
charcoal gave colorless crystals, melting a t  154-156" C. This 
melting range corresponds with the range of values (154- 
160" C.) reported for 1,l'-binaphthyl and not with the 
2,2' isomer (m.p. 187°C.) nor the 1,2' isomer (map. 79°C.). 
A mixture melting point with an authentic sample of 1,l'- 
binaphthyl was undepressed. 

The 1,l'-bitetralyl should exist as the meso form and a 
racemic modification. ,The stereochemical composition of 
dimers of alkylbenzenes has been determined by gas 
chromatography (2). Using a similar column (1.5 meter 
column of Apiezon L on firebrick a t  250° C.), the crystalline 
1,l'-bitetralyl showed only a single well defined peak. The 
unrecrystallized distillate, however, showed two distinct 
peaks of approximately the same area. Adding a portion of 
the crystalline product to the liquid distillate reinforced 
the peak which emerged first. This indicated that during 
the recrystallization step one stereoisomer had been sep- 
arated from the other. The mass spectrum of the liquid 
product was that characteristic of 1,l'-bitetralyl (very 
weak parent peak, major peak a t  m / e  = 260, very intense 
fragment peak a t  mie  = 130) which shows that the second 
peak on the chromatogram is not another bitetralyl isomer 
such as the 2,2'- or 5,5'-bitetralyl which have strong parent 
peaks. The NMR spectrum of the liquid distillate also 

c o n b e d  the 1,l'- linkage of the unrecrystallized distillate 
fraction. There were minor differences in the mass spectrum 
and the NMR spectrum between the crystalline product 
and the liquid distillate which were attributed to intrinsic 
differences between the stereoisomers. As expected, neither 
fraction was optically active. It is not known whether the 
crystalline product is meso or racemic. 
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Determination of Virial Coefficients 

by the Burnett Method 

ALAN E. HOOVER, FRANK B. CANFIELD,'RlKl KOBAYASHI, and THOMAS W. LELAND, Jr. 
William Marsh Rice University, Houston, Texas 

Two methods of determining second and third virial coefficients with the Burnett 
apparatus are described. The first method is an improved way of determining the 
apparatus constant used in obtaining compressibility factors. The virials are then 
obtained from these compressibility factors in the conventional manner. The second 
method avoids the determination of the apparatus constant and furnishes the virial 
coefficients directly from the experimental data. This method is more accurate if the 
lowest pressures measured contain non random errors. Second and third virial coef- 
ficients for helium and nitrogen are compared by the two methods. 

on a nearly ideal gas such as helium. These compressibility 

equal to the number of expansions. The evaluation of this 
constant requires a separate experimental investigation of 
great precision. The purpose of this paper is to show that 
virial and compressibility factors can be ob- 
tained directly from the pressure measurements on the 
unknown gas without requiring the evaluation of the 
apparatus constant and additional source of error which 
this entails. This procedure is limited to pressures at which 
the contribution of the fourth and higher virials is negligi- 
ble. This means that the initial pressures at which the 
expansion begins must be slightly lower than when the 
apparatus constant method is used. 

A for determining the behavior Of factors involve the apparatus constant raised to a power 
gases which requires the measurement of only temperature 
and pressure on successive isothermal expansions was intro- 
duced by Burnett 1936 (1). Since its conception this 
expansion method has been applied by several investigators 
to measure compressibility over a wide range of temperature 
and pressure conditions (2, 10, 15, 16, 19,211. Although its 
principal use has been for compressibility factors, the 
method has some attractive features for the evaluation of 
virial coefficients. I t  avoids not only the difficulties of 
precise measurement of volumes but also eliminates some of 
the uncertainties caused by adsorption encountered in the 
traditional low pressure volumetric methods. The virial 
coefficients can always be calculated from the compressi- 
bility factors, but the Burnett method as used earlier has 
required the evaluation of an apparatus constant which is a 
function of the cell volumes. This apparatus constant is 
evaluated from the measured pressure and temperature data The Burnett apparatus consists of two vessels of unspeci- 
'Present addreas: University of Oklahoma, Norman, Okla. fied volume connected to each other by means of an 

APPARATUS CONSTANT METHOD OF OBTAINING 
VlRlAL COEFFICIENTS 
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expansion valve and maintained a t  the same temperature 
by immersion in an isothermal bath. Initially, the first 
vessel is filled with the gas to be studied and its temperature 
and pressure are measured. The second vessel is evacuated. 
The expansion valve is then opened, and the pressures are 
allowed to equalize between the vessels. The second vessel 
is isolated and evacuated again and the expansions are 
continlied until a pressure is reached which is low enough so 
that extrapolation to zero pressure is possible. The initial 
pressure is represented by Po. Pressures after subsequent 
expansions are P1, P2. .  . P,. Before the j" expansion, the 
following expression describes the gas in the first vessel: 

P, - , (V*)  = 2, - 1  n, - 1 RT, - 1 (1) 

Vl and VZ represent the total volumes 01 each of the two 
vessels. After equalization of the pressures, the equation 
of state becomes: 

P, ( VI + V,) = 2, n, RT, (2) 

Since V2 is evacuated before each expansion, the number of 
moles remains unchanged so that n, - = n,. In addition, 
T, - = T, if the equilibrium temperature of the bath remains 
unchanged. Dividing Equation 2 by Equation 1 and 
rearranging yields: 

= &L! where N, = + ")' , the apparatus constant. (3) 2 2,-1 (VI)?  - I 

If the values of P, - l/Z, - from Equation 3 for j 2 2 are 
successively substituted into Equation 3 for j = 1 the fob 
lowing relation is obtained: 

(4) 

From Equation 3, the value of the apparatus constant a t  
zero pressure, N,, is equal to the zero pressure limit of 
P, - l / P ,  since 2, = 2, - = 1 at  zero pressure. Similarily the 
value of Po/Zo is obtained as the limit. of the left hand side 
of Equation 4 as P, approaches zero. Graphical or analytical 
methods can be employed to obtain each limit from the 
experimental data which consists of a series of decreasing 
pressures collected a t  a given temperature. Determination 
of an apparatus constant and the subsequent evaluation of 
virial coefficients has been discussed by Kramer and Miller 
(9) and by Silberberg, Kobe, and McKetta (21). 

Canfield ( 4 )  has proposed a modified method of evalu- 
ating the apparatus constant a t  zero pressure which permits 
the use of higher pressure data. In terms of the virial 
expansion, a rigorous equation of the form, 

2 = 1 + B /  V + C/ v 2  + D/ v3+. . . (5) 

can be written. Algebraic rearrangement gives, 

(2 - 1)V = B + C/ V + D/ V 2 + .  . . (6) 

whxe V is the molal volume. Equation 6 requires that the 
variation of (2 - 1) v with 1 /  v be linear a t  sufficiently low 
density. Therefore, if the experimental values of (2 - 1) v 
plotted us. 1/ P can be shown to be linear within experi- 
mental error in a range of densities from a low density p i  to 
a higher density p 2 ,  it is necessary according to Equation 6 
that the plot be linear a t  all densities lower than p l .  This 
condition provides a powerful method for the accurate 
determination of Nw. Figure 1 shows that a value of NW 
which is too small causes the value of v(2 - 1) to vary in 
a nonlinear manner at low density while a t  higher densities 
the variation becomes quite linear. Although the range of 
density in Figure 1 is not sufficient to show the behavior 

ICAL DISPLACEYENT CAUSED BY 1 
~~ I I  5 
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Figure 1.  Determination of the second 
virial coefficient of helium at -90°C. 
(Also shown is the effect of varying the 

value of NO) 

a t  the higher densities, the variation of v (2 - 1) with 1/ v 
is essentially linear between 50 and 500 atm., the deviation 
from linearity occurring only at  low density. Figure 1 also 
shows the behavior of (2 - 1) v for a value of N ,  which is 
slightly too large. Canfield obtained a first approximation 
of N ,  by the method of Equation 3 and then by trial and 
error adjusted this value slightly to meet the criterion of 
linearity of v(2 - 1) us. l/  v at  low pressure. With his 
experimental data, the values of N ,  a t  a given temperature 
determined with different helium calibration runs agree 
within 1-2 parts in 100,000 while the agreement by the 
method of Equation 3 was usually 1 part in 10,000. 

Once the value of Nm at  a particular temperature was 
ascertained with helium calibration runs, Canfield used the 
following procedure in evaluating the second and third 
virial coefficients for the mixtures under study. Since the 
apparatus constant varied slightly with pressure because of 
distortion in the cell volumes and a shift in the null point 
of the differential pressure indicator, the values of N, for 
Canfield's equipment were calculated by the equation 

1 + aP, 
1 + bP, - 1 

N, = Nm (7) 

where a = 2.06 x atm-'. 
Using the corrected values of N,, the value of Pol20 was 
obtained by extrapolating the low pressure values of 
P,N1N2. . . N, to zero pressure. The extrapolation was 
carried out analytically by least-square fitting the last four 
to seven values of P,N1N2. , . N, to first- or second-degree 
polynomials in pressure. Equation 4 was then used to 
calculate the compressibility factors a t  the experimental 
pressures. The values of 2 are used with Equation 6 to 
determine the second and third virial coefficients defined by: 

atm.-' and b = 2.08 x 

[V (2 - 1)IT Lim 
1 1 v - 0  

B =  

Canfield ( 3 )  has shown that the apparatus constant is also 
affected significantly by temperature changes and must be 
determined separately for each isotherm. 

DIRECT METHOD OF OBTAINING VlRlAL COEFFICIENTS 

The data required in order to determine the second virial 
coefficient by this method are the measured pressures and 
temperatures, an estimate of the random experimental 
errors in these, an estimate of the expected values of B 
and C, and an order of magnitude estimate of the errors 
in B and C. 
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The expansion in the cell prior to measuring the fj + 1)" The upper limit of the summation in Equation 16 means 
that the index, k ,  terminates a t  the integral value nearest 
to, but less than, (n/2).  Thus, the first coefficient a1 has 
only one term in the sum for which n = 1, k = 0: 

pressure is expressed by : 

~ - P , - I N , + I  
z, Z,+I  

Equation 7 shows that N does not change by more than 
3 parts in lo5 between adjacent expansions. Consequently, 
(N,  + 1 = N,) and Equations 3 and 10 lead to: 

(11) 

There are two infinite series expansions which are used for 
the compressibility factor 2 = P v / R T ,  the one given in 
Equation 5 and the series in Equation 12; 

Z = 1 + B'P+ C'P2+  D ' P 3 + .  . . . . (12) 

For historical reasons Equation 5 is known as the Leiden 
expansion and Equation 1 2  as the Berlin expansion. If the 
pressure is not too high, an isotherm can be represented 
by Equation 5 when it has been truncated after the third 
coefficient in the form: 

At pressures for which Equation 13 is valid, isothermal 
plots of (2 - 1) v us. l/  v should be linear w,ith B as the 
intercept and C as the slope. The direct method determines 
the virials from experimentally measured pressures a t  which 
Equation 13 represents an isotherm within the experimental 
error. Scott and Dunlap (20) and Canfield ( 3 )  have dis- 
cussed the relative linearity of plots of this type for the 
Leiden and Berlin expansions. The pressure region over 
which Equation 13 is valid is often larger than the range 
over which a similar abbreviation in the form: 

B 
a1 = R-T 

F o r n =  2, k = 0 , l :  

C -  B2 a2 = - 
(RT)' 

and similarly for all higher coefficients. In  using Equation 
15 the expansion was continued until two values of 2 for 
consecutive values of n differed by less than one part in lo6. 

The first step in applying the direct method is to select 
from among the experimentally determined pressures on 
successive expansions, the maximum pressure for which 
Equation 13 is valid within experimental error. This 
pressure is first selected by trial and must be checked 
later. The virial calculation is then possible by an iter- 
ation process which proceeds as follows: An initial value 
of B alone is used to begin the iteration. This first trial 
B value may be obtained from a corresponding states plot 
of B/Vc us. T /Tc  such as that presented by Danon and 
Pitzer ( 5 )  or by McGlashan and Potter (11). This first 
value of B is then used to obtain a first trial value of C 
and an improved B value. These B and C values then 
furnish improved values of both B and C and so on until 
convergence. 

The initial B value is applied a t  pressures below some 
value intermediate between the maximum pressure a t  which 
Equation 13 is valid and the lowest measured pressure. 
In  this pressure range Equation 13 is assumed replaceable 
by: 

is adequate. The Berlin fourth virial D' in Equation 12 
becomes an important contributor to the series a t  a pressure 
much lower than that a t  which it becomes necessary to 
add the Leiden virial D in Equation 5 .  

Since volumes are never measured in the Burnett 
method, o,ne can express compressibility factor isotherms 
in terms of experimental data only with the Berlin ex- 
pansion in powers of the pressure. However, in view of 
the much more rapid convergence of the Leiden expansion 
in terms of reciprocal volumes, it is necessary to predict 
the Leiden coefficients B and C. This can be done by 
developing a new type of Berlin expansion in the form: 

Z = 1 + alP + a2P2 + a3P3 + . . . . . . . . + a,Pn + . . . . (15) 

B Z = l + -  Z = [1+ B'P + C'P'] (14) v 

The coefficients a, are not necessarily the true virials of 
the Berlin expansion but are the proper coefficients to make 
Equation 15 equal to the truncated Leiden series in Equa- 
tion 13. The general relationship between all the virial 
coefficients in the Leiden and Berlin expansions has been 
presented by Putnam and Kilpatrick (17) and the co- 
efficients in Equation 15 may be found by applying this 
relationship when the Leiden expansion contains only 
the B and C virials. The result relates the coefficients 
a, to the Leiden B and C terms as follows: 

The coefficients a, which made Equation 15 equivalent 
to Equation 19 are designated as a; values and are obtained 
from Equation 16: 

Each three successive pressures in this range can now be 
used to furnish an apparent value of B. This is obtained 
by substituting Equation 15, with coefficients expressed by 
(20), into Equation 11 which becomes: 

The coefficients a,, a t  this state, are the values a; which 
depend on B alone. Consequently, Equation 21 can be 
solved for B by trial and error using the initial value 
from the corresponding states plot as first trial. Because 
of the approximate nature of Equation 19, the result is not 
the correct B value but is designated as an apparent value 
of Bj' associated with the pressure P,. Each three successive 
pressures in the range where Equation 19 is reasonable 
then furnish an apparent B: value in this manner. Now 
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the approximation for 1 / v ,  a t  each of these pressures 
P, is: 

(22) 1 - PI _ -  
' J  R T [ 1 +  " = I  2 .,E] 

where the a. values are evaluated with the apparent Bj 
values by Equation 20. Using these a, values, a plot o f  

should be linear in this range. The intercept a t  PJ = 0 is 
a better value of B and the slope of the line gives the 
initial value for C. This is the equivalent of a plot of 
(2 - 1) v us. 1/  v in the determination of virial coefficients 
from P- V- T data. 

These values of B and C are now improved by extending 
the groups of three successive pressures up to the maximum 
pressure a t  which Equation 13 is valid. Instead of using 
a; values as the coefficients in Equation 21, the a, values 
obtained from Equation 16 involving both B and C are now 
used. The first trial C value is now assigned to the C term 
in the a, coefficient and Equation 21 is once more solved 
by trial and error for an apparent value of B: a t  each 
pressure P,. This time the improved B value from the 
previously obtained intercept is used as first trial solu- 
tion. These apparent B: values are then used to plot 
RT E a,P;-') (1 + a n y )  once more against P,/RT 
(1 + c a,P;) but the a ,  terms now involve both a E and 
C term. The intercept of the best straight line fit gives 
a better value for B and the slope of this line yields a 
better value of C. This process is then continued until 
the B and C values do not change. 

During this iteration process it is important to establish 
a criterion for fitting the best straight lines to the plots 
o f R T  (c a,P;-') (1 + C a,Py) us. P,/RT (1 + a,P;). 
Since the Burnett method must measure pressure changes a t  
constant volume, the apparatus must have a differential 
pressure indicator to indicate pressure equivalence between 
the gas in the apparatus cell and an external pressure trans- 
mission fluid. Low pressure measurements become more 
inaccurate because this indicator must operate with a 
negligible displacement to preserve constant volume condi- 
tions. Other slight errors in pressure also become more 
important It low pressures. This sets a limit on how low 
a pressure can be measured. If low enough pressures are 
measured there will inevitably be an important relative 
error in the data a t  low pressures in any Burnett apparatus. 
Furthermore, in the direct virial determination, if pressures 
are high enough so that Equation 13 is no longer valid, 
there will be deviation from linearity a t  the high pressure 
end. Consequently, a weighting procedure must be used in 
fitting the best straight line. 

A study of the general problem of fitting best straight 
lines when both ordinate and abscissa are subject to 
experimental error has been made by Madansky (12). He 
has shown that when the expected errors 6y in an ordinate 
y and 6 x  in an abscissa x are zero and are uncorrelated 
with n observed quantities then the best straight line, 
y = rnx + b, will produce a minimum in: 

where k is a proportionality constant which appears in 
a weighting factor coefficient of the square of the deviation 
of y, from its prediction by (mx, + 6). In  the application 
here, k is taken as unity, the slope m is the third virial 
coefficient C, and the intercept 6 is the second virial B. 

The ordinate y, is the equivalent of (2 - 1) V : 
y, = RT E a,F - '1 (1 + C a.F) 

and x,, the equivalent of 1 / v ,  is: 

In  the particular experimental data analyzed here, errors 
due to temperature proved to be negligible. The only error 
induced was thus assumed to be that due to errors in the 
measured pressures. The error in y, caused by a small 
error 6P, in pressure is (25) : 

Since all the straight line fitting is carried out with a con- 
stant C, the error in the a, coefficients is caused by pressure 
errors which alter the value of B' obtained from Equation 
21. The error in any coefficient a, is then obtained from 
Equation 16 as: 

k j  

(AB') (- 1)" '-'(n - 2k) (2n - k - 2)! C'(B')" - *  ~ 

- 2  
(sa,) = C 

( R T ) " ( n - l ) ! ( n - 2 k ) ! k !  
(27) k = O  

And the error in E' due to pressure errors is 

The coefficients in Equation 28 could be determined 
numerically by substituting the errors in P,, P, + ', and P, - 
into Equation 21 and calculating the effect on the B' value 
which solves the equation. This error (B') could then be 
substituted into Equation 27 and the resulting (sa,) substi- 
tuted into Equation 26. Fortunately however, small errors 
in pressure do not usually have an effect on the B' values 
obtained from Equation 21. In  fact, if the error in pressure 
is proportional to the magnitude of the pressure so that: 

then the error in the calculated B' value is zero when all the 
pressure errors are in the same direction or when the errors 
in P,-l and PJ+l are in the same direction and opposite to 
the error in P,. The work of Canfield ( 3 )  showed that 
Equation 29 is approximately true except a t  very low pres- 
sures. This means that the (&) errors in Equation 26 are 
zero and Equation 26 involves only errors in P,. When y,  is 
defined by Equation 24, Equation 26 then becomes: 

(6yJ)' = [RT (c a,nP; '1 (1 + 2 a,P;)]' (6P1)' (30) 

In a similar manner: 

Equations 30 and 31 are then used in Equation 23 and the 
straight lines are fitted to produce minimum values o f  

, 5 = I [ (6Y,)' cy, - + c2 - C r J ) 2  (62,)' 1 
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The only remaining difficulty is the fact that the highest 
pressure chosen must be tested to make sure that fourth 
virials are negligible over the range. This test is carried 
out by repeating the determination starting with the next 
lowest pressure. The final virials must be independent of 
the starting pressure. If this is not the case the series 
beginning with the highest pressure must be discarded and 
the starting pressure lowered until this independence is 
achieved. The choice of too high a starting pressure can 
also cause nonconvergence of Equation 15. 

I I 

COMPARISON OF THE TWO METHODS 
In Table I the virial coefficients of helium and nitrogen 

calculated by the direct method and by the apparatus con- 
stant method are listed with values reported by other 
investigators. Calculations for the direct method were 
carried out with a Control Data Corp. 1604-A digital 
computer. The two methods compared in this study both 
used the experimental data of Canfield (3). The results in 
Table I are obtained from the combination of two separate 
series of expansions a t  each temperature. 

In  the direct method the lowest three or four experimental 
points were essentially excluded by the weighting factor. 
However, these points did not scatter from the best linear 
fit in a random manner but usually followed a trend. This 
is shown in Figures 2 and 3. These low pressure points 
generally lie above the line and become farther from it as 
the pressure is lowered. The error analysis does not apply 
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Figure 2. Determination of NZ virial coef- 
ficients by the direct method. T = 183.15' K. 

to systematic errors and although these points are given a 
low weight by the function in Equation 32 they do have a 
noticeable influence due to their nonrandom character. 

Consequently these points were neglected entirely. They 
are shown as solid points in Figures 2 and 3. This deviation 
is probably caused by the fact that the low pressures meas- 
ured a t  the end of the expansion are likely to be relatively 
less accurate due to frictional resistance in the dead weight 
gage piston and low pressure insensitivity of the differential 
pressure indicator. Although the apparatus has been con- 
siderably improved since taking the data used here, there is 
always some low pressure limit in any Burnett determina- 
tion a t  which pressures will tend to deviate in this manner. 

The advantage of the direct method lies in the fact that 
the more accurate higher pressure points can define the 
linear relation. Low pressure points should be deleted 
successively beginning with the lowest observed pressure as 
long as the summation in Equation 32 decreases with the 
deletions. When this sum stops decreasing and begins to 
fluctuate, no further deletions should be made. 

The accuracy of the pressure measurements using a dead 
weight gage is limited by the accuracy to which the effective 
piston area is known. The first term in Equation 21 is 
independent of this area and the second term becomes so at  
low pressures. The zero pressure limit of both terms is equal 
to 1. Calculations by the direct method for one isotherm 
show that a shift of all P, by one part in lo4 in one direction 
(equivalent to  an error in the piston area of 0.01% in the 
opposite direction) causes only a 0.013% change in B and a 

4 * FIRST SERIES OF EXPANSIONS , 0 3 SECOND SERIES OF EXPANSIONS 
--A,* * DISCbROEO LOW PRESSURE POINTS 
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Figure 3. Determination of He virial coef- 
ficients by the direct method. T = 183.15"K. 

Temp., K 

273.15 

223.13 
183.15 
158.15 
143.14 
133.15 

273.15 

Table I. Comparison of Virial Coefficients Obtained 
Other Direct Method Apparatus Method (3,4) Investigations 

B 
(cc. / mole) 

-10.56 

-26.05 
-45.15 
-64.14 
-79.59 
-91.99 

11.96 

C B 
(cc. / mole)' (cc. /mole) 

N P  
1573 -9.70 

1860 -25.17 

C B 
(cc. /mole)* (Cc. / Mole) 

1416 -9.50(23) 
-10.34 (8) 
-11.11(22) 
-10.27(14) 

1636 -26.37 (8 )  __. . 
2119 -45.35 2132 
2530 -63.50 2414 

3119 -91.95 3100 
2914 -79.56 2920 -79.76 (8) 

He 
117.5 12.09 116 

223.13 12.23 121.8 12.46. 108 

183.15 12.09 149 12.30 150 
158.15 11.98 163.8 12.25 156 
143.14 11.84 175 12.20 159 
133.15 11.97 172 12.10 182 

12.08(24) 
11.86 (13) 
11.97(18) 
11.48 (9) 
11.85 (7) 
11.93 (7) 
11.59 (9) 
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0.04% change in C. A shift of 1 : l O O O  of the P, caused only 
a 0.05% change in B and a 0.13% change in C. Thus, a small 
systematic error in the piston area does not make an impor- 
tant change in the virial coefficients when the direct method 
is used. 

I n  the apparatus constant method the value of the con- 
stant a t  zero pressure must be determined very precisely. 
Errors in this constant introduce an error in the compressi- 
bility factor which increases as the number of expansions 
increase. The method of determining the constant using 
helium in a pressure range where fourth virials are negligible 
is shown in Figure 1. The proper selection of the zero pres- 
sure constant is indicated by a linear relationship resulting. 
Unfortunately, the deviations from linearity are shown most 
sensitively by the low pressure points and these points are 
most influential in determining the constants as shown in 
Figure 1. As has been discussed above these points are the 
least accurate and may have a systematic error. The scatter 
in these points is considerably dampened in the apparatus 
constant method since the compressibility factors a t  which 
they are determined are calculated from higher pressures in 
the expansion. However, even a small systematic error in 
these points will cause a significantly erroneous choice of the 
apparatus constant necessary to linearize them. Since the 
lower pressures are generally too high, this causes the second 
virial coefficient, as given by the intercept in Figure 1, to be 
too large. In  almost every case the second vinals of the 
apparatus constant method are larger than those predicted 
by the direct method. 

Because many of the difficulties in the apparatus constant 
method are avoided, the direct method proposed here is the 
more accurate procedure for the determination of virial 
coefficients from Burnett data. The data obtained ’by 
Canfield are very accurate over a wide pressure range and 
the pressure at which the systematic errors begin is quite 
low. Consequently the results of the two methods for these 
data are very close. If all pressures could be determined 
with equal relative accuracy with no nonrandom deviations 
at low pressures, then the results of the two methods should 
be identical. 
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Thermoanalytical Study of Lithium Chlorate 

MEYER M. MARKOWITZ, DANIEL A. BORYTA, and HARVEY STEWART, Jr. 
Foote Mineral Co., Exton, Penn. 

ELUCIDATION of the trends in thermal stability and 
of those chemical and physical processes occurring during 
the pyrolysis of the alkali metal (M) perchlorates has been 
facilitated through application of differential thermal 
analysis (DTA) and of thermogravimetnc analysis (TGA) 
(39). In  contrast, the alkali metal chlorates appear not 
to have been studied systematically by the use of these 
techniques. Accordingly, the present investigation of the 
thermal decomposition of LiC103 was undertaken with the 
views in mind of gauging the applicability of DTA and 
of TGA in this area, of defining the order of thermal 

stability of the lithium compounds of chlorine-containing 
oxyanions (ClO;, x = 1, 2, 3, 4),  and ultimately, of de- 
termining the pyrolysis relationships among the alkali 
metal chlorates in general. 
EXPERIMENTAL 

Thermoanalytical Techniques. DTA experiments to about 
700” were performed in a closed muffle furnace with equip- 
ment previously described (35, 39, 44) in conjunction with 
calibrated chromel-alumel thermocouples (24 B. and S. 
gage) and quartz sample tubes (3 inches x % inch 0.d. 
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