₂ C ₂ H ₅	÷	SO ₂	2',5'(OCH ₃) ₂ 3'NO ₂	5 9.6	170°-172° L	NUHZY	9.0 48.2 6.4 6.4	9.2 4.5 6.7 6.7	
22	2,5-Bis(ethoxycarbonyloxy)- phenyl-2',5'-dimethoxy- 3'-aminophenyl sulfone	CO ₂ C ₂ H ₅	÷	S02	2',5' - (0CH ₃) ₂ 3'NH ₂	11 40	140°−142° A	NELCO	51.2 51.2 4.9 3.0 6.8 Continued	51.3 5.1 3.2 6.7 00 page 236)	
								-	Continue	nu puer 2.14	

					::						
		Table I.	Anilino Hydroquin	une Esters and Intermed	liates (Conterued)						
						Method	M.P." Cryst."	A	nalyses \mathbb{Z}_{0}		
No.	Name	R	A Substituents(s)	X	B Substituent(s)	Yield, $\%$	Solvent		Calcd.	Found	
		Alkyl	Aryl Ethers 3	$\begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}$ $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ $\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$ $\begin{bmatrix} 2\\ 0\\ 0\end{bmatrix}$ $\begin{bmatrix} 2\\ 0\\ $							
23	4'-Nitrophenylpropyl-2,5-dibenzyloxy- phenyl ether		•	оя —0-(СН ₂) ₁ —	4′NO2	4 63	106°−107° A	сH;	74.2 5.8	74.1 5.8	
24	4'-Nitrophenylpropyl-2,5-dihydroxy- phenyl ether	H—	:	0-(CH ₂) ₃	$4'$ -NO $_2$	9 62	155°–157° G	ZOE	62.3 5.2 5.2	62.4 5.2 7.2	
25	4'-Nitrophenylpropyl-2,5-diacetoxy- phenyl ether	COCH _a	:	0-(CH ₂) ₃	4'-NO ₂	7 54	92°95° E	ZOE	4.8 5.1 5.1	61.1 5.2 5.2	
26	4'-Aminophenylpropyl-2,5-diacetoxy phenyl ether		:	-0-(CH ₂) ₃	4'NH ₂ ·HCl	11 59	138°−140° J	ZOHC	3.8 60.1 5.8	3.8 60.0 8.8 0.0 8.9	
		IJ)iaryl Ethers 🔋 🥇					5		1	
27	4'-Nitrophenyl-2,5-dimethoxyphenyl ether	CH ₃ —	÷	а - • О · -	4'NO ₂	10 70	76°−76.5° A	OH;	61.1 4.8	61.0 4.9	
28	4'-Nitrophenyl-2,5-dihydroxyphenyl ether	H—	÷	0 -	4'NO ₂	6(A) 58	162°−164° H	ZOE	5.1 58.3 3.7 2.7	5.2 58.2 3.7 5.2	
8	4' - Nitrophenyl -2,5-diacetoxyphenyl ether	-COCH ₃	÷	-0	4'NO ₂	7 66	111°−113° A	ZOH	5.7 58.0 4.0	5.7 57.9 3.9	
ଛ	4'-Aminophenyl-2,5-diacetoxyphenyl ether	COCH _a	÷	-0	$4'$ NH $_2$	11 74	112°−113° A	ZUHZ	63.8 5.0 7	63.8 5.3 7.3	
			Amides ^ ³	B B B B B B B B B B B B B B B B B B B				Z	4.1		
31	2,5-Diacetoxy-4'-nitrobenzanilide	COCH ₃	:		4'NO ₂	8(B) 67	152°-153° A	CHC	57.0 3.9	57.0 3.8 7.0	
32	2,5-Diacetoxy-4'-Aminobenzanilide				4'NH ₂	11 73	251°-252° A	ZUHZ	7.8 62.2 4.9	7.8 62.3 4.9	
33	2,5-Diacetoxy-4'-nitro-N-methyl- benzanilide	-cocH,	:	-CON - CH_3	4'NO ₂	8(B) 81	139∘-140∘ A	ZUHZ	8.5 58.1 4.3 7.5	8.5 58.0 7.5 7.5	

34	2,5-Diacetoxy-4'-amino- <i>N</i> -methylbenz a nilide	COCH ₃	:	CON	4'NH2	11 82	139°140° A	CHC	63.1 5.3	$63.1 \\ 5.2 \\ 6.2$
35	2.5-Dicarbethoxv-4'-nitro-	C0,C,H,	:	CH3 —CH3CONH—	4′—NO,	8(A)	158°-159°	zυ	8.2 55.6	55.9
1	homogentisanilide				- -	87	Н	Η	4.7	4.4
	5							Z	6.5	6.7
36	2,5-Dicarbethoxy-4'-aminohomogenti-	$-C0_{2}C_{2}H_{5}$	•	CH ² CONH	4'NH ₂ ·HCl	11	205° dec.	ပ	54.8	54.6
	sanilide hydrochloride					79	К	Н	5.3	5.4
								z	6.4	6.6
37	2,5-Dicarbethoxy-4'-nitro-2',6'-di-	$-CO_2C_2H_5$:	CH ₂ CONH	$4'-NO_{2}-$	8(A)	187°-188°	ບ	48.0	48.2
	chlorohomogentisanilide				$2', 6' - (CI)_2$	33	D	Η	3.6	3.7
	2							Z	5.6	5.6
38	2,5-Dicarbethoxy-4'-amino-2',6'-di-	$-co_2c_2H_5$	•	-CH2CONH-	$4'-NH_2$	11	172°-174°	C	50.9	50.7
	chlorohomogentisanilide				$2', 6' - (CI)_2$	42.5	D	Η	4.2	4.5
	3							z	5.9	5.6
								ū	15.1	14.8
39	2,5-Dicarbethoxy-4'-nitro-2',5'-di-	$-CO_2C_2H_5$		CH ₂ -CONH	4'N0 ₂	8(A)	133°	ပ	48.0	48.2
	chlorohomogentisanilide				$2',5'-(Cl_2)_2$	50	Α	Η	3.6	3.6
								z	5.6	5.5
40	2,5-Dicarbethoxy-4'-amino-2',5'-di-	$-co_2c_2H_5$:	-CH2-CONH-	4'NH ₂	11	175°-177°	ပ	51.0	50.9
	chlorohomogentisanilide				$2',5'-(Cl_2)_2$	39.5	E	Н	4.3	4.2
								z	5.9	5.7
								Ū	15.1	14.8
41	2,5-Dicarbethoxy-4'-nitro-2',5'-di-	$-CO_2C_2H_5$:	-CH ₂ -CONH-	4'N0 ₂ 2',5'	8(A)	144°-145°	c	53.7	53.8
	methoxyhomogentisanilide				$(OCH_3)_2$	54	Α	Н	4.9	4.7
								Z	5.7	5.6
42	2,5-Dicarbethoxy-4'-amino-2',5'-dimeth-	$-CO_2C_2H_5$		-CH ₂ -CONH-	4'NH2·-HCI	11	216° dec.	ပ	53.1	53.0
	oxyhomogentisanilide hydrochloride				$2',5'-(0CH_3)_2$	100	К	Η	5.5	5.7
								z	5.6	5.6
43	4-[2'',5''-Bis(carbethoxy)phenyl]-	$-CO_2C_2H_5$		-HNOD	4'NO ₂	8(B)	$133^{\circ}-136^{\circ}$	C	60.7	61.1
	4'-nitrobenzanilide					38	A	Н	4.5	4.5
								z	5.7	5.7
:		11 0 000			4'—NH ₂	11	203° dec.	0	59.9 7 0	59.9
44	4-{2'',5''-Bis(carbethoxy)phenyl}-	$-CO_2C_2H_5$:		·HCI	/9	4	I;	0.0 1	0.0 0.0
	4'-aminobenzanilide hydrochloride							ZÖ	0.6 	0.0 0
								5	7.1	6.9

"Melting points are uncorrected and were taken on a Mel-Temp capillary melting point apparatus. ⁶Crystallization solvents: A, ethanol; B, anisole; C, *n*-propyl alcohol; D, benzene; E, isopropyl alcohol; F, benzene-hexane; G, toluene; H, xylene; I, acetic acid; J, ethanol-ether; K, not recrystallized; L, cyclohexane-benzene. ^eWe are indebted to Dr. Carol Fitz of Needham, Massachusetts,

for the microanalyses. ^dThe aminophenylethylthio ethers (and their hydrochloride salts) were non-crystallizable syrups. They were dissolved in dilute HCl, diazotized, and coupled immediately. The azo dyes obtained from these couplings gave correct analyses for the expected dyes.

in vacuo or quenched in ice water. Residual or precipitated product was dried and recrystallized.

Method 8. Amides. METHOD A. COMPOUNDS 35, 37, 39 AND 41. A mixture of 0.1M of dicarbethoxyhomogentisyl chloride and 0.1M of the nitroaniline was refluxed one hour in o-dichlorobenzene. The product usually separated on cooling. Those that did not separate were precipitated by pouring the reaction mixture into hexane. The product was filtered off and recrystallized.

METHOD B. COMPOUNDS 31, 33 AND 43. A mixture of 0.02M of 2,5-diacetoxybenzoyl chloride, 0.02M of the nitroaniline, 0.02M of pyridine, and 60 ml. of ethylene dichloride was refluxed one hour. The cooled mixture was washed with water to remove pyridine hydrochloride. The organic layer was dried and evaporated to dryness in vacuo. Residual product was recrystallized.

Method 9. Debenzylation. COMPOUND 24. To a gently boiling solution of 15 grams of 4'-nitrophenylpropyl-2,5-dibenzyloxy phenyl ether in 150 ml. of acetic acid was slowly added 35 ml. of conc. HCl. The mixture was refluxed for 20 minutes after the addition, then poured into a liter of ice water. The brown gummy solid that separated was filtered off, and washed free of benzyl chloride with hexane on the Büchner funnel. The solid was crystallized from 30 ml. of toluene (charcoal) to give 5.5 grams of yellow crystals. m.p. $155-157^{\circ}$.

Method 10. Diaryl ethers. COMPOUND 27. A mixture of 25 grams of 2,5-dimethoxy potassium phenoxide, 0.13M (11), 25 grams of p-fluoronitrobenzene, 0.175M (17), 0.5 grams of 2,5-dimethoxyphenol (11), and 0.2 grams of copper powder was heated in a metal bath at 155–160° for one hour. The melt was poured into alkaline ice water. An oil separated which soon solidified, was filtered off, and recrystallized (filtering off the copper at this stage) from ethanol.

Method 11. Reductions. The nitro compound was dissolved or suspended in ethanol, the more insoluble ones in ethyl acetate, and hydrogenated in a Parr shaker over 10% Pd on BaSO₄ at room temperature. Theoretical uptake of hydrogen took from 15 minutes to four hours. After removal of catalyst, the free bases were isolated by vacuum evaporation of solvent; hydrochlorides were precipitated by adding one equivalent of conc. HCl to the amine in ethyl acetate.

LITERATURE CITED

- (1) Alcalay, W., Helv. Chim. Acta 30, 582 (1947).
- Ballio, A., Almirante, L., Ann. Chim. (Rome) 41, 421 (1951).
 Blout, Elkan R., Corley, Richard S., Cohen, Saul G., Green, Milton, Rogers, Howard G., Simon, Myron S., Woodward, Robert B., (to International Polaroid Corporation), British Patent 804,974 (November 26, 1958); C.A. 53, 13852c (1959).
- (4) Blout, Elkan R., Green, Milton, Rogers, Howard G., Simon, Myron S., Woodward, Robert B., (to Polaroid Corporation), U.S. Patent 3,019,107 (January 30, 1962); C.A. 56, 9620h (1962).
- (5) British Patent 853,479, International Polaroid Corporation (November 9, 1960); C.A. 55, 9125f (1961).
- (6) Brunetti, W., J. prakt. Chem. 128, 44 (1930).
- (7) Burton, H., David, J. Chem. Soc. 1952, 2195.
- (8) Carter, P.R., Hey, D.H., Ibid., 1948, 148.
- (9) Davis, W., Roberts, J.J., Ross, W.C.J., Ibid., 1955, 894.
- (10) Foreman, E.L., McElvain, S.M., J. Am. Chem. Soc. 62, 1436 (1940).
- (11) Gilman, H., Van Ess, P.R., Ibid., 61, 1370 (1939).
- (12) Green, Milton, Husek, Helen P., (to Polaroid Corporation),
 U. S. Patent 3,019,254 (January 30, 1962); C.A. 57, 9744a (1962).
- Green, Milton, Solodar, Warren E., (to Polaroid Corporation), U. S. Patent 3,061,434 (October 30, 1962).
- (14) Kvalnes, D.E., J. Am. Chem. Soc. 56, 2480 (1934).
- (15) Orton, K.J.P., Everatt, R.W., J. Chem. Soc. 1908, 1021.
- (16) Price, C.C., Stacy, G.W., J. Am. Chem. Soc. 68, 499 (1946).
- (17) Rarick, M.J., Brewster, R.Q., Dains, F.B., *Ibid.*, 55, 1289 (1933).

RECEIVED for review August 2, 1963. Accepted December 20, 1963. Portions of this work were presented by E.H. Land and Associates at the Symposium on Polacolor Film, Society of Photographic Scientists and Engineers, Atlantic City, N. J., May 1, 1963.

Syntheses of 1,2,3,4-Tetra-O-Acetyl-6-O-Benzhydryl- β -D-Glucose

DAVID J. STANONIS and WALTER D. KING

Plant Fibers Pioneering Research Laboratory, U.S.D.A., New Orleans, La.

The benzhydrylation of 1,2,3,4-tetra-O-acetyl- β -D-glucose and the benzhydrylation of D-glucose followed by acetylation are described. Data presented indicate that both processes lead to the production of 1,2,3,4-tetra-O-acetyl-6-O-benzhydryl- β -D-glucose.

DURING A STUDY in this laboratory of the distribution of substituents in benzhydrylated cotton cellulose, the need arose for a D-glucose derivative having the benzhydryl group in the 6-position. A literature search showed that while Ohle and Tessmar (4) had attempted to prepare such a derivative by reacting benzhydryl alcohol with 5,6-anhydro-1,2-O-isopropylidene- α - D-glucose, they has not been successful. No other reference to such a compound was found.

The recent use of benzhydryl bromide in lutidine as a method for the benzhydrylation of cotton cellulose (6)

suggested that the benzhydrylation of a D-glucose derivative or even D-glucose itself might be feasible. Following this lead, a sample of 1,2,3,4-tetra-O-acetyl- β -D-glucose was prepared according to the method of Reynolds and Evans (5). This in turn was treated with benzhydryl bromide in 2,6-lutidine. Chemical analysis of the product indicated the presence of four acetyl groups and one benzhydryl group.

The infrared spectrum of the product (in a potassium bromide pressing) has an absorption band near 11.2μ which is associated with a β -D-anomer, but no band at