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A modified form of an equation developed earlier by Katti and Chaudhri for binary systems i s  
proposed for the representation of viscosity in ternary mixtures, Results by this approach are 
compared with experimental dab and with results predicted by use of the more complex equation 
of Kalidas and Laddha. The prerent approach is correlated with the experimental data equally as 
well as is that of Kalidat and Laddha. 

ACCURATE analytical viscosity-concentration functions 
are essential t,o a solution of fluid flow problems in multicom- 
ponent systems. In addition, for purposes of theoretical interpre- 
tation, it is desirable Lhat such equations include separately 
contributions from ideal mixing and terms that arise from 
interaction between components. The present work is concerned 
with two such equations. The purpose is to  demonstrate that, 
with modifications proposed here, the regular solution approach 
of Katti and Chaudhri (8)  will yield values that correlate as 
well with experimental results as do those obtained by the 
equation of TCalidas and Laddha (1) .  The latter equation is 
based upon extension of work by McAllister (3) on binary 
systems by a three-body approach, and is rather complex in 
form. For example, in ternary systems, all but one of the 
21 terms are of the third degree in component mole fractions. 
Use of this equation is thus rather time-consuming, and one of 
equivalent validity but lesser complexity is desirable. 

If Katti and Chaudhri's application (2)  of the Eyring 
viscosity model is extended to multicomponent systems with 
the assumption of binary intersction only, the result may be 
expressed as 

n 71 n 

i-I %=l 1-1 
log Y = c z, log Y ,  + c z, log 11.1, - log ZiMi + 6; ... " (1) 

aij is an interaction parameter, with aij = aii and ai = aj, = 
0. &. ,  .,, is a deviation function, representing departure from a 
noninteracting system. 

Two aspects of Equation 1 must now be considered: the use 
of terms in ai, for representation of the binary interactions, 
and the supposition that interactions are not higher than 
binary. The first aspect may be considered using the data of 
Katti and Chaudhri (2). In a binary system 1-2, Equation 2 
becomes simply 

Thus, if the assumed interaction term is correct, aI2/x1x2 is in- 
dependent of concentration. AI1 three of their binary systems 
show, however, a linear variation in &2/zIz2 when that function 
is plotted against x1 - x2. Clearly, a relationship more suitable 
than Equation 3 will be obtained if one assumes instead that 

812 = Z ~ Z Z [ ~ I Z  + a'i2(zi - zz)I (4 )  

It. follows that, in a multicomponent system, assuming binary 
interaction only, instead of Equation 2 there results 

where i<j 

(2) The assumption of an asymmctry term with the constant CY; in 
Equations 3 and 4 is suggested by the frequent use of such a 

66 JOURNAL OF C H E M I C A L  AND ENGINEERING DATA 



Table I. Application of Viscosity Equations to Binary Systems 

Dev. of Exptl. Values from Calcd. Values 

Constants of Equation 4 Av. Dev., %a Max. Dev., yo 
Systems of Katti and Chaudhri (8)d ff12 d l 2  Lit.b This work Lit.b This workc 

Benzyl acetate (1)-aniline (2) 0.0452 -0.0266 0.59 0.08 1.12 0.18 
Benzyl acetate (l)m-Cresol(2) -0.0774 0.0660 1.21 0.49 1.69 0.78 
Benzyl acetate (l)-dioxane (2) 0.1010 0.0272 0.93 0.72 2.00 1.36 

Systems of Kalidas and Laddha ( 1 )  

Acetone (1)-methanol (2) -0.1295 0.1307 0.60 0.33 0.97 0.69 
Acetone (1)-ethylene glycol (2) - 0.6080 -0.2022 1.45 1.28 2.76 2.62 
Methanol (1)-ethylene glycol (2) 0.2982 -0.0784 1.51 1.38 2.58 2.28 

a (Zld2/n)1/2 where d = 100(vexptl - venlod)/vcxpt1. 
Unweighted data, see text. 
Keighted data, see text. 
From the work of Katti and Chaudhri, 0112 for these three systems are 0.044, -0.078, 0.102, repectively ( 8 ) .  

Table II. Application of Viscosity Equations to Ternary System 
Acetone(1 )-Methanol (2)-Ethylene Glycol (3) (1) 

Constants of Equations 7 ,  8 

p1z3, Equation 7 
hr Equation 8 
@’1?3j Equation 8 

hv. Dev., yoc 
Lit. 
This work, Equations 7, 6 
This work, Equations 8, 6 

Max. Dev., % 
Lit. 
This ’ivork, Equations 7, 6 
This work, Equations 8, 6 

Unweighted data ( I ) ,  see text. 
Weighted data, see text,. 
Defined in Table I .  

-0.8317 
- 0.8495 
-0.2227 

-0.95a 
- l . 0 6 b  
-0.96* 

-1.81a 
-2.32‘ 
-2.05* 

term in representing the excess molar Gibbs free energy of 
mixing in nonelectrolyte systems that  depart only slightly from 
regular behavior ( 4 ) .  The physical significance of cy RT in the 
above is, in fact, the excess molar Gibbs free emergy of 
activation of flow in the mixture ( 2 ) .  

In  the first three systems of Table I, results obtained with 
Equation 3 are compared with those obtained by Equation 4. 
Included there, also, are the constants of the equations used. 
Consideration of the asymmetry of the systems results in a 
significant improvement in agreement between calculated and 
experimental viscosities. This reflects the fact that  the bracketed 
quantity in Equation 4 shows a variation of up  to  85% of the 
value a t  21 = x2 in these systems. The constants of Equation 4 
were obtained by a least-squares treatment of that  equation 
arranged into the linear form 

812/XlX2 = a12 + f f ’ lZ(21 - 2 2 )  

For best results in programing these data, statistical weighting 
is necessary. Presence of the factor ~1x2 in the term 612/x1x2 
may cause a considerable spread in the data  as lzl - x21 ap- 
proaches unity. There, x1z2 becomes comparatively small, with 
n relatively large uncertainty in the term, a12/x1x2. This effect 
has been allowed for by letting the weight of a data  point be 
inversely proportional to the square of the probable error in 
the product xl.zL ( 5 ) .  Thus, the ratio of the weight of a point a t  
xl = x2 = 0.5, for example, to  that  of a point a t  zi = 9x2 is 
about 12.5. In  applying Equation 3 to their data, Katti and 

Chaudhri evaluated alp from the data  at equimolar concentra- 
tion, where the data  uncertainty is obviously the least. Their 
results, therefore, reflect an implicit quasi-weighting of the data. 
Thus, the difference between results by Equations 3 and 4 is 
essentially due to  the effect of the asymmetry term. 

The second aspect of Equation 1-that was concerned with 
the adequacy of assuming binary interactions only-may be 
conveniently considered with data  on the ternary system re- 
ported by Kalidas and Laddha ( 1 ) .  Results of treating their 
three constituent binaries with Equation 4 are summarized 
in Table I. If the six constants a,j and cy’%j are now incorporated 
into Equations 5 and 1 for the ternary system, the mean devia- 
tion of experimental data  from results thereby is several per 
cent. Assumption of totally binary interaction is inadequate, 
and Equation 5 must be expanded for a ternary system by 
inclusion of a term for ternary interaction. Let this expanded 
form be written, for the ternary system 1-2-3, as 

where /3 might be constant 

B = B11r (7) 

or a concentration dependent function such as, for example, 

The form of Equation 8 is suggested by the linearity of a plot 
of the ternary data  with Equation 6 as 

us. Z1-X2. 

Comparison of experimental results with those obtained by 
use of Equations 7 and 6 with those by use of Equations 8 and 
6 is made in Table 11. Results obtained by Equation 8 are 
rather less in error than those by Equation 7 ,  but the uncer- 
tainty in the experimental measurements makes i t  difficult t o  
assess the significance of the improvement. 

Let us now consider the alternate approach of Kalidas and 
Laddha ( I ) ,  noting both the relative complexity of it and 

VOL. 11, No .  1, JANUARY 1966 67 



results obtained thereby. For a multicomponent system, that  
equation may be written as 

where 

and v s3k is the same for given i, j, k regardless of the order of 
i, j ,  k .  Both v , ~  and V , j k  are constants, and are evaluated from 
experimental data  in the appropriate binary and ternary 
systems, rwpectively. The relatively greater complexity of 
Equation 9 compared with Equation 1 is apparent. For 2 

binary system, 1-2, Equation 10 reduces to  

L 

1 (11)  

3 -(log VlZ - log vz1)(21 - 2 2 )  

2 

Thus, Equations 4 and I1 show that  in binary systems, al- 
though not in higher systems, the dependence of a~~ on con- 
centration is of the same functional form by both approaches. 
Both approaches will require weighting of the data. 

Results reported by Kalidas and Laddha ( 1 )  for the three 
constituent binaries of the ternary system are shown in Table I. 
These are unweighted data, and for the best comparison of the 
results by the regular solution and three-body approaches, 
the effect of weighting on the latter must be considered. This 
effect was evaluated and because of a fortuitous distribution of 
data scattering a t  large /zl - z2j, the result was a decrease in 
error or no more than 0.1 % except in the acetone-methanol 
system. There the effect was a reduction of the average and 
maximum deviations, respectively, from 0.60 and 0.977, to  
0.33 and 0.69%. Results by the three-body approach are not 
superior to  those by the modified regular solution approach 
in the binary systems. 

The results of Kalidas and Laddha ( 1 )  for the ternary system 
are shown in Table 11. They have not been corrected by the 
present author to  include the effect of weighting required by the 

presence of the factor ~ 1 x 2 ~ 3  in Equation 10. The effect of 
weighting was examined when the data  were treated by the 
regular solution approach. The ternary data  are so scattered 
that  weighting reduced the error by only a few hundreths of 
one per cent. Moreover, as the major binary interaction is 
between pairs including ethylene glycol, the previously noted 
correction for weighting the acetone-methanol system has also 
been omitted. Trial calculations indicated this omission was 
virtually without effect 011 the coiiclusions stated in the present 
work. Table I1 shows that  results obtained by the two ap- 
proaches are comparable. 

Those experimental points showing poor agreement with one 
approach are also in poor agreement by the other. It  may be 
assumed that considerable portion of the lack of agreement 
between experimental and predicted values is due to  lack of 
precision in the data. This conclusion is supported for the binary 
systems in that  plots of deviations from the Arrhenius equa- 
tion 

show that  the suspect data points also deviate considerably 
from the smoothed values there. 

While the present work does not consider explicitly results 
in systems higher than ternary, i t  may be anticipated that, for 
those systems, higher interaction terms may well be required. 
Thus, in quaternary systems, for example, a term in x1x2x~x4 
might be suitable. 

N 0 ME NC LAT U RE 

mole fraction of component i 
molecular weight of component z 
binary constants in equations based upon the regular 
solution approach 
ternary constants in equations based upon the regular 
solution approach 
deviation from noninteraction in a mixture 
kinematic viscosity of mixture 
kinematic viscosity of pure component a 
binary (ternary) constants in equations based upon 
the three-body approach 
absolute viscosity of mixture 
absolute viscosity of pure component z 
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