

air bath. This procedure prevented the possibility of condensation of the *n*-hexane, since the air bath was maintained above 66° C. (150° F.) and sample pressure in the flask was below 1 atm.

A unique two-column arrangement was employed utilizing an 8.0-foot Ansul ether column and a 3.5-foot molecular sieve column in series with switching valves, so that a complete analysis could be made in 8.5 minutes including a correction for any air leakage. No pressure or volume measurements were needed, once the instrument had been calibrated to analyze each sample and only one run per sample was necessary.

Many reruns and checks were made to ascertain that the instrument was properly calibrated and that the analysis was consistent. A mass spectrometer was used as an independent analytical instrument to check the gas chromatograph.

Materials Used. The *n*-hexane was research grade with a stated purity of 99.9%. The nitrogen was dry research grade with a purity of 99.85%. These purities were ascertained on both the gas chromatograph and the mass spectrometer.

RESULTS

The experimentally determined compositions of the coexisting vapor and liquid phases are listed in Table I and plotted in a pressure-composition diagram in Figure 1. The solubility of nitrogen in the liquid hydrocarbon phase increases with pressure, as was reported by several investigators (1, 2, 3).

ACCURACY

The over-all analytical procedure is thought to be reliable to ± 0.002 mole fraction. Temperature variations within the cell were $\pm 0.11^{\circ}$ C. $(0.2^{\circ}$ F.) during circulation and $\pm 0.028^{\circ}$ C. $(0.05^{\circ}$ F.) during sampling and settling. The accuracy of the reported pressures is ± 0.14 atm. (2 p.s.i.a.) during circulation, settling, and sampling.

LITERATURE CITED

- Akers, W.W., Atwell, L.L., Robinson, J.A., Ind. Eng. Chem. 46, 2539-40 (1954).
- (2) Azarnoosh, A., McKetta, J.J., J. CHEM. ENG. DATA 8, 494-6 (1963).
- (3) Roberts, L.R., McKetta, J.J., A.I.Ch.E. J. 7, 173-4 (1961). Received for review January 12, 1965. Accepted February 21, 1966.

Vapor-Liquid Equilibrium Constants for the Ethane–*n*-Butane–*n*-Heptane System at 150°, 200°, and 250° F.

VINOD S. MEHRA and GEORGE THODOS Northwestern University, Evanston, III.

> Vapor-liquid equilibrium constants for the system, ethane-n-butane-n-heptane have been established at 150°, 200°, and 250° F. for pressures ranging from 450 p.s.i.a. up to the critical region. Values of critical pressure and composition have been obtained from these data and are presented for each temperature investigated.

CONSIDERABLE vapor-liquid equilibrium data extending into the critical region are presented in the literature for binary systems, but such information for mixtures containing more than two components is limited. To extend this information to the behavior of three-component systems, Herlihy and Thodos (3) and Mehra and Thodos (7) experimentally determined vapor-liquid equilibrium constants for the ethane-*n*-butane-*n*-pentane system at 150°, 200°, 250°, and 300° F. This type of study is being continued in the

present investigation and deals with the ethane-*n*-butane*n*-heptane system, which was selected for investigation because the three binaries of this ternary system have been comprehensively studied by Kay (4,5,6). Recent experimental vapor-liquid equilibrium constants are also reported by Mehra and Thodos for the ethane-*n*-butane and the ethane-*n*-heptane systems (8,9). Experimental K values for the ethane-*n*-butane-*n*-heptane system have been established in this investigation at 150° , 200° , and 250° F.

APPARATUS AND PROCEDURE

The experimental equipment is the same as that used for the ethane-n-butane-n-pentane system, and consists of a stainless steel equilibrium cell provided with a movable piston for varying the volume of the equilibrium chamber. This piston was actuated with mercury supplied from a positive displacement pump. The pressure of the system was measured with two Heise gages which were connected to this mercury system. These gages were calibrated periodically against a dead-weight gage and found to be reproducible to within 3 p.s.i. for the pressure range encountered in this study. The cell was surrounded with a constant temperature air bath, which was capable of maintaining the over-all temperature of the cell to within 0.3° F. of the desired temperature. Under these conditions, the temper-

Table I. Experimental Vapor-Liquid Equilibrium Data for the Ethane-n-Butane-n-Heptane System at 150° F.

Pressure.	y, Vapor Mole Fraction			x, Liquid Mole Fraction			K = y/x			
P.S.I.A.	Ethane	n-Butane	<i>n</i> -Heptane	Ethane	n-Butane	n-Heptane	Ethane	n-Butane	n-Heptane	C
					Charge 1					
511	0.966	0.0206	0.0134	0.546	0.0553	0.399	1.769	0.373	0.0336	0.122
615	0.964	0.0205	0.0155	0.618	0.0520	0.330	1.560	0.394	0.0469	0.158
733	0.962	0.0205	0.0175	0.720	0.0500	0.230	1.336	0.410	0.0761	0.217
819	0.958	0.0208	0.0210	0.784	0.0457	0.170	1.222	0.455	0.124	0.212
898	0.954	0.0222	0.0240	0.848	0.0390	0 113	1 125	0.569	0 212	0.257
948°				0.891	0.0345	0.0745	1.120	0.000	0.212	0.201
952°	0.945	0.0242	0.0312	0.001	0.0010	0.0140				
					Charge I	I				
522	0.933	0.0532	0.0142	0.532	0.154	0.314	1.754	0.345	0.0452	0.329
619	0.940	0.0462	0.0142	0.614	0.1285	0.2575	1.531	0.360	0.0551	0.333
727	0.941	0.0434	0.0154	0.704	0.112	0.184	1.337	0.388	0.0837	0.378
808	0.940	0.0424	0.0173	0.770	0.0965	0.1335	1.221	0.439	0.130	0.419
878	0.938	0.0432	0.0191	0.831	0.0812	0.0873	1.129	0.532	0.219	0 482
918°		010 101		0.864	0.0700	0.0660	11120			0.101
920'	0.930	0.0460	0.0244	0.001	0.0100	0.0000				
					Charge I	II				
528	0.902	0.0870	0.0110	0.513	0.246	0.241	1.758	0.354	0.0456	0.505
633	0.906	0.0830	0.0110	0.612	0.217	0 171	1 480	0.382	0.0643	0.559
715	0.910	0.0792	0.0111	0.688	0 1885	0 1235	1 323	0 420	0.0899	0.604
799	0.914	0.0741	0.0121	0.752	0 1622	0.0862	1 215	0.457	0.140	0.654
849'	0.911	0.0750	0.0140	0.102	0.1022	0.0002	1.210	0.401	0.140	0.004
852"	0.011	0.0100	0.0140	0.797	0.141	0.0617				

^a Liquid sample only. ^bVapor sample only.

Table II. Experimental Vapor-Liquid Equilibrium Data for the Ethane–n-Butane–n-Heptane System at 200° F.

Prossure	y, Vapor Mole Fraction			x, Liquid Mole Fraction			K = y/x			
P.S.I.A.	Ethane	n-Butane	n-Heptane	Ethane	n-Butane	n-Heptane	Ethane	n-Butane	n-Heptane	C
					Charge I					
506	0.926	0.0355	0.0385	0.424	0.0693	0.507	2.184	0.512	0.0759	0.120
625	0.929	0.0335	0.0375	0.512	0.0673	0.421	1.814	0.497	0.0891	0.138
735	0.930	0.0337	0.0365	0.567	0.0661	0.367	1.640	0.510	0.0994	0.153
860	0.930	0.0315	0.0385	0.642	0.0613	0.297	1.449	0.514	0.130	0.171
968	0.925	0.0316	0.0435	0.710	0.0559	0.234	1.303	0.565	0.147	0.193
1045	0.919	0.0314	0.0495	0.754	0.0524	0.194	1.219	0.599	0.255	0.213
1088°				0.788	0.0502	0.162				
1090*	0.908	0.0333	0.0583							
					Charge II					
503	0.874	0.0940	0.0324	0.392	0.1795	0.428	2.230	0.524	0.0757	0.295
625	0.881	0.0855	0.0332	0.484	0.1655	0.350	1.820	0.517	0.0949	0.321
746	0.887	0.0794	0.0333	0.576	0.154	0.270	1.540	0.516	0.123	0.363
859	0.885	0.0791	0.0358	0.635	0.142	0.223	1.394	0.557	0.161	0.389
954	0.882	0.0767	0.0410	0.689	0.130	0.181	1.280	0.590	0.227	0.418
1037°	0.877	0.0764	0.0464							
1040°				0.744	0.116	0.140				
					Charge II	I				
502	0.821	0.149	0.0303	0.390	0.266	0.344	2.105	0.560	0.0881	0.436
622	0.830	0.141	0.0286	0.457	0.262	0.281	1.816	0.538	0.102	0.483
744	0.838	0.133	0.0287	0.536	0.252	0.212	1.563	0.528	0.135	0.543
867	0.840	0.128	0.0317	0.611	0.224	0.165	1.375	0.571	0.192	0.576
936'	0.838	0.128	0.0340							
942ª				0.670	0.204	0.126				
					Charge IV	7				
485	0.751	0.225	0.0240	0.355	0.398	0.247	2.115	0.565	0.0972	0.617
605	0.768	0.210	0.0220	0.419	0.385	0.196	1.833	0.545	0.112	0.663
715	0.781	0.198	0.0207	0.500	0.356	0.144	1.562	0.556	0.144	0.712
805	0.790	0.188	0.0220	0.559	0.323	0.118	1.413	0.582	0.186	0.732
883	0.794	0.181	0.0247	0.619	0.290	0.0914	1.283	0.624	0.270	0.760
	1 1 1	17 1	1							

^a Liquid sample only. ^b Vapor sample only.

Pressure	y, Vapor Mole Fraction			x, Liquid Mole Fraction			K = y/x			
P.S.I.A.	Ethane	n-Butane	n-Heptane	Ethane	n-Butane	n-Heptane	Ethane	n-Butane	n-Heptane	С
					Charge I					
$520 \\ 658 \\ 816 \\ 965 \\ 1094 \\ 1185^{a} \\ 1184^{b}$	$\begin{array}{c} 0.874 \\ 0.881 \\ 0.883 \\ 0.878 \\ 0.868 \\ 0.855 \end{array}$	$\begin{array}{c} 0.0524 \\ 0.0505 \\ 0.0485 \\ 0.0481 \\ 0.0475 \\ 0.0490 \end{array}$	$\begin{array}{c} 0.0737\\ 0.0684\\ 0.0685\\ 0.0743\\ 0.0847\\ 0.0962\end{array}$	$\begin{array}{c} 0.365 \\ 0.441 \\ 0.517 \\ 0.592 \\ 0.657 \end{array}$	$\begin{array}{c} 0.0760\\ 0.0771\\ 0.0775\\ 0.0740\\ 0.0700\\ \end{array}$	$\begin{array}{c} 0.559 \\ 0.482 \\ 0.405 \\ 0.334 \\ 0.273 \end{array}$	$\begin{array}{c} 2.394 \\ 1.998 \\ 1.708 \\ 1.483 \\ 1.321 \end{array}$	$0.689 \\ 0.655 \\ 0.626 \\ 0.650 \\ 0.679$	$\begin{array}{c} 0.132 \\ 0.142 \\ 0.169 \\ 0.222 \\ 0.310 \end{array}$	$0.120 \\ 0.138 \\ 0.161 \\ 0.181 \\ 0.204$
1104				0.705	0.0000	0.220				
$\begin{array}{c} 488\\ 627\\ 765\\ 916\\ 1052\\ 1152\\ 1148^{\circ}\\ 1150^{\circ}\end{array}$	0.810 0.824 0.829 0.830 0.818 0.803 0.790	$\begin{array}{c} 0.120\\ 0.112\\ 0.108\\ 0.104\\ 0.104\\ 0.108\\ 0.111 \end{array}$	0.0695 0.0638 0.0633 0.0663 0.0780 0.0890 0.0990	$\begin{array}{c} 0.332 \\ 0.406 \\ 0.472 \\ 0.545 \\ 0.613 \\ 0.650 \\ 0.675 \end{array}$	0.164 0.159 0.163 0.158 0.149 0.144 0.138	$\begin{array}{c} 0.504 \\ 0.435 \\ 0.365 \\ 0.297 \\ 0.238 \\ 0.206 \\ 0.187 \end{array}$	$2.440 \\ 2.030 \\ 1.756 \\ 1.523 \\ 1.334 \\ 1.235$	$\begin{array}{c} 0.732\\ 0.704\\ 0.663\\ 0.658\\ 0.698\\ 0.750 \end{array}$	$\begin{array}{c} 0.138 \\ 0.147 \\ 0.173 \\ 0.223 \\ 0.328 \\ 0.432 \end{array}$	$\begin{array}{c} 0.246 \\ 0.267 \\ 0.309 \\ 0.347 \\ 0.385 \\ 0.411 \end{array}$
					Charge III					
455 614 755 913 1024 1065	$\begin{array}{c} 0.715 \\ 0.736 \\ 0.751 \\ 0.750 \\ 0.742 \\ 0.730 \end{array}$	$\begin{array}{c} 0.220 \\ 0.206 \\ 0.195 \\ 0.191 \\ 0.190 \\ 0.194 \end{array}$	$\begin{array}{c} 0.0648 \\ 0.0580 \\ 0.0540 \\ 0.0585 \\ 0.0675 \\ 0.0760 \end{array}$	$\begin{array}{c} 0.277 \\ 0.351 \\ 0.436 \\ 0.508 \\ 0.573 \\ 0.598 \end{array}$	$\begin{array}{c} 0.288\\ 0.298\\ 0.293\\ 0.274\\ 0.255\\ 0.246\end{array}$	$\begin{array}{c} 0.435\\ 0.351\\ 0.271\\ 0.218\\ 0.172\\ 0.156\end{array}$	$2.581 \\ 2.097 \\ 1.722 \\ 1.476 \\ 1.295 \\ 1.221$	$\begin{array}{c} 0.764 \\ 0.691 \\ 0.666 \\ 0.697 \\ 0.745 \\ 0.789 \end{array}$	$\begin{array}{c} 0.149 \\ 0.165 \\ 0.199 \\ 0.268 \\ 0.392 \\ 0.487 \end{array}$	$\begin{array}{c} 0.398 \\ 0.459 \\ 0.520 \\ 0.557 \\ 0.597 \\ 0.612 \end{array}$
					Charge IV					
453 604 733 835 ^b	0.594 0.621 0.643	0.354 0.335 0.316	0.0523 0.0435 0.0410	$\begin{array}{c} 0.222 \\ 0.301 \\ 0.375 \\ 0.440 \\ 0.482 \end{array}$	$\begin{array}{c} 0.454 \\ 0.463 \\ 0.446 \\ 0.423 \\ 0.208 \end{array}$	$\begin{array}{c} 0.324 \\ 0.236 \\ 0.179 \\ 0.137 \\ 0.110 \end{array}$	2.676 2.064 1.715	0.780 0.724 0.709	0.161 0.184 0.229	0.584 0.662 0.714
953	0.643 0.625	0.302	0.0552	0.483 0.502	0.398	0.119	1.331 1.245	0.759	0.464	0.777
^a Vapor sam	ple only. °L	iquid sample.	only.							

1250 1200 250 °F. 200 °F. -1150 1100 Critical Pressure, p.s.i.a. 1050 150 °F 1000 950 900 850 800 750L 4 0.2 0.4 0,6 0.8 1.0 ō 0.2 0.4 0.6 0.8 1.0 ō 0.2 0.4 0.6 0.8 10 Mole Fraction Mole Fraction Mole Fraction

Table III. Experimental Vapor-Liquid Equilibrium Data for the Ethane–*n*-Butane–*n*-Heptane System at 250° F.

Pressure.	Vapor C	-Liquid Equilibonstant, $K = y/$	orium x	Pressure	Vapor-Liquid Equilibrium Constant, $K = y/x$			
P.S.I.A.	Ethane	n-Butane	n-Heptane	P.S.I.A.	Ethane	n-Butane	n-Heptane	
	<i>C</i> =	= 0.000			C = 0).600 (continued)	
450	1.932		0.0340	650	1.427	0.389	0.0713	
500	1.774		0.0373	700	1.350	0.404	0.0850	
550	1.650		0.0391	750	1.280	0.424	0.105	
600	1.540		0.0443	800	1.218	0.453	0.136	
650	1.451		0.0498	840	1.170	0.490	0.182	
700	1.372		0.0595	860	1.145	0.514	0.217	
750	1.307		0.0685	880	1.120	0.549	0.290	
800	1.247		0.0849	900	1.094	0.599	0.323	
850	1.191		0.113	920	1.067	0.678	0.363	
900	1.140		0.161	940	1.030	0.875	0.720	
920	1.122		0.191	944 ^a	1.000	1.000	1.000	
950	1.092		0.255		C	0.000		
970	1.064		0.376		C	= 0.800		
991"	1.000		1.000	450	1.851	0.389	0.0508	
	C.	- 0.200		500	1.710	0.390	0.0569	
	C -	= 0.200		550	1.618	0.395	0.0640	
450	1.920	0.342	0.0369	600	1.515	0.402	0.0736	
500	1.763	0.345	0.0400	650	1.405	0.417	0.0860	
550	1.640	0.350	0.0440	700	1.327	0.437	0.103	
600	1.534	0.356	0.0492	750	1.258	0.468	0.128	
650	1.445	0.364	0.0565	800	1.192	0.509	0.173	
700	1.367	0.375	0.0670	840	1.142	0.559	0.240	
750	1.300	0.392	0.0800	860	1.117	0.598	0.293	
800	1.230	0.421	0.100	880	1.088	0.658	0.376	
850	1.182	0.469	0.137	900	1 052	0 794	0.570	
900	1.127	0.550	0.200	909*	1 000	1 000	1 000	
920	1 105	0.597	0.238	505	1.000	1.000	1.000	
940	1.085	0.657	0.294		C	= 0.900		
960	1.061	0.752	0.412	450	1 894			
979ª	1,000	1 000	1 000	400	1.624			
010	1,000	1.000	1.000	550	1.002			
	C :	= 0.400		550	1.007			
450	1 907	0 349	0.0400	650	1.400			
500	1.307	0.343	0.0439	650	1.303			
550	1,700	0.352	0.0497	700	1.300			
600	1.002	0.000	0.0407	750	1.235			
650	1.020	0.304	0.0345	800	1.167			
000	1.400	0.371	0.0627	820	1.141			
700	1.360	0.385	0.0753	840	1.112			
750	1.292	0.400	0.0920	860	1.080			
800	1.230	0.430	0.119	882	1.000			
850	1.170	0.477	0.165		C	= 1.000		
900	1.113	0.565	0.248	150		- 1.000		
920	1.090	0.617	0.300	450	1.791	0.425		
940	1.066	0.690	0.398	500	1.647	0.426		
960	1.030	0.855	0.692	550	1.532	0.431		
965°	1.000	1.000	1.000	600	1.438	0.438		
	~	- 0 600		650	1.353	0.455		
	C =	- 0.000		700	1.280	0.479		
450	1.883	0.360	0.0441	750	1.203	0.530		
500	1.739	0.364	0.0486	800	1.130	0.615		
550	1.618	0.370	0.0540	820	1.087	0.706		
600	1.515	0.377	0.0615	841°	1.000	1.000		
°Critical po	vint.							

Table IV. Final K Values for the System Ethane–n-Butane–n-Heptane at 150° F.

ature across the cell varied from 0.2° F. at 150° F. to 0.4° F. at 250° F. Agitation within the equilibrium chamber was provided with a stirrer, coupled magnetically to an external mechanical drive. Complete details of the cell and associated equipment are available elsewhere (10).

In the present study, each component was charged to the cell from individual charging reservoirs. With this arrangement, the desired amount of each component could be conveniently introduced into the cell. Approximately 3 hours were required for the system to attain equilibrium. However, for conditions in the vicinity of the critical point, more time was necessary. After reaching equilibrium, microsamples of the vapor and liquid phases in equilibrium were withdrawn by first freezing each of them with liquid nitrogen in a sampling bulb and then allowing them to vaporize and expand in their respective bulbs. The volumes of the sampling bulbs were selected so that the partial pressure of the *n*-heptane in the bulb was always considerably less than its vapor pressure at room temperature.

The vapor and liquid samples were analyzed with a gas chromatography unit equipped with a thermal conductivity cell as detector. This unit was calibrated by preparing standards consisting of several mixtures of the binary systems, ethane-*n*-butane and ethane-*n*-heptane, whose compositions were determined with a mass spectrometer. The ratio of *n*-butane to ethane and *n*-heptane to ethane in the ternary mixture provided means for completely determining the composition of the ternary samples. Analyses carried out on the gas chromatograph were reproducible in a series of several measurements to within 1 mole % of a component based on the assumption that the mass spectrometer results represented the true composition.

MATERIALS

The hydrocarbons used were reagent grade, supplied by the Phillips Petroleum Co. The purity of ethane used was claimed by the supplier to be 99.91 mole %; *n*-butane, 99.90 mole %; and *n*-heptane, 99.78 mole %.

	Va	por-Liquid Equ	ilibrium	Vapor-Liquid Equilibrium					
Pressure,		Constant, K =	= y/x	Pressure, _	C	onstant, $K = y$	/x		
P.S.I.A.	Ethane	n-Butane	n-Heptane	P.S.I.A.	Ethane	n-Butane	n-Heptane		
	C =	0.000			C = 0.60	0 (continued)			
450	2.435		0.0708	600	1.836	0.541	0.107		
500	2.225		0.0721	650	1.722	0.540	0.116		
550	2.056		0.0750	700	1.620	0.541	0.127		
600	1.922		0.0780	750	1.532	0.545	0.142		
650	1.803		0.0835	800	1.457	0.554	0.160		
700	1.700		0.0876	850	1.388	0.567	0.186		
750	1.610		0.0968	900	1.310	0.586	0.222		
800	1.531		0.107	950	1.241	0.625	0.274		
800	1.457		0.120	1000	1.174	0.683	0.359		
900	1.392		0.135	1020	1.148	0.720	0.411		
900	1.329		0.101	1040	1.123	0.775	0.492		
1050	1.270		0.194	1060	1.080	0.878	0.658		
1100	1.444		0.200	1069	1.000	1.000	1.000		
1120	1.100		0.302		<i>C</i> =	: 0.800			
1120	1 104		0.354	450	2.237	0.581	0.107		
1165°	1 000		1 000	500	2.052	0.572	0.114		
1100	1.000		1.000	550	1.902	0.567	0.120		
	C =	0.200		600	1.779	0.565	0.128		
450	2.834	0.524	0.0760	650	1.661	0.566	0.141		
500	2.183	0.513	0.0776	700	1.560	0.571	0.157		
550	2.030	0.506	0.0810	750	1.468	0.582	0.178		
600	1.899	0.503	0.0860	800	1.383	0.600	0.207		
650	1.780	0.502	0.0919	850	1.310	0.627	0.251		
700	1.678	0.504	0.0989	900	1.230	0.673	0.320		
750	1.588	0.508	0.108	920	1.198	0.701	0.363		
800	1.011	0.514	0.118	940	1.160	0.736	0.423		
900	1.444	0.524	0.132	960	1.120	0.786	0.510		
950	1.376	0.000	0.150	900	1.079	0.867	0.668		
1000	1.010	0.550	0.170	992	1.000	1.000	1.000		
1050	1.200	0.606	0.265		C =	0.900			
1100	1.200	0.000	0.200	450	2.205				
1120	1 1 1 7	0.740	0.470	500	2.011				
1140	1.069	0.871	0 705	550	1.852				
1148°	1.000	1.000	1.000	600	1.730				
		0.400		650	1.611				
	U =	0.400		700	1.509				
450	2.336	0.540	0.0839	750	1.411				
500	2.150	0.530	0.0860	800	1.320				
550	2.000	0.523	0.0899	840	1.242				
600	1.874	0.520	0.0953	860	1.201				
700	1.709	0.518	0.102	880	1.160				
750	1.570	0.515	0.112	900	1.114				
800	1 490	0.529	0.124	0224	1.070				
850	1 420	0.541	0.156	500	1.000				
900	1.353	0.557	0 180		C =	1.000			
950	1.291	0.580	0.210	450	2.173	0.613			
1000	1.233	0.607	0.252	500	1.972	0.605			
1040	1.189	0.643	0.305	550	1.809	0.601			
1060	1.163	0.674	0.350	600	1.670	0.606			
1080	1.134	0.720	0.422	650	1.546	0.620			
1100	1.100	0.800	0.554	700	1.448	0.635			
1118^{a}	1.000	1.000	1.000	750	1.351	0.663			
	C-	0.600		800	1.243	0.721			
450	2 200	0.000	0.0019	820	1.183	0.770			
±00 500	2.250	0.000	0.0910	830	1.147	0.805			
550	1.957	0.543	0.0000	040	1.000	1.000			
	2.001	0.010	0,10 m						
⁻ Critical poi	nt.								

Table V. Final K values for the System Ethane-n-Butane-n-Heptane at 200° F.

EXPERIMENTAL INVESTIGATION

For a ternary system, the vapor-liquid equilibrium constant, K = y/x is a function of temperature, pressure, and the composition of the three-component mixture. Therefore, if the temperature and pressure are fixed, one other intensive quantity which depends on composition must be specified in order to define the system. Such an intensive quantity which has found widespread use is the composition parameter, defined as follows (1):

$$C = \frac{x_i}{x_i + x_h} \tag{1}$$

Throughout the entire range of compositions of the ternary system of the study, the composition parameter varies from zero for the ethane-n-heptane system to unity for the ethane-n-butane system.

For temperatures of 150° , 200° , and 250° F., charges were prepared with composition parameters, *C*, ranging from zero to unity. The charge compositions were selected so that they corresponded to critical temperatures very close to 150° , 200° , and 250° F. These compositions were established by the method described by Grieves and Thodos (2). Thus it became possible to obtain the vapor and liquid phases for a given charge for pressures ranging from approximately 450 p.s.i.a. up to the critical region.

For each charge the compositions of the vapor and liquid phases were determined at several pressures above 450 p.s.i.a. The experimental vapor and liquid compositions for

	Vapor-	Liquid Equ	ilibrium	.	Vapor-Liquid Equilibrium Constant, $K = y/x$				
Pressure,	Cons	stant, $K = \frac{1}{2}$	y/x	Pressure, P.S.I.A.	Ethane	<i>n</i> -Butane	<i>n</i> -Heptane		
P.S.I.A.	Ethane r	<i>i</i> -Butane	<i>n</i> -Heptane	1.0.1.1.1	2		·····		
450	C = 0.00 2 755	U	0.135	450	0 482 C	= 0.800	0.208		
500	2.550		0.135	450 500	2.483	0.788	0.210		
550	2.378		0.134	550	2.119	0.767	0.220		
600 650	2.217		0.137	600 650	1.980	0.751	0.235		
700	1.958		0.133	700	1.850 1.730	0.740	$0.234 \\ 0.278$		
750	1.850		0.150	750	1.609	0.732	0.310		
800 850	1.755		0.159	800	1.503	0.735	0.352		
900	1.598		0.184	900	1.319	0.740	0.411		
950	1.533		0.200	940	1.237	0.805	0.562		
1000	1.471		0.218	960	1.198 1 150	0.829	0.615		
1100	1.349		0.279	1000	1.100	0.903	0.790		
1150	1.285		0.329	1016°	1.000	1.000	1.000		
1200	1.212 1 172		0.422		С	= 0.900			
1250ª	1.000		1.000	450	2.391				
	C = 0.20	0		500 550	2.177 2.013				
450	2.709	0.740	0.143	600	1.872				
500	2.503	0.712	0.141	650	1.748				
550 600	2.334 2.175	0.693	0.142	700	1.621				
650	2.032	0.661	0.150	800	1.335				
700	1.916	0.649	0.154	840	1.232				
750 800	1.811 1.723	0.640	0.161	860	$1.183 \\ 1.127$				
850	1.643	0.635	0.184	903°	1.000				
900	1.570	0.636	0.200		C	l = 1.000			
950 1000	1.505	0.640	0.220	450	2.272	0.854			
1050	1.378	0.662	0.275	500	2.022	0.836			
1100	1.317	0.679	0.311	550	1.844 1.705	0.823			
1140	1.266	0.701	0.355	650	1.585	0.813			
1200	1.180	0.763	0.478	700	1.470	0.811			
1220	1.129	0.818	0.572	720	1.401	0.827			
1239	1.000	1.000	1.000	740	1.252 1.215	0.889			
450	2 660	0.759	0.153	761ª	1.000	1.000			
400 500	2.000 2.457	0.732	0.152			*			
550	2.291	0.711	0.154		1300				
600 650	2.140 2.000	0.693	0.156						
700	1.881	0.666	0.167		1250				
750	1.780	0.659	0.176						
800 850	1.693	0.657	0.189		1200	-\	<u> </u>		
900	1.536	0.664	0.225						
950	1.467	0.670	0.250		1150				
1050	1.398	0.679	0.283			× + + +	+		
1100	1.270	0.726	0.388	ri -	1100				
1140	1.209 1.176	0.767	0.465	psi					
1180	1.133	0.835	0.612	ure,	1050	\rightarrow			
1206ª	1.000	1.000	1.000	Pres	1000				
	C = 0.60	00		to L	150°F				
450	2.590	0.782	0.170	Car	950				
500 550	2.390	0.757	0.170		930		<i>V</i>		
600	2.086	0.715	0.175						
650	1.953	0.700	0.182		Ethane	-n-Butane-n-Heptane			
700 750	1.728	0.685	0.206		850		\}¥		
800	1.636	0.685	0.224			┝┼┼┟┼╆	++		
850	1.556	0.690	0.247		800	┟┼┉┟┤┼┥┥	-+-+		
950	1.404	0.714	0.315		<u></u>	┞┟┾╂┾╊	<u>+ 1</u>		
1000	1.330	0.736	0.364		750	0.4 0.6 0.8	<u> </u>		
1040	1.272	0.760	0.420			$C = \frac{x_4}{x_4 + x_7}$			
1100	1.177	0.832	0.582	-		ا المتعامة			
1120	1.133	0.872	0.682	Fi	gure 2. Re	elationship be	erween		
1140	1.000	1.000	1.000		arameter fr	or ethane_n-b	utane-		
^e Critical poin	nt.			۲ ה	-heptane sv	stem at 150°.	200°,		
					, ar	nd 250° F.	·		

Table VI. Final K Values for the System Ethane–n-Butane–n-Heptane at 250° F.

Figure 3. Vapor-liquid equilibrium constants for ethanen-butane-n-heptane system at 150° F.

all charges studied are presented in Tables I, II, and III for temperatures of 150°, 200°, and 250° F., respectively. In the vicinity of the critical point, it frequently became necessary to withdraw a sample of the vapor phase first and allow equilibrium again to be reached before withdrawing the liquid sample, in order to eliminate possible contamination of the vapor phase with the liquid phase.

For each charge, the experimental data were smoothed by plotting compositions against pressure and equilibrium constants, K = y/x, were obtained from these smoothed curves. The vapor and liquid composition lines were then extended beyond the highest pressure to their point of convergence which represents the critical pressure of the charge. Using this approach, the composition of the charge mixture having this critical pressure was established. This procedure was followed to establish to composition and critical pressure of each charge at 150°, 200°, and 250° F. The final value of the critical pressure for each charge was

Figure 4. Vapor-liquid equilibrium constants for ethanen-butane-n-heptane system at 200° F.

Figure 5. Vapor-liquid equilibrium constants for ethanen-butane-n-heptane system at 250° F.

Figure 6. Vapor-liquid equilibrium behavior for ethanen-butane-n-heptane system at 200° F.

established as the pressure at which the curves for the three components converged at K = 1.00 in a plot of equilibrium constant vs. pressure. The resulting critical pressures are plotted against the corresponding compositions of each charge to produce, for each temperature, the relationships presented in Figure 1. The critical pressures of the charges and corresponding binaries were also plotted against the composition parameter, C, to obtain a single relationship for each temperature as shown in Figure 2. The binary data for the systems, ethane-n-butane and ethane-n-heptane presented by Mehra and Thodos (8,9) have been used.

Vapor-liquid equilibrium constants obtained from the smoothed curves of each charge were plotted against the composition parameter for convenient pressures and crossplotted as K against pressure for constant composition parameters. The resulting curves are presented in Figures 3, 4, and 5 for 150°, 200°, and 250° F., respectively. Final K values for this ternary system obtained from Figures 3, 4, and 5 are presented in Tables IV, V, and VI for 150°, 200°, and 250° F., respectively.

The vapor-liquid equilibrium behavior of this system can be presented in the form of triangular plots as shown for 200° F. in Figure 6. This figure presents the dew point and bubble point curves at 200° F. for convenient pressures and permits the establishment of the two-phase region for pressures above 500 p.s.i.a.

ACKNOWLEDGMENT

The authors express their appreciation to the Phillips Petroleum Co. for the hydrocarbons used in this study and to the National Science Foundation for Grant No. NSF-G9700, which supported this investigation.

NOMENCLATURE

- $C = \text{composition parameter}, x_i / (x_i + x_h)$
- K = vapor-liquid equilibrium constant, y/x
- x = mole fraction of a component in liquid phase
- x_h = mole fraction in liquid phase of component of lowest volatility
- x_i = mole fraction in liquid phase of component of intermediate volatility
- y = mole fraction of a compnent in vapor phase

LITERATURE CITED

- Carter, R.T., Sage, B.H., Lacey, W.N., Am. Inst. Mining Met. Engrs., Tech. Publ. 1250 (November 1940).
- Grieves, R.B., Thodos, George, Ind. Eng. Chem., Fundamentals 1, 45 (1962).
- (3) Herlihy, J.C., Thodos, George, J. CHEM. ENG. DATA 7, 348 (1962).
- (4) Kay, W.B., Ind. Eng. Chem. 30, 459 (1938).
- (5) Ibid., 32, 353 (1940).
- (6) Ibid.,33, 590 (1941).
- (7) Mehra, V.S., Thodos, George, J. CHEM. ENG. DATA 8, 1 (1963).
- (8) Ibid., 10, 211 (1965).
- (9) Ibid.,p. 307.
- (10) Rigas, T.J., Mason, D.F., Thodos, George, Ind. Eng. Chem. 50, 1297 (1958).

RECEIVED for review January 31, 1966. Accepted March 31, 1966.

Lithium Hydride Systems

Solid-Liquid Phase Equilibria for the Ternary Lithium Hydride–Lithium Chloride–Lithium Fluoride System

CARL E. JOHNSON, ELLEN HATHAWAY, and CARL E. CROUTHAMEL Argonne National Laboratory, Argonne, ill.

EXPERIMENTAL

The data to determine the crystalline surface were obtained by thermal analysis techniques; the compositions of the solid solutions in equilibrium with the liquid were not determined. The apparatus used has been described in detail (4). All experiments were run under a hydrogen pressure of 1 atm.

Reagent grade lithium chloride and lithium fluoride were obtained from J. T. Baker Chemical Co., Phillipsburg, N. J. The lithium chloride was purified with chlorine gas, using the method of Maricle and Hume (5). The lithium chloride melting point was 606.8° C. The lithium fluoride was in the

THE phase equilibrium relationship among the hydride, chloride, and fluoride of lithium metal has been studied. This fused salt system is of interest because of its potential application as the electrolyte in the lithium hydride regenerative galvanic cell. Two of the lateral sides of this ternary system are simple eutectics with no apparent solid solution formation (LiF-LiCl and LiCl-LiH), while the third (LiH-LiF) consists of a complete series of solid solutions. The diagram of the crystallization surface consists of two areas, one comprising mainly a crystallization field of solid solutions continuous between LiH and LiF, with an undetermined possible LiCl content, and a smaller field of pure lithium chloride.